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Temporal Information Retrieval

Periodicity Detection, Time-series Correlation, Burst 
Detection



Time Series
• An ordered sequence of values (data points) of 

variables at equally spaced time intervals



Periodicity Detection

• How does one identify periodic values



Periodicity Detection

• Time-series is in the time domain 

• Method1 (DFT): Identify the underlying periodic patterns by transforming  
into the frequency domain 

• Method 2 (Autocorrelation) Correlate the signal with itself

Find dominant frequencies



Fourier Transform

amplitude

frequencyphase

• A signal has an 
amplitude (strength), 
frequency (periodicity) 
and phase (offset)

is the Discrete Fourier Transform of the sequence .

We may write this equation in matrix form as:

... ...
...

where and etc. .

DFT – example
Let the continuous signal be
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Figure 7.2: Example signal for DFT.

Let us sample at 4 times per second (ie. = 4Hz) from to . The
values of the discrete samples are given by:

by putting

84

• Fourier Transform 
converts a signal from 
the time domain to the 
frequency domain



Discrete Fourier Transform (DFT)

This work targets similar applications and provides
tools that can significantly ease the “mining” of useful
information. Specifically, this paper makes the following
contributions:

1. We present a novel automatic method for accurate
periodicity detection in time-series data. Our algorithm
is the first one that exploits the information in both
periodogram and autocorrelation to provide accurate
periodic estimates without upsampling.

2. We introduce new periodic distance measures that
exploit the power of the dominant periods, as provided
by the Fourier Transform. By ignoring the phase infor-
mation we can provide more compact representations,
that also capture similarities under time-shift transfor-
mations.

3. Finally, we present comprehensive experiments
demonstrating the applicability and efficiency of the
proposed methods, on a variety of real world datasets
(online query logs, manufacturing diagnostics, medical
data, etc.).

2 Background

We provide a brief introduction to harmonic analysis
using the discrete Fourier Transform, because we will
use these tools as the building blocks of our algorithms.

2.1 Discrete Fourier Transform. The normalized
Discrete Fourier Transform of a sequence x(n), n =
0, 1 . . . N − 1 is a sequence of complex numbers X(f):

X(fk/N ) = 1
√

N

N−1

n=0

x(n)e−
j2πkn

N , k = 0, 1 . . . N − 1

where the subscript k/N denotes the frequency that
each coefficient captures. Throughout the text we will
also utilize the notation F(x) to describe the Fourier
Transform. Since we are dealing with real signals, the
Fourier coefficients are symmetric around the middle
one (or to be more exact, they will be the complex
conjugate of their symmetric). The Fourier transform
represents the original signal as a linear combination of

the complex sinusoids sf (n) = ej2πfn/N
√

N
. Therefore, the

Fourier coefficients record the amplitude and phase of
these sinusoids, after signal x is projected on them.

We can return from the frequency domain back to
the time domain, using the inverse Fourier transform
F−1(x) ≡ x(n):

x(n) = 1
√

N

N−1

n=0

X(fk/N )e
j2πkn

N , k = 0, 1 . . . N − 1

Note that if during this reverse transformation we
discard some of the coefficients (e.g., the last k), then
the outcome will be an approximation of the original
sequence (Figure 1). By carefully selecting which

coefficients to record, we can perform a variety of tasks
such as compression, denoising, etc.
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Figure 1: Reconstruction of a signal from its first 5
Fourier coefficients

2.2 Power Spectral Density Estimation. In or-
der to discover potential periodicities of a time-series,
one needs to examine its power spectral density (PSD
or power spectrum). The PSD essentially tells us how
much is the expected signal power at each frequency
of the signal. Since period is the inverse of frequency,
by identifying the frequencies that carry most of the
energy, we can also discover the most dominant peri-
ods. There are two well known estimators of the PSD;
the periodogram and the circular autocorrelation. Both
of these methods can be computed using the DFT of
a sequence (and can therefore exploit the Fast Fourier
Transform for execution in O(N log N) time).

2.2.1 Periodogram Suppose that X is the DFT of
a sequence x. The periodogram P is provided by the
squared length of each Fourier coefficient:

P(fk/N ) = ∥X(fk/N )∥2 k = 0, 1 . . . ⌈N−1

2
⌉

Notice that we can only detect frequencies that are at
most half of the maximum signal frequency, due to the
Nyquist fundamental theorem. In order to find the k
dominant periods, we need to pick the k largest values
of the periodogram. 1

1Due to the assumption of the Fourier Transform that the data
is periodic, proper windowing of the data might be necessary for
achieving a more accurate harmonic analysis. In this work we will
sidestep this issue, since it goes beyond the scope of this paper.
However, the interested reader is directed to [5] for an excellent
review of data windowing techniques.

This work targets similar applications and provides
tools that can significantly ease the “mining” of useful
information. Specifically, this paper makes the following
contributions:

1. We present a novel automatic method for accurate
periodicity detection in time-series data. Our algorithm
is the first one that exploits the information in both
periodogram and autocorrelation to provide accurate
periodic estimates without upsampling.

2. We introduce new periodic distance measures that
exploit the power of the dominant periods, as provided
by the Fourier Transform. By ignoring the phase infor-
mation we can provide more compact representations,
that also capture similarities under time-shift transfor-
mations.

3. Finally, we present comprehensive experiments
demonstrating the applicability and efficiency of the
proposed methods, on a variety of real world datasets
(online query logs, manufacturing diagnostics, medical
data, etc.).

2 Background

We provide a brief introduction to harmonic analysis
using the discrete Fourier Transform, because we will
use these tools as the building blocks of our algorithms.

2.1 Discrete Fourier Transform. The normalized
Discrete Fourier Transform of a sequence x(n), n =
0, 1 . . . N − 1 is a sequence of complex numbers X(f):
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where the subscript k/N denotes the frequency that
each coefficient captures. Throughout the text we will
also utilize the notation F(x) to describe the Fourier
Transform. Since we are dealing with real signals, the
Fourier coefficients are symmetric around the middle
one (or to be more exact, they will be the complex
conjugate of their symmetric). The Fourier transform
represents the original signal as a linear combination of

the complex sinusoids sf (n) = ej2πfn/N
√

N
. Therefore, the

Fourier coefficients record the amplitude and phase of
these sinusoids, after signal x is projected on them.

We can return from the frequency domain back to
the time domain, using the inverse Fourier transform
F−1(x) ≡ x(n):

x(n) = 1
√
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X(fk/N )e
j2πkn
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Note that if during this reverse transformation we
discard some of the coefficients (e.g., the last k), then
the outcome will be an approximation of the original
sequence (Figure 1). By carefully selecting which

coefficients to record, we can perform a variety of tasks
such as compression, denoising, etc.
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2.2 Power Spectral Density Estimation. In or-
der to discover potential periodicities of a time-series,
one needs to examine its power spectral density (PSD
or power spectrum). The PSD essentially tells us how
much is the expected signal power at each frequency
of the signal. Since period is the inverse of frequency,
by identifying the frequencies that carry most of the
energy, we can also discover the most dominant peri-
ods. There are two well known estimators of the PSD;
the periodogram and the circular autocorrelation. Both
of these methods can be computed using the DFT of
a sequence (and can therefore exploit the Fast Fourier
Transform for execution in O(N log N) time).

2.2.1 Periodogram Suppose that X is the DFT of
a sequence x. The periodogram P is provided by the
squared length of each Fourier coefficient:

P(fk/N ) = ∥X(fk/N )∥2 k = 0, 1 . . . ⌈N−1

2
⌉

Notice that we can only detect frequencies that are at
most half of the maximum signal frequency, due to the
Nyquist fundamental theorem. In order to find the k
dominant periods, we need to pick the k largest values
of the periodogram. 1

1Due to the assumption of the Fourier Transform that the data
is periodic, proper windowing of the data might be necessary for
achieving a more accurate harmonic analysis. In this work we will
sidestep this issue, since it goes beyond the scope of this paper.
However, the interested reader is directed to [5] for an excellent
review of data windowing techniques.

fourier transform

inv. fourier transform

• A Fourier analysis is a method for expressing a function as a sum of periodic 
components, and for recovering the function from those components.  

• When both the function and its Fourier transform are replaced with 
discretized counterparts, it is called the discrete Fourier transform (DFT).

Advantages of DFT apart from periodicity detection ?
denoising, compression



Discrete Fourier Transform (DFT)

X(fk/N ) =
1p
N

N�1X
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x(n) e
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N

fourier coefficients
sinusoid

i.e. , , , ,

Therefore

The magnitude of the DFT coefficients is shown below in Fig. 7.3.
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Figure 7.3: DFT of four point sequence.

Inverse Discrete Fourier Transform
The inverse transform of
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is the Discrete Fourier Transform of the sequence .

We may write this equation in matrix form as:
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where and etc. .
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Let the continuous signal be

dc 1Hz 2Hz

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4

6

8

10

Figure 7.2: Example signal for DFT.

Let us sample at 4 times per second (ie. = 4Hz) from to . The
values of the discrete samples are given by:

by putting
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fourier 
transform

periodogram

• The fourier coefficients encode both the amplitude and phase



Power Spectral Density (PSD) Estimation

i.e. , , , ,

Therefore

The magnitude of the DFT coefficients is shown below in Fig. 7.3.
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Figure 7.3: DFT of four point sequence.
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The inverse transform of

85

is the Discrete Fourier Transform of the sequence .

We may write this equation in matrix form as:
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Figure 7.2: Example signal for DFT.

Let us sample at 4 times per second (ie. = 4Hz) from to . The
values of the discrete samples are given by:

by putting

84

fourier 
transform

• To find out the dominant frequency we need to find the 
power at each frequency 

• Periodogram encodes the strength at a given frequency

This work targets similar applications and provides
tools that can significantly ease the “mining” of useful
information. Specifically, this paper makes the following
contributions:

1. We present a novel automatic method for accurate
periodicity detection in time-series data. Our algorithm
is the first one that exploits the information in both
periodogram and autocorrelation to provide accurate
periodic estimates without upsampling.

2. We introduce new periodic distance measures that
exploit the power of the dominant periods, as provided
by the Fourier Transform. By ignoring the phase infor-
mation we can provide more compact representations,
that also capture similarities under time-shift transfor-
mations.

3. Finally, we present comprehensive experiments
demonstrating the applicability and efficiency of the
proposed methods, on a variety of real world datasets
(online query logs, manufacturing diagnostics, medical
data, etc.).

2 Background

We provide a brief introduction to harmonic analysis
using the discrete Fourier Transform, because we will
use these tools as the building blocks of our algorithms.

2.1 Discrete Fourier Transform. The normalized
Discrete Fourier Transform of a sequence x(n), n =
0, 1 . . . N − 1 is a sequence of complex numbers X(f):

X(fk/N ) = 1
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j2πkn

N , k = 0, 1 . . . N − 1

where the subscript k/N denotes the frequency that
each coefficient captures. Throughout the text we will
also utilize the notation F(x) to describe the Fourier
Transform. Since we are dealing with real signals, the
Fourier coefficients are symmetric around the middle
one (or to be more exact, they will be the complex
conjugate of their symmetric). The Fourier transform
represents the original signal as a linear combination of

the complex sinusoids sf (n) = ej2πfn/N
√

N
. Therefore, the

Fourier coefficients record the amplitude and phase of
these sinusoids, after signal x is projected on them.

We can return from the frequency domain back to
the time domain, using the inverse Fourier transform
F−1(x) ≡ x(n):

x(n) = 1
√

N

N−1

n=0

X(fk/N )e
j2πkn

N , k = 0, 1 . . . N − 1

Note that if during this reverse transformation we
discard some of the coefficients (e.g., the last k), then
the outcome will be an approximation of the original
sequence (Figure 1). By carefully selecting which

coefficients to record, we can perform a variety of tasks
such as compression, denoising, etc.
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2.2 Power Spectral Density Estimation. In or-
der to discover potential periodicities of a time-series,
one needs to examine its power spectral density (PSD
or power spectrum). The PSD essentially tells us how
much is the expected signal power at each frequency
of the signal. Since period is the inverse of frequency,
by identifying the frequencies that carry most of the
energy, we can also discover the most dominant peri-
ods. There are two well known estimators of the PSD;
the periodogram and the circular autocorrelation. Both
of these methods can be computed using the DFT of
a sequence (and can therefore exploit the Fast Fourier
Transform for execution in O(N log N) time).

2.2.1 Periodogram Suppose that X is the DFT of
a sequence x. The periodogram P is provided by the
squared length of each Fourier coefficient:

P(fk/N ) = ∥X(fk/N )∥2 k = 0, 1 . . . ⌈N−1

2
⌉

Notice that we can only detect frequencies that are at
most half of the maximum signal frequency, due to the
Nyquist fundamental theorem. In order to find the k
dominant periods, we need to pick the k largest values
of the periodogram. 1

1Due to the assumption of the Fourier Transform that the data
is periodic, proper windowing of the data might be necessary for
achieving a more accurate harmonic analysis. In this work we will
sidestep this issue, since it goes beyond the scope of this paper.
However, the interested reader is directed to [5] for an excellent
review of data windowing techniques.



PSD estimation using Periodogram

• To find the dominant frequencies choose the top-k 
dominant frequencies

Each element of the periodogram provides the
power at frequency k/N or, equivalently, at period N/k.
Being more precise, each DFT ‘bin’ corresponds to a
range of periods (or frequencies). That is, coefficient
X(fk/N ) corresponds to periods [N

k . . . N
k−1 ). It is easy

to see that the resolution of the periodogram becomes
very coarse for longer periods. For example, for a se-
quence of length N = 256, the DFT bin margins will be
N/1, N/2, N/3, . . . = 256, 128, 64 etc.

Essentially, the accuracy of the discovered periods,
deteriorates for large periods, due to the increasing
width of the DFT bins (N/k). Another related issue is
spectral leakage, which causes frequencies that are not
integer multiples of the DFT bin width, to disperse over
the entire spectrum. This can lead to ‘false alarms’
in the periodogram. However, the periodogram can
still provide an accurate indicator of important short
(to medium) length periods. Additionally, through the
periodogram it is easy to automate the extraction of
important periods (peaks) by examining the statistical
properties of the Fourier coefficients (such as in [15]).

2.2.2 Circular Autocorrelation. The second way
to estimate the dominant periods of a time-series x, is
to calculate the circular AutoCorrelation Function (or
ACF), which examines how similar a sequence is to its
previous values for different τ lags:

ACF (τ) = 1

N

N−1

n=0

x(τ) · x(n + τ)

Therefore, the autocorrelation is formally a convo-
lution, and we can avoid the quadratic calculation in
the time domain by computing it efficiently as a dot
product in the frequency domain using the normalized
Fourier transform:

ACF = F−1 < X, X∗ >

The star (∗) symbol denotes complex conjugation.
The ACF provides a more fine-grained periodicity

detector than the periodogram, hence it can pinpoint
with greater accuracy even larger periods. However,
it is not sufficient by itself for automatic periodicity
discovery for the following reasons:

1. Automated discovery of important peaks is
more difficult than in the periodogram. Approaches
that utilize forms of autocorrelation require the user
to manually set the significance threshold (such as in
[2, 3]).

2. Even if the user picks the level of significance,
multiples of the same basic period also appear as peaks.
Therefore, the method introduces many false alarms
that need to be eliminated in a post-processing phase.

3. Low amplitude events of high frequency may
appear less important (i.e., have lower peaks) than high

amplitude patterns, which nonetheless appear more
scarcely (see example in fig. 2).
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Figure 2: The 7 day period is latent in the autocorrela-
tion graph, because it has lower amplitude (even though
it happens with higher frequency). However, the 7 day
peak is very obvious in the Periodogram.

The advantages and shortcomings of the peri-
odogram and the ACF are summarized in Table 1.

From the above discussion one can realize that al-
though the periodogram and the autocorrelation cannot
provide sufficient spectral information separately, there
is a lot of potential when both methods are combined.
We delineate our approach in the following section.

3 Our Approach

We utilize a two-tier approach, by considering the in-
formation in both the autocorrelation and the peri-
odogram. We call this method AUTOPERIOD. Since the
discovery of important periods is more difficult on the
autocorrelation, we can use the periodogram for extract-
ing period candidates. Let’s call the period candidates
‘hints’. These ‘hints’ may be false (due to spectral leak-
age), or provide a coarse estimate of the period (remem-
ber that DFT bins increase gradually in size); there-
fore a verification phase using the autocorrelation is re-
quired, since it provides a more fine-grained estimation
of potential periodicities. The intuition is that if the
candidate period from the periodogram lies on a hill of
the ACF then we can consider it as a valid period, oth-
erwise we discard it as false alarm. For the periods that
reside on a hill, further refinement may be required if
the periodicity hint refers to a large period.

Figure 3 summarizes our methodology and Figure
4 depicts the visual intuition behind our approach with
a working example. The sequence is obtained from the

3

This work targets similar applications and provides
tools that can significantly ease the “mining” of useful
information. Specifically, this paper makes the following
contributions:

1. We present a novel automatic method for accurate
periodicity detection in time-series data. Our algorithm
is the first one that exploits the information in both
periodogram and autocorrelation to provide accurate
periodic estimates without upsampling.

2. We introduce new periodic distance measures that
exploit the power of the dominant periods, as provided
by the Fourier Transform. By ignoring the phase infor-
mation we can provide more compact representations,
that also capture similarities under time-shift transfor-
mations.

3. Finally, we present comprehensive experiments
demonstrating the applicability and efficiency of the
proposed methods, on a variety of real world datasets
(online query logs, manufacturing diagnostics, medical
data, etc.).

2 Background

We provide a brief introduction to harmonic analysis
using the discrete Fourier Transform, because we will
use these tools as the building blocks of our algorithms.

2.1 Discrete Fourier Transform. The normalized
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where the subscript k/N denotes the frequency that
each coefficient captures. Throughout the text we will
also utilize the notation F(x) to describe the Fourier
Transform. Since we are dealing with real signals, the
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one (or to be more exact, they will be the complex
conjugate of their symmetric). The Fourier transform
represents the original signal as a linear combination of
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. Therefore, the
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these sinusoids, after signal x is projected on them.
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Note that if during this reverse transformation we
discard some of the coefficients (e.g., the last k), then
the outcome will be an approximation of the original
sequence (Figure 1). By carefully selecting which

coefficients to record, we can perform a variety of tasks
such as compression, denoising, etc.
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2.2 Power Spectral Density Estimation. In or-
der to discover potential periodicities of a time-series,
one needs to examine its power spectral density (PSD
or power spectrum). The PSD essentially tells us how
much is the expected signal power at each frequency
of the signal. Since period is the inverse of frequency,
by identifying the frequencies that carry most of the
energy, we can also discover the most dominant peri-
ods. There are two well known estimators of the PSD;
the periodogram and the circular autocorrelation. Both
of these methods can be computed using the DFT of
a sequence (and can therefore exploit the Fast Fourier
Transform for execution in O(N log N) time).

2.2.1 Periodogram Suppose that X is the DFT of
a sequence x. The periodogram P is provided by the
squared length of each Fourier coefficient:

P(fk/N ) = ∥X(fk/N )∥2 k = 0, 1 . . . ⌈N−1

2
⌉

Notice that we can only detect frequencies that are at
most half of the maximum signal frequency, due to the
Nyquist fundamental theorem. In order to find the k
dominant periods, we need to pick the k largest values
of the periodogram. 1

1Due to the assumption of the Fourier Transform that the data
is periodic, proper windowing of the data might be necessary for
achieving a more accurate harmonic analysis. In this work we will
sidestep this issue, since it goes beyond the scope of this paper.
However, the interested reader is directed to [5] for an excellent
review of data windowing techniques.

Each element of the periodogram provides the
power at frequency k/N or, equivalently, at period N/k.
Being more precise, each DFT ‘bin’ corresponds to a
range of periods (or frequencies). That is, coefficient
X(fk/N ) corresponds to periods [N

k . . . N
k−1 ). It is easy

to see that the resolution of the periodogram becomes
very coarse for longer periods. For example, for a se-
quence of length N = 256, the DFT bin margins will be
N/1, N/2, N/3, . . . = 256, 128, 64 etc.

Essentially, the accuracy of the discovered periods,
deteriorates for large periods, due to the increasing
width of the DFT bins (N/k). Another related issue is
spectral leakage, which causes frequencies that are not
integer multiples of the DFT bin width, to disperse over
the entire spectrum. This can lead to ‘false alarms’
in the periodogram. However, the periodogram can
still provide an accurate indicator of important short
(to medium) length periods. Additionally, through the
periodogram it is easy to automate the extraction of
important periods (peaks) by examining the statistical
properties of the Fourier coefficients (such as in [15]).

2.2.2 Circular Autocorrelation. The second way
to estimate the dominant periods of a time-series x, is
to calculate the circular AutoCorrelation Function (or
ACF), which examines how similar a sequence is to its
previous values for different τ lags:

ACF (τ) = 1

N

N−1

n=0

x(τ) · x(n + τ)

Therefore, the autocorrelation is formally a convo-
lution, and we can avoid the quadratic calculation in
the time domain by computing it efficiently as a dot
product in the frequency domain using the normalized
Fourier transform:

ACF = F−1 < X, X∗ >

The star (∗) symbol denotes complex conjugation.
The ACF provides a more fine-grained periodicity

detector than the periodogram, hence it can pinpoint
with greater accuracy even larger periods. However,
it is not sufficient by itself for automatic periodicity
discovery for the following reasons:

1. Automated discovery of important peaks is
more difficult than in the periodogram. Approaches
that utilize forms of autocorrelation require the user
to manually set the significance threshold (such as in
[2, 3]).

2. Even if the user picks the level of significance,
multiples of the same basic period also appear as peaks.
Therefore, the method introduces many false alarms
that need to be eliminated in a post-processing phase.

3. Low amplitude events of high frequency may
appear less important (i.e., have lower peaks) than high

amplitude patterns, which nonetheless appear more
scarcely (see example in fig. 2).
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Figure 2: The 7 day period is latent in the autocorrela-
tion graph, because it has lower amplitude (even though
it happens with higher frequency). However, the 7 day
peak is very obvious in the Periodogram.

The advantages and shortcomings of the peri-
odogram and the ACF are summarized in Table 1.

From the above discussion one can realize that al-
though the periodogram and the autocorrelation cannot
provide sufficient spectral information separately, there
is a lot of potential when both methods are combined.
We delineate our approach in the following section.

3 Our Approach

We utilize a two-tier approach, by considering the in-
formation in both the autocorrelation and the peri-
odogram. We call this method AUTOPERIOD. Since the
discovery of important periods is more difficult on the
autocorrelation, we can use the periodogram for extract-
ing period candidates. Let’s call the period candidates
‘hints’. These ‘hints’ may be false (due to spectral leak-
age), or provide a coarse estimate of the period (remem-
ber that DFT bins increase gradually in size); there-
fore a verification phase using the autocorrelation is re-
quired, since it provides a more fine-grained estimation
of potential periodicities. The intuition is that if the
candidate period from the periodogram lies on a hill of
the ACF then we can consider it as a valid period, oth-
erwise we discard it as false alarm. For the periods that
reside on a hill, further refinement may be required if
the periodicity hint refers to a large period.

Figure 3 summarizes our methodology and Figure
4 depicts the visual intuition behind our approach with
a working example. The sequence is obtained from the
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time series data 
or signal 

periodogram



Disadvantages of the Periodogram

• Good only for short and medium periodicities 

• Spectral leakage - frequencies not integral multiples of the DFT bin spread over 
other bins — false alarms

Each element of the periodogram provides the
power at frequency k/N or, equivalently, at period N/k.
Being more precise, each DFT ‘bin’ corresponds to a
range of periods (or frequencies). That is, coefficient
X(fk/N ) corresponds to periods [N

k . . . N
k−1 ). It is easy

to see that the resolution of the periodogram becomes
very coarse for longer periods. For example, for a se-
quence of length N = 256, the DFT bin margins will be
N/1, N/2, N/3, . . . = 256, 128, 64 etc.

Essentially, the accuracy of the discovered periods,
deteriorates for large periods, due to the increasing
width of the DFT bins (N/k). Another related issue is
spectral leakage, which causes frequencies that are not
integer multiples of the DFT bin width, to disperse over
the entire spectrum. This can lead to ‘false alarms’
in the periodogram. However, the periodogram can
still provide an accurate indicator of important short
(to medium) length periods. Additionally, through the
periodogram it is easy to automate the extraction of
important periods (peaks) by examining the statistical
properties of the Fourier coefficients (such as in [15]).

2.2.2 Circular Autocorrelation. The second way
to estimate the dominant periods of a time-series x, is
to calculate the circular AutoCorrelation Function (or
ACF), which examines how similar a sequence is to its
previous values for different τ lags:

ACF (τ) = 1

N

N−1

n=0

x(τ) · x(n + τ)

Therefore, the autocorrelation is formally a convo-
lution, and we can avoid the quadratic calculation in
the time domain by computing it efficiently as a dot
product in the frequency domain using the normalized
Fourier transform:

ACF = F−1 < X, X∗ >

The star (∗) symbol denotes complex conjugation.
The ACF provides a more fine-grained periodicity

detector than the periodogram, hence it can pinpoint
with greater accuracy even larger periods. However,
it is not sufficient by itself for automatic periodicity
discovery for the following reasons:

1. Automated discovery of important peaks is
more difficult than in the periodogram. Approaches
that utilize forms of autocorrelation require the user
to manually set the significance threshold (such as in
[2, 3]).

2. Even if the user picks the level of significance,
multiples of the same basic period also appear as peaks.
Therefore, the method introduces many false alarms
that need to be eliminated in a post-processing phase.

3. Low amplitude events of high frequency may
appear less important (i.e., have lower peaks) than high

amplitude patterns, which nonetheless appear more
scarcely (see example in fig. 2).
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Figure 2: The 7 day period is latent in the autocorrela-
tion graph, because it has lower amplitude (even though
it happens with higher frequency). However, the 7 day
peak is very obvious in the Periodogram.

The advantages and shortcomings of the peri-
odogram and the ACF are summarized in Table 1.

From the above discussion one can realize that al-
though the periodogram and the autocorrelation cannot
provide sufficient spectral information separately, there
is a lot of potential when both methods are combined.
We delineate our approach in the following section.

3 Our Approach

We utilize a two-tier approach, by considering the in-
formation in both the autocorrelation and the peri-
odogram. We call this method AUTOPERIOD. Since the
discovery of important periods is more difficult on the
autocorrelation, we can use the periodogram for extract-
ing period candidates. Let’s call the period candidates
‘hints’. These ‘hints’ may be false (due to spectral leak-
age), or provide a coarse estimate of the period (remem-
ber that DFT bins increase gradually in size); there-
fore a verification phase using the autocorrelation is re-
quired, since it provides a more fine-grained estimation
of potential periodicities. The intuition is that if the
candidate period from the periodogram lies on a hill of
the ACF then we can consider it as a valid period, oth-
erwise we discard it as false alarm. For the periods that
reside on a hill, further refinement may be required if
the periodicity hint refers to a large period.

Figure 3 summarizes our methodology and Figure
4 depicts the visual intuition behind our approach with
a working example. The sequence is obtained from the
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This work targets similar applications and provides
tools that can significantly ease the “mining” of useful
information. Specifically, this paper makes the following
contributions:

1. We present a novel automatic method for accurate
periodicity detection in time-series data. Our algorithm
is the first one that exploits the information in both
periodogram and autocorrelation to provide accurate
periodic estimates without upsampling.

2. We introduce new periodic distance measures that
exploit the power of the dominant periods, as provided
by the Fourier Transform. By ignoring the phase infor-
mation we can provide more compact representations,
that also capture similarities under time-shift transfor-
mations.

3. Finally, we present comprehensive experiments
demonstrating the applicability and efficiency of the
proposed methods, on a variety of real world datasets
(online query logs, manufacturing diagnostics, medical
data, etc.).

2 Background

We provide a brief introduction to harmonic analysis
using the discrete Fourier Transform, because we will
use these tools as the building blocks of our algorithms.

2.1 Discrete Fourier Transform. The normalized
Discrete Fourier Transform of a sequence x(n), n =
0, 1 . . . N − 1 is a sequence of complex numbers X(f):

X(fk/N ) = 1
√

N

N−1

n=0

x(n)e−
j2πkn

N , k = 0, 1 . . . N − 1

where the subscript k/N denotes the frequency that
each coefficient captures. Throughout the text we will
also utilize the notation F(x) to describe the Fourier
Transform. Since we are dealing with real signals, the
Fourier coefficients are symmetric around the middle
one (or to be more exact, they will be the complex
conjugate of their symmetric). The Fourier transform
represents the original signal as a linear combination of

the complex sinusoids sf (n) = ej2πfn/N
√

N
. Therefore, the

Fourier coefficients record the amplitude and phase of
these sinusoids, after signal x is projected on them.

We can return from the frequency domain back to
the time domain, using the inverse Fourier transform
F−1(x) ≡ x(n):

x(n) = 1
√

N

N−1

n=0

X(fk/N )e
j2πkn

N , k = 0, 1 . . . N − 1

Note that if during this reverse transformation we
discard some of the coefficients (e.g., the last k), then
the outcome will be an approximation of the original
sequence (Figure 1). By carefully selecting which

coefficients to record, we can perform a variety of tasks
such as compression, denoising, etc.

Signal & Reconstruction

f1

Fourier Coefficients

f2

f3

f4

f0

Figure 1: Reconstruction of a signal from its first 5
Fourier coefficients

2.2 Power Spectral Density Estimation. In or-
der to discover potential periodicities of a time-series,
one needs to examine its power spectral density (PSD
or power spectrum). The PSD essentially tells us how
much is the expected signal power at each frequency
of the signal. Since period is the inverse of frequency,
by identifying the frequencies that carry most of the
energy, we can also discover the most dominant peri-
ods. There are two well known estimators of the PSD;
the periodogram and the circular autocorrelation. Both
of these methods can be computed using the DFT of
a sequence (and can therefore exploit the Fast Fourier
Transform for execution in O(N log N) time).

2.2.1 Periodogram Suppose that X is the DFT of
a sequence x. The periodogram P is provided by the
squared length of each Fourier coefficient:

P(fk/N ) = ∥X(fk/N )∥2 k = 0, 1 . . . ⌈N−1

2
⌉

Notice that we can only detect frequencies that are at
most half of the maximum signal frequency, due to the
Nyquist fundamental theorem. In order to find the k
dominant periods, we need to pick the k largest values
of the periodogram. 1

1Due to the assumption of the Fourier Transform that the data
is periodic, proper windowing of the data might be necessary for
achieving a more accurate harmonic analysis. In this work we will
sidestep this issue, since it goes beyond the scope of this paper.
However, the interested reader is directed to [5] for an excellent
review of data windowing techniques.

Each element of the periodogram provides the
power at frequency k/N or, equivalently, at period N/k.
Being more precise, each DFT ‘bin’ corresponds to a
range of periods (or frequencies). That is, coefficient
X(fk/N ) corresponds to periods [N

k . . . N
k−1 ). It is easy

to see that the resolution of the periodogram becomes
very coarse for longer periods. For example, for a se-
quence of length N = 256, the DFT bin margins will be
N/1, N/2, N/3, . . . = 256, 128, 64 etc.

Essentially, the accuracy of the discovered periods,
deteriorates for large periods, due to the increasing
width of the DFT bins (N/k). Another related issue is
spectral leakage, which causes frequencies that are not
integer multiples of the DFT bin width, to disperse over
the entire spectrum. This can lead to ‘false alarms’
in the periodogram. However, the periodogram can
still provide an accurate indicator of important short
(to medium) length periods. Additionally, through the
periodogram it is easy to automate the extraction of
important periods (peaks) by examining the statistical
properties of the Fourier coefficients (such as in [15]).

2.2.2 Circular Autocorrelation. The second way
to estimate the dominant periods of a time-series x, is
to calculate the circular AutoCorrelation Function (or
ACF), which examines how similar a sequence is to its
previous values for different τ lags:

ACF (τ) = 1

N

N−1

n=0

x(τ) · x(n + τ)

Therefore, the autocorrelation is formally a convo-
lution, and we can avoid the quadratic calculation in
the time domain by computing it efficiently as a dot
product in the frequency domain using the normalized
Fourier transform:

ACF = F−1 < X, X∗ >

The star (∗) symbol denotes complex conjugation.
The ACF provides a more fine-grained periodicity

detector than the periodogram, hence it can pinpoint
with greater accuracy even larger periods. However,
it is not sufficient by itself for automatic periodicity
discovery for the following reasons:

1. Automated discovery of important peaks is
more difficult than in the periodogram. Approaches
that utilize forms of autocorrelation require the user
to manually set the significance threshold (such as in
[2, 3]).

2. Even if the user picks the level of significance,
multiples of the same basic period also appear as peaks.
Therefore, the method introduces many false alarms
that need to be eliminated in a post-processing phase.

3. Low amplitude events of high frequency may
appear less important (i.e., have lower peaks) than high

amplitude patterns, which nonetheless appear more
scarcely (see example in fig. 2).
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Figure 2: The 7 day period is latent in the autocorrela-
tion graph, because it has lower amplitude (even though
it happens with higher frequency). However, the 7 day
peak is very obvious in the Periodogram.

The advantages and shortcomings of the peri-
odogram and the ACF are summarized in Table 1.

From the above discussion one can realize that al-
though the periodogram and the autocorrelation cannot
provide sufficient spectral information separately, there
is a lot of potential when both methods are combined.
We delineate our approach in the following section.

3 Our Approach

We utilize a two-tier approach, by considering the in-
formation in both the autocorrelation and the peri-
odogram. We call this method AUTOPERIOD. Since the
discovery of important periods is more difficult on the
autocorrelation, we can use the periodogram for extract-
ing period candidates. Let’s call the period candidates
‘hints’. These ‘hints’ may be false (due to spectral leak-
age), or provide a coarse estimate of the period (remem-
ber that DFT bins increase gradually in size); there-
fore a verification phase using the autocorrelation is re-
quired, since it provides a more fine-grained estimation
of potential periodicities. The intuition is that if the
candidate period from the periodogram lies on a hill of
the ACF then we can consider it as a valid period, oth-
erwise we discard it as false alarm. For the periods that
reside on a hill, further refinement may be required if
the periodicity hint refers to a large period.

Figure 3 summarizes our methodology and Figure
4 depicts the visual intuition behind our approach with
a working example. The sequence is obtained from the
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Autocorrelation
• Correlate the time series with itself

ACF (⌧) =

PN
i=1 Yi · Yi+⌧

N

⌧

• Peaks get amplified 

• Fine-grained periodicity detector



Autocorrelation

• To determine dominant period significance threshold needs to be specified 

• Multiples of the same period are also peaks — needs post processing

Each element of the periodogram provides the
power at frequency k/N or, equivalently, at period N/k.
Being more precise, each DFT ‘bin’ corresponds to a
range of periods (or frequencies). That is, coefficient
X(fk/N ) corresponds to periods [N

k . . . N
k−1 ). It is easy

to see that the resolution of the periodogram becomes
very coarse for longer periods. For example, for a se-
quence of length N = 256, the DFT bin margins will be
N/1, N/2, N/3, . . . = 256, 128, 64 etc.

Essentially, the accuracy of the discovered periods,
deteriorates for large periods, due to the increasing
width of the DFT bins (N/k). Another related issue is
spectral leakage, which causes frequencies that are not
integer multiples of the DFT bin width, to disperse over
the entire spectrum. This can lead to ‘false alarms’
in the periodogram. However, the periodogram can
still provide an accurate indicator of important short
(to medium) length periods. Additionally, through the
periodogram it is easy to automate the extraction of
important periods (peaks) by examining the statistical
properties of the Fourier coefficients (such as in [15]).

2.2.2 Circular Autocorrelation. The second way
to estimate the dominant periods of a time-series x, is
to calculate the circular AutoCorrelation Function (or
ACF), which examines how similar a sequence is to its
previous values for different τ lags:

ACF (τ) = 1

N

N−1

n=0

x(τ) · x(n + τ)

Therefore, the autocorrelation is formally a convo-
lution, and we can avoid the quadratic calculation in
the time domain by computing it efficiently as a dot
product in the frequency domain using the normalized
Fourier transform:

ACF = F−1 < X, X∗ >

The star (∗) symbol denotes complex conjugation.
The ACF provides a more fine-grained periodicity

detector than the periodogram, hence it can pinpoint
with greater accuracy even larger periods. However,
it is not sufficient by itself for automatic periodicity
discovery for the following reasons:

1. Automated discovery of important peaks is
more difficult than in the periodogram. Approaches
that utilize forms of autocorrelation require the user
to manually set the significance threshold (such as in
[2, 3]).

2. Even if the user picks the level of significance,
multiples of the same basic period also appear as peaks.
Therefore, the method introduces many false alarms
that need to be eliminated in a post-processing phase.

3. Low amplitude events of high frequency may
appear less important (i.e., have lower peaks) than high

amplitude patterns, which nonetheless appear more
scarcely (see example in fig. 2).
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Figure 2: The 7 day period is latent in the autocorrela-
tion graph, because it has lower amplitude (even though
it happens with higher frequency). However, the 7 day
peak is very obvious in the Periodogram.

The advantages and shortcomings of the peri-
odogram and the ACF are summarized in Table 1.

From the above discussion one can realize that al-
though the periodogram and the autocorrelation cannot
provide sufficient spectral information separately, there
is a lot of potential when both methods are combined.
We delineate our approach in the following section.

3 Our Approach

We utilize a two-tier approach, by considering the in-
formation in both the autocorrelation and the peri-
odogram. We call this method AUTOPERIOD. Since the
discovery of important periods is more difficult on the
autocorrelation, we can use the periodogram for extract-
ing period candidates. Let’s call the period candidates
‘hints’. These ‘hints’ may be false (due to spectral leak-
age), or provide a coarse estimate of the period (remem-
ber that DFT bins increase gradually in size); there-
fore a verification phase using the autocorrelation is re-
quired, since it provides a more fine-grained estimation
of potential periodicities. The intuition is that if the
candidate period from the periodogram lies on a hill of
the ACF then we can consider it as a valid period, oth-
erwise we discard it as false alarm. For the periods that
reside on a hill, further refinement may be required if
the periodicity hint refers to a large period.

Figure 3 summarizes our methodology and Figure
4 depicts the visual intuition behind our approach with
a working example. The sequence is obtained from the
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Each element of the periodogram provides the
power at frequency k/N or, equivalently, at period N/k.
Being more precise, each DFT ‘bin’ corresponds to a
range of periods (or frequencies). That is, coefficient
X(fk/N ) corresponds to periods [N

k . . . N
k−1 ). It is easy

to see that the resolution of the periodogram becomes
very coarse for longer periods. For example, for a se-
quence of length N = 256, the DFT bin margins will be
N/1, N/2, N/3, . . . = 256, 128, 64 etc.

Essentially, the accuracy of the discovered periods,
deteriorates for large periods, due to the increasing
width of the DFT bins (N/k). Another related issue is
spectral leakage, which causes frequencies that are not
integer multiples of the DFT bin width, to disperse over
the entire spectrum. This can lead to ‘false alarms’
in the periodogram. However, the periodogram can
still provide an accurate indicator of important short
(to medium) length periods. Additionally, through the
periodogram it is easy to automate the extraction of
important periods (peaks) by examining the statistical
properties of the Fourier coefficients (such as in [15]).

2.2.2 Circular Autocorrelation. The second way
to estimate the dominant periods of a time-series x, is
to calculate the circular AutoCorrelation Function (or
ACF), which examines how similar a sequence is to its
previous values for different τ lags:

ACF (τ) = 1

N

N−1

n=0

x(τ) · x(n + τ)

Therefore, the autocorrelation is formally a convo-
lution, and we can avoid the quadratic calculation in
the time domain by computing it efficiently as a dot
product in the frequency domain using the normalized
Fourier transform:

ACF = F−1 < X, X∗ >

The star (∗) symbol denotes complex conjugation.
The ACF provides a more fine-grained periodicity

detector than the periodogram, hence it can pinpoint
with greater accuracy even larger periods. However,
it is not sufficient by itself for automatic periodicity
discovery for the following reasons:

1. Automated discovery of important peaks is
more difficult than in the periodogram. Approaches
that utilize forms of autocorrelation require the user
to manually set the significance threshold (such as in
[2, 3]).

2. Even if the user picks the level of significance,
multiples of the same basic period also appear as peaks.
Therefore, the method introduces many false alarms
that need to be eliminated in a post-processing phase.

3. Low amplitude events of high frequency may
appear less important (i.e., have lower peaks) than high

amplitude patterns, which nonetheless appear more
scarcely (see example in fig. 2).
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Figure 2: The 7 day period is latent in the autocorrela-
tion graph, because it has lower amplitude (even though
it happens with higher frequency). However, the 7 day
peak is very obvious in the Periodogram.

The advantages and shortcomings of the peri-
odogram and the ACF are summarized in Table 1.

From the above discussion one can realize that al-
though the periodogram and the autocorrelation cannot
provide sufficient spectral information separately, there
is a lot of potential when both methods are combined.
We delineate our approach in the following section.

3 Our Approach

We utilize a two-tier approach, by considering the in-
formation in both the autocorrelation and the peri-
odogram. We call this method AUTOPERIOD. Since the
discovery of important periods is more difficult on the
autocorrelation, we can use the periodogram for extract-
ing period candidates. Let’s call the period candidates
‘hints’. These ‘hints’ may be false (due to spectral leak-
age), or provide a coarse estimate of the period (remem-
ber that DFT bins increase gradually in size); there-
fore a verification phase using the autocorrelation is re-
quired, since it provides a more fine-grained estimation
of potential periodicities. The intuition is that if the
candidate period from the periodogram lies on a hill of
the ACF then we can consider it as a valid period, oth-
erwise we discard it as false alarm. For the periods that
reside on a hill, further refinement may be required if
the periodicity hint refers to a large period.

Figure 3 summarizes our methodology and Figure
4 depicts the visual intuition behind our approach with
a working example. The sequence is obtained from the
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ACF (⌧) =

PN
i=1 Yi · Yi+⌧

N

time series data 
or signal 

Auto-correlation



Auto-Period
• Auto-correlation : Good for large periods but difficult to 

automatically determine periods  

• Periodogram : Easy to threshold but not accurate for short periods 

• Idea: Get candidate periods from Periodogram and validate false 
alarms using Auto-correlation

Method Easy to threshold Accurate short periods Accurate large periods Complexity

Periodogram yes yes no O(NlogN)
Autocorrelation no yes yes O(NlogN)
Combination yes yes yes O(NlogN)

Table 1: Concise comparison of approaches for periodicity detection.

Sequence Autocorrelation 

hill 

valley 
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Periods    

False Alarm  
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Period 

Figure 3: Diagram of our methodology (AUTOPERIOD method)

MSN query request logs and represents the aggregate
demand for the query ‘Easter’ for 1000 days after the
beginning of 2002. The demand for the specific query
peaks during Easter time and we can observe one
yearly peak. Our intuition is that periodicity should be
approximately 365 (although not exactly, since Easter
is not celebrated at the same date every year). Indeed
the most dominant periodogram estimate is 333.33 =
(1000/3), which is located on a hill of the ACF, with a
peak at 357 (the correct periodicity -at least for this
3 year span). The remaining periodic hints can be
discarded upon verification with the autocorrelation.
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Figure 4: Visual demonstration of our method. Candi-
date periods from the periodogram are verified against
the autocorrelation. Valid periods are further refined
utilizing the autocorrelation information.

Essentially, we have leveraged the information of
both metrics for providing an accurate periodicity de-
tector. In addition, our method is computationally effi-

cient, because both the periodogram and the ACF can
be directly computed through the Fast Fourier Trans-
form of the examined sequence in O(N log N) time.

3.1 Discussion. First, we need to clarify succinctly
that the use of the combined periodogram and auto-
correlation does not carry additional information than
each metric separately. This perhaps surprising state-
ment can be verified by noting that:

< X, X∗ >= ∥X∥2

Therefore, the autocorrelation is the inverse Fourier
transform of the periodogram, which means that the
ACF can be considered as the dual of the periodogram,
from the time into the frequency domain. In essence,
our intention is to solve each problem in its proper
domain; (i) the period significance in the frequency
domain, and (ii) the identification of the exact period
in the time domain.

Another issue that we would like to clarify is the
reason that we are not considering a (seemingly) simpler
approach for accurate periodicity estimation.

Looking at the problem from a signal processing
perspective, one could argue that the inability to dis-
cover the correct period is due to the ‘coarse’ sampling
of the series. If we would like to increase the resolution
of the DFT, we could ‘sample’ our dataset at a finer res-
olution (upsampling). Higher sampling rate essentially
translates into padding the time-series with zeros, and
calculating the DFT of the longer time-series. Indeed, if
we increase the size of the example sequence from 1000
to 16000, we will be able to discover the correct period-
icity which is 357 (instead of the incorrect 333, given in
the original estimate).

However, upsampling also imposes a significant
performance overhead. If we are interested in obtaining
online periodicity estimates from a data stream, this
alternative method may result in a serious system



Auto-Period

Method Easy to threshold Accurate short periods Accurate large periods Complexity

Periodogram yes yes no O(NlogN)
Autocorrelation no yes yes O(NlogN)
Combination yes yes yes O(NlogN)

Table 1: Concise comparison of approaches for periodicity detection.
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Figure 3: Diagram of our methodology (AUTOPERIOD method)

MSN query request logs and represents the aggregate
demand for the query ‘Easter’ for 1000 days after the
beginning of 2002. The demand for the specific query
peaks during Easter time and we can observe one
yearly peak. Our intuition is that periodicity should be
approximately 365 (although not exactly, since Easter
is not celebrated at the same date every year). Indeed
the most dominant periodogram estimate is 333.33 =
(1000/3), which is located on a hill of the ACF, with a
peak at 357 (the correct periodicity -at least for this
3 year span). The remaining periodic hints can be
discarded upon verification with the autocorrelation.
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Figure 4: Visual demonstration of our method. Candi-
date periods from the periodogram are verified against
the autocorrelation. Valid periods are further refined
utilizing the autocorrelation information.

Essentially, we have leveraged the information of
both metrics for providing an accurate periodicity de-
tector. In addition, our method is computationally effi-

cient, because both the periodogram and the ACF can
be directly computed through the Fast Fourier Trans-
form of the examined sequence in O(N log N) time.

3.1 Discussion. First, we need to clarify succinctly
that the use of the combined periodogram and auto-
correlation does not carry additional information than
each metric separately. This perhaps surprising state-
ment can be verified by noting that:

< X, X∗ >= ∥X∥2

Therefore, the autocorrelation is the inverse Fourier
transform of the periodogram, which means that the
ACF can be considered as the dual of the periodogram,
from the time into the frequency domain. In essence,
our intention is to solve each problem in its proper
domain; (i) the period significance in the frequency
domain, and (ii) the identification of the exact period
in the time domain.

Another issue that we would like to clarify is the
reason that we are not considering a (seemingly) simpler
approach for accurate periodicity estimation.

Looking at the problem from a signal processing
perspective, one could argue that the inability to dis-
cover the correct period is due to the ‘coarse’ sampling
of the series. If we would like to increase the resolution
of the DFT, we could ‘sample’ our dataset at a finer res-
olution (upsampling). Higher sampling rate essentially
translates into padding the time-series with zeros, and
calculating the DFT of the longer time-series. Indeed, if
we increase the size of the example sequence from 1000
to 16000, we will be able to discover the correct period-
icity which is 357 (instead of the incorrect 333, given in
the original estimate).

However, upsampling also imposes a significant
performance overhead. If we are interested in obtaining
online periodicity estimates from a data stream, this
alternative method may result in a serious system



Matching Time Series
• Similar time series suggest similar things



• Correlating time series used for clustering, classification, anomaly 
detection, speech recognition etc.

Matching Time Series



What measure would you use to match two time series ?

d =
X

t

|yt � xt|

Why is Euclidean matching not good enough ?

Euclidean Distance

Matching Time Series



Dynamic Time Warping

Time series might be shifted

Time series might be compressed 
at some point in time

Random noise at some points

Dynamic time warping measures the distance between 
two sequences under certain restrictions.

Not a metric. Triangle inequality doesn't hold



• Edit distance measures how many steps it takes to convert a string 
to another based on restrictions 

• Restrictions define cost function — insertion, deletion, replacement

Detour - Edit Distance
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1 2 3

2 3 2
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f 
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0 1 2

1 1 2
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f 
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insertions, deletions and replacementsinsertions and deletions



Edit Distance

0 1 2

1 2 3

2 3 2

f o x 
f 
a 

x 

0 1 2

1 1 2

2 2 1

f o x 
f 
a 

x 
insertions, deletions and replacementsinsertions and deletions

dij =

8
>>><

>>>:

di�1,j�1 aj = bi

min

8
><

>:

di�1,j + wdel(bi)

di,j�1 + wins(aj)

di�1,j�1 + wsub(aj , bi)

aj 6= bi
, for 1  i  m, 1  j  n.

1
1

1 or 2



• DTW aligns two sequences of feature vectors by warping the time axis 
iteratively until an optimal match (according to a suitable metrics) 
between the two sequences is found.

x1, x2, . . . xn y1, y2, . . . yn

Dynamic Time Warping

d(i, j) = c(i, j) +min

8
><

>:

d(i� 1, j),

d(i� 1, j � 1),

d(i, j � 1)



Burst Detection
• Bursts are rare but extremely beneficial in time-series 

• Used in number of applications 

• Twitter: Trending topics 

• Stock markets: Trending Stocks 

• Text Mining: finding important time periods 

• Elastic burst detection:  

• Stream of data 

• Quadratic computations not allowed



Burst Detection

• Global Average 

• Moving Average 

• Damped Average



Elastic Burst Detection

• Given a time-series {xi} 

• A set of window sizes W 

• A monotonic, associative aggregation function A which maps a 
sequence of values to a number. E.g. Average, Max 

• and Thresholds associated with each window size w, f(w) 

• Find all pairs (t,w) such that t time a time point and w is a window 
size in W

2.5 Elastic Burst Detection and Shifted Binary

Tree

The elastic burst detection problem [84] is to detect bursts across multiple win-

dow sizes. Formally:

Problem 1. Given a data source producing non-negative data elements x1, x2, . . .,

a set of window sizes W = {w1, w2, . . . , wm}, a monotonic, associative ag-

gregation function A (such as “sum” or “maximum”) that maps a consecu-

tive sequence of data elements to a number (it is monotonic in the sense that

A[xt · · ·xt+w−1] ≤ A[xt · · ·xt+w], for all w), and thresholds associated with each

window size, f(wj), for j = 1, 2, . . . , m, the elastic burst detection is the problem

of finding all pairs (t, w) such that t is a time point and w is a window size in

W and A[xt · · ·xt+w−1] ≥ f(w).

A naive algorithm is to check each window size of interest one at a time. To

detect bursts over m window sizes in a sequence of length N naively requires

Θ(mN) time. This is unacceptable in a high-speed data stream environment.

In [84], the authors show that a simple data structure called the Shifted

Binary Tree could be the basis of a filter that would detect all bursts, and

perform in time independent of the number of windows when the probability of

bursts is very low.

A Shifted Binary Tree is a hierarchical data structure inspired by the Haar

wavelet tree. The leaf nodes of this tree (denoted level 0) correspond to the

time points of the incoming data; a node at level 1 aggregates two adjacent

nodes at level 0. In general, a node at level i+1 aggregates two nodes at level i,

thus includes 2i+1 time points. There are only log2 N + 1 levels where N is the
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Burst Detection - Shifted Binary Tree

Level 0

Level 1

Level 2

Level 3

Level 4

base level

shifted level

Figure 2.1: An example of a Shifted Binary Tree. The two shaded sequences in

level 0 are included in the shaded nodes in level 4 and level 3 respectively.

maximum window size. The Shifted Binary Tree includes a shifted sublevel for

each level above level 0. In shifted sublevel i, the corresponding windows are

still of length 2i but those windows are shifted by 2i−1 from the base sublevel.

Figure 2.1 shows an example of a Shifted Binary Tree.

The overlap between the base sublevels and the shifted sublevels guarantees

that all the windows of length w, w ≤ 1+2i, are included in one of the windows

at level i + 1. Because the aggregation function A is monotonically increasing,

if A[xt · · ·xt+w+c] ≤ f(w), then surely A[xt · · ·xt+w−1] ≤ f(w). The Shifted

Binary Tree takes advantage of this monotonic property as follows: the threshold

value f(2 + 2i−1) is associated with level i + 1. Whenever more than f(2 +

2i−1) events are found in a window of size 2i+1, then a detailed search must be

performed to check if some subwindow of size w, 2+2i−1 ≤ w ≤ 1+2i, has f(w)

events. All bursts are guaranteed to be reported and many non-burst windows

are filtered away without requiring a detailed check when the burst probability

is very low.

However, some detailed searches will turn out to be fruitless (i.e. there is no

burst at all). For example, assume the threshold for window size 4 is 100, for 5

is 120, and for 8 is 150. Because each node at level 8 covers window size 4 and
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Whenever	  more	  than	  f(2	  +	  2i−1)	  events	  are	  found	  in	  a	  window	  of	  size	  2i+1,	  
then	  a	  detailed	  search	  must	  be	  performed	  to	  check	  if	  some	  subwindow	  of	  
size	  w,	  2+2i−1	  ≤	  w	  ≤	  1+2i,	  has	  f(w)	  events.	  



Summary
• Periodicity of Events 

• Auto-correlation, Periodograms and their 
combinations 

• Burst Detection Techniques and elastic detection 

• Matching of time series 

• Euclidean matching 

• Dynamic Time Warping
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Projects
• Temporal and Phrase-based Indexing - 

Avishek(anand@l3s.de) 

• Temporal Retrieval Models - Jaspreet (singh@l3s.de) 

• Temporal Query Autocompletion- Avishek 

• Crawling for Temporal Collections - Gerhard 
(gossen@l3s.de) 

• Temporal Query Suggestions - Helge  (holzmann@l3s.de)

http://www.l3s.de/~anand/tir14/projects.html
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