
Resource Central: Understanding and Predicting
Workloads for Improved Resource Management
in Large Cloud Platforms

Marcus Fontoura

Eli Cortez, Anand Bonde, Alexandre Muzio, Thomas Moscibroda, Gabriel Magalhaes, Mark
Russinovich, Ricardo Bianchini

Motivation

Container Scheduler

Characterization Azure VM Workload

Resource Central​

Evaluation

Demo

Taxonomy

Conclusions

Outline

ML techniques:

Regression

Classification

Decision trees

Neural networks

Reinforcement learning

…

Machine learning everywhere

ML-based services:

Image recognition in Facebook Moments

Video analysis in YouTube captions

Speech recognition in Cortana

Language translation in Skype translator

Correlation analysis in movie recommendations

…

We can leverage ML techniques to optimize
the cloud platforms that run these services

Public cloud platforms

Microsoft Azure
Cost

$$$

Perf,

reliability,

availability

Pack VMs tightly

Oversubscribe resources

Increase server density

Reduce energy consumption

Reduce management overhead

Scavenge idle resources

Lower Costs Via Resource Management

Practical challenges:
Complexity and scale
VM performance impact
VM availability impact

Pack VMs tightly

Oversubscribe resources

Increase server density

Reduce energy consumption

Reduce management overhead

Scavenge idle resources

Lower Costs Via Resource Management

Practical challenges:
Complexity and scale
VM performance impact
VM availability impact

We can address these challenges by deeply understanding
and predicting the characteristics of the VM workload!

RC at the center of Azure Compute

Resource
managers

Overview of the Azure Compute platform

Virtual machine (VM) offerings:
• IaaS, PaaS, and SaaS VMs
• Diverse workloads
• Massive scale
• Expensive to build and operate

Resource managers

Where and how should we add ML intelligence
to lower costs without hurting QoS?

Container scheduler
Pack tightly
Oversubscribe
Scavenge

Power manager
Cap power
Save energy

Migration manager
Defragment servers
Free up misbehaving servers

Where? Many managers can benefit

Practical challenges:
Complexity and scale
No info about apps
Performance impact
Availability impact

ML can help!

[ASPLOS’13]

[Google]

[Later, SOSP’17]
[OSDI’16]

We need a general framework

Motivation

Container Scheduler

Characterization Azure VM Workload

Resource Central​

Evaluation

Demo

Taxonomy

Conclusions

Outline

Virtual Machine Types

Azure has several VM families, for instance:

Type Cores RAM
A0 1 0.768
A1 1 1.75
A2 2 3.5
A3 4 7
A4 8 14
A5 2 14
A6 4 28
A7 8 56
A8 8 56
A9 16 112
A10 8 56
A11 16 112

Type Cores RAM
D1 1 3.5
D2 2 7
D3 4 14
D4 8 28
D11 2 14
D12 4 28
D13 8 56
D14 16 112

Type Cores RAM
G1 2 28
G2 4 56
G3 8 112
G4 16 224
G5 32 448

A: High-Value D: Low-Latency, SSD G: Extreme Performance, SSD

Infiniband

VMVM VM VMVMVM

Cores

MemorySSD

Faster CPUs

High Memory

Virtual Machine Architecture

• Network, local and remote storage are
additional allocation dimensions

• Ephemeral storage: uses local storage
bandwidth and space
x Backed by local HDD or SSD

• Persistent storage: uses network
bandwidth
x Cached on local server RAM, HDD or SSD

x Backed by Azure Storage page blobs

x “S” variants (e.g. “DS14”) can use SSD-
backed Premium Storage

Virtual Machine

C:\
OS Disk

E:\, F:\, etc.
Data Disks

D:\
Ephemeral

Dynamic VHD

RAM Cache

Local Disk Cache Blobs

Blob

Fabric Clusters
• Fabric Controller: Hardware and VM manager for a “cluster” of servers

x Uses 5-server Paxos-type replication for high availability

x Exposes API for deploying, deleting and updating VMs

x Keeps track of server and VM health

• Fabric Controller can autonomously “heal” a VM
x Detects server has failed and restarts VM on a healthy server

FC1 FC2 FCn

Container Scheduler
• Composed of cluster-selection, admission-control, and intra-cluster allocation

algorithms

• Multi-level:
x First, select FC cluster

x Then, FC cluster allocator places VMs on servers

Deployment DCCluster-Selection

Admission Control Admission Control Admission Control

Allocation &
Healing

Allocation &
Healing

Allocation &
Healing

Cluster & Service
Update Algorithms

Deployment

Container
Scheduler

Buffer

Constraints

• Placement constraints
– Resource constraints: Sum of resources of all VMs on a node cannot exceed server resources

(CPU, memory, disk, SSD, network IO,…)
→ Bin-Packing

– Failure domain constraint: VMs of the same tenant must be spread across many failure domains

– Co-location constraints: Certain types of VMs cannot be co-located together

Cores

Memory

Disk

VM1

VM2VM
3 Cores

Disk

Memory

VM1
VM2

VM
3

Resource Utilization
• VM Packing should achieve high utilization across all resource dimensions

Multi-dimensional resource packing

wasted

memory

Cores

Memory

Low

Mem

Low

Mem

Cores

Memory

Low

Mem

High

Mem

Low

Mem

Container scheduler should be aware of

Multiple Resource Dimensions:

• We use multi-dimensional best-fit.
[Heuristics for Vector Bin Packing,
Panigrahy et al., MSR Tech Report 2011]

• Each resource dimension d is assigned a
weight 𝑤𝑑→ scarcity of the resource.

• 𝑟𝑑 is the residual resource of a node
• Allocate the VM to the node that

minimizes σ𝑑𝑤𝑑 ∗ 𝑟𝑑

Multi-Dimension Optimization

• Container scheduling should achieve high utilization across all resource dimensions
1. Multi-dimensional resource packing

2. Take into account online nature of service allocation

VM a
VM
b

Instances to allocate

Container scheduler should be aware of

online nature of allocation

• Simple example: Assume every VM has
probability of ½ of leaving until time T.

• Probability that we can deploy VMb ?
• If new VM is placed on Node 1:

• If new VM is placed on Node 2:

→ Placing new VM on Node 2 is better !
Node 1 Node 2

T

Multi-Dimension Optimization

• Container scheduling should achieve high utilization across all resource dimensions
1. Multi-dimensional resource packing
2. Take into account online nature of service allocation

VM a
VM
b

Instances to allocate

Container scheduler should be aware of
online nature of allocation

• Simple example: Assume every VM has
probability of ½ of leaving until time T.

• Probability that we can deploy VMb ?
• If new VM is placed on Node 1:

• If new VM is placed on Node 2:

→ Placing new VM on Node 2 is better !Node 1 Node 2
T

Resource utilization in Azure

• Each 1% of utilization gain results in millions of $
savings

Container scheduling algorithms are crucial for

operating Azure effectively!

Motivation

Container Scheduler

Characterization Azure VM Workload

Resource Central​

Evaluation

Demo

Taxonomy

Conclusions

Outline

Azure hosts:
x 1st-party VMs – Microsoft dev, test, internal services
x 1st-party services offered to 3rd-party customers – Office 365, Xbox, Skype, …
x 3rd-party VMs – External users’ VMs, Daimler, Geico, Adobe, …

Customers create “subscriptions”, deploy VMs to regions in “deployments”

Our study: Full VM workload of Azure over 3 months

Background: Main Azure characteristics

(trace available!)

Observations:

• Small VMs with scale-out pattern

• CPU cores and memory are correlated

• 1st- and 3rd-party are similar

Resource management:

• Easier to fill holes

Characterization – VM size (CPU cores)

Cores

Observations:

• Large % with low avg. utilization

• Large % with high P95 util., esp. 3rd party

• Large % with low utilization even at P95

Resource management:

• High utils➔may limit packing

• Low utils➔ oversubscription is possible

Characterization – VM CPU utilization

Observations:

• Short VMs dominate, esp. for 1st-party

• Non-trivial percentage of long VMs

• Long VMs = 95% of core hours!

Resource management:

• If VM lasts 1 day, it will live much longer

• Non-urgent maintenance

• Lifetime-aware VM scheduling

Characterization – VM lifetime

VM type (IaaS vs PaaS)

VM memory size

VM deployment size

VM arrivals

VM workload class (interactive vs delay-insensitive)

Correlations between characteristics

Other VM workload characteristics

Please refer to our paper for details

Motivation

Container Scheduler

Characterization Azure VM Workload

Resource Central​

Evaluation

Demo

Taxonomy

Conclusions

Outline

Resource Central

Potential RC clients: Platform resource managers

VM scheduling Cluster selection
Power

oversubscription

Server
maintenance

VM rightsizing
recommendation

ML and prediction-serving system for improving resource management

Resource Central architecture

Design principles:

• Off critical perf & availability paths
• Simple; based on stable systems
• General; easy to use by clients

Status:

• Manually used by engineers
• Clients in production

Telemetry data

Data aggregation, cleanup, and validation
ML model training, generation, validation

Feature data generation, validation

Model/data evaluation, publishing, and versioning

Online
Highly

available
store

Persistent
local cache

Prediction-serving:
Model and data caching

Offline

Resource manager
client, e.g. VM
scheduler

Current ML models

Metrics Modeling approaches

CPU utilization Random Forests

Deployment size Extreme Gradient Boosting Trees

Lifetime Extreme Gradient Boosting Trees

Workload class FFT, Extreme Gradient Boosting Tree

Classification algorithms

• Numeric models predict “buckets”

• Prediction comes with a “confidence score”

Motivation

Container Scheduler

Characterization Azure VM Workload

Resource Central​

Evaluation

Demo

Taxonomy

Conclusions

Outline

Prediction quality

 -

 0.20

 0.40

 0.60

 0.80

 1.00

Lifetime CPU Avg CPU P95 Max Deployment
Max VM

Deployment
Max Cores

Workload Class

A
cc

ur
ac

y,
 P

re
ci

si
on

*,
 R

ec
al

l*

Accuracy Precision* Recall*

Accuracy ≥ 79%
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝜃 ≥ 85%
𝑅𝑒𝑐𝑎𝑙𝑙𝜃 ≥ 73%

Prediction - VM CPU P95 max

• Overall accuracy = 0.83

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝜃 = 0.94

• 𝑅𝑒𝑐𝑎𝑙𝑙𝜃 = 0.73

Important attributes:
x % previous VMs in bucket (subscription)

x Operating system

Deployment time is irrelevant

Random Forest – 127 Features

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0%-25% 25%-50% 50%-75% 75%-100%

Re
ca

ll

95th-percentile of max utilizations

Performance – Model Execution

• Low latency

• Predictable

• 99th percentile: 258 µsec max

Deep Learning in RC

Azure Batch AI

Azure Workload
Information

Telemetry,
Metadata

Deep Learning
Models

Deep Learning in RC

Inputs:

(~500 features)

• VP Count
• Memory
• OS
• VM Type
• Subscription
(…)

Task: VM Lifetime Prediction

Output (classification):

VM Lifetime (in 4 buckets)

Neural net

Features

Activation Function:
LeakyRelu

Prediction Quality

0.91

0.97

0.83 0.83

0.92

0.97

0.91
0.87

0.98 0.99

0.89
0.92

 -

 0.10

 0.20

 0.30

 0.40

 0.50

 0.60

 0.70

 0.80

 0.90

 1.00

Lifetime Workload Class CPU Avg Deployment Size

A
c
c
u

ra
c
y

,
P

re
c
is

io
n

 a
n

d
 R

e
c
a

ll

Accuracy Precision* Recall*

Accuracy ≥ 83%
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝜃 ≥ 87%
𝑅𝑒𝑐𝑎𝑙𝑙𝜃 ≥ 89%

Case study: Smart CPU oversubscription

Hard rule 1 (e.g., right SKU?)

Hard rule 2 (e.g., fits?)

Soft rule 3 (e.g., tight pack?)

Container scheduler

Selected server

Filters servers out

Goals:
• Be conservative! Stick with P95, 1st-party loads
• Don’t oversubscribe servers running prod VMs
• Oversubscribe other servers up to a percentage

over capacity and a max predicted (P95) utilization

New rule checking the sum of the P95 utilizations

Mispredictions: only issue is consistent under-prediction

.

.

RC-informed CPU oversubscription

Version Description Behavior

Baseline No oversubscription Low capacity; many VM allocation failures

Naive 25% oversub without predictions No failures; 6x resource exhaustion

RC-informed 25% oversub with RC predictions No failures; rare exhaustion

RC-right 25% oversub with oracle predictions No failures; same exhaustion

Simulation results

Multi-Dimension Optimization

• Container scheduling should achieve high utilization across all resource dimensions
1. Multi-dimensional resource packing

2. Take into account online nature of service allocation

VM a
VM
b

Instances to allocate

Container scheduler should be aware of

online nature of allocation

• Simple example: Assume every VM has

probability of ½ of leaving until time T.

• Probability that we can deploy VMb ?
• If new VM is placed on Node 1:

• If new VM is placed on Node 2:

→ Placing new VM on Node 2 is better !
Node 1 Node 2

T

Lifetime prediction is important for
container scheduling

Production Dashboard

Demo

Motivation

Container Scheduler

Characterization Azure VM Workload

Resource Central​

Evaluation

Demo

Taxonomy

Conclusions

Outline

Active, built into managers:

Adjust parameters of policies

Select actions to be performed

ML has deep knowledge of policies

Approaches to adding ML

Passive, external to managers:

Predict load intensity, utilization

Cluster workloads, resources

ML as an insight provider

ML RM
I

A
RMML

I

A

I = Inputs; A = Actions
RM = Resource Manager

Debuggable; simpler RMs

Delayed observation:

Generate model offline, run it online

Re-generate model periodically

Along a different dimension

Iterative observe and decide:

After each action, observe & decide

Management as a control problem

RMRun
I

A
RM

Observe

&

DecideI

A

I = Inputs; A = Actions
RM = Resource Manager

Simpler

Microsoft Azure
Cost

$$$

Perf,

capacity,

reliability,

availability

Summary of our approach

Container scheduling

Oversubscription

Defragmentation

Scavenging

Management

VM resource utilization

VM lifetime

VM deployment size

VM workload class

Useful predictions

A general, passive and delayed-observation framework for all ML tasks

We are building Resource Central and modifying resource
managers to use its predictions in Azure Compute

ML can improve resource management in cloud platforms

Understanding cloud workload is key for identifying improvements

Resource Central produces high quality workload predictions

Passive and delayed-observation framework is simpler. Scale is the problem!

Predictions enable lower costs while retaining good QoS

Conclusions

Thanks

Resource Central: Understanding and Predicting Workloads for
Improved Resource Management in Large Cloud Platforms

VM Traces -- https://github.com/Azure/AzurePublicDataset/

Marcus Fontoura

Eli Cortez, Anand Bonde, Alexandre Muzio, Thomas Moscibroda, Gabriel Magalhaes, Mark
Russinovich, Ricardo Bianchini

