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@ The present form of support vector machine (SVM) was
largely developed at AT&T Bell Laboratories by Vapnik
and co-workers.

@ Known as a maximum margin classifier.

@ Originally proposed for classification and soon applied to
regression and time series prediction.

@ One of the most efficient supervised learning methods.



@ Given a set of training samples
(X17y1) ; (X27y2) P (XNa_yN) » Xj € Rnayi € {_17 1} )
find a function f(x, «) to classify the samples, such that

>0, Vy,=+1;
f(Xi’&){ < 07 vyl = _1a

where o denotes the parameters.
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sign[f(x, a)].



@ Given a set of training samples

(X]_,y]_),(Xz,yz),' o a(XNa_yN) , Xi € Rnayi € {_17 1}7

find a function f(x, «) to classify the samples, such that

>0, Vy,=+1;
f(Xi’&){ < 07 vyl = _1a
where o denotes the parameters.
@ For a testing sample x, we can predict its label by
sign[f(x, a)].
o f(x,a) =0 is called the separation hyperplane.



Linear classifiers

Linear hyperplane
f(x,w,b)=(x,w)+b=0

Consider the linearly separable case, there are infinite number
of hyperplanes that can do the job.

* denotes +1

° denotes -1

How would you
classify this data?
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Linear classifiers

Linear hyperplane
f(x,w,b)=(x,w)+b=0

Consider the linearly separable case, there are infinite number
of hyperplanes that can do the job.

° denotes +1

° denotes -1

Any of these
would be fine..

..but which is
best?




Margin of a linear classifier

° denotes +1

° denotes -1

7

Definition: the width that the boundary could be increased by
before hitting a data point.



Maximum margin linear classifier

* denotes +1

° denotes -1

Definition: the linear classifier with the maximum margin.



Support vectors

* denotes +1

° denotes -1

Support Vectors?™ 4|

are those

datapoints that -
the margin . °
pushes up ° e

against




Problem formulation

To formulate the margin, we further requires that for all
samples

i, @) = . wi +b{ < -1, Vy =L

or
Yo w) +b) > 1, i=1,... N,



Problem formulation
To formulate the margin, we further requires that for all
Yy, = +1,

> +1,
Vy,- = -1

samples
S _]-a

f(X,',CY) = <Xi>W>+b{
or
Yi(bw) 4 B) 21, =1, N,

@ We have introduced two additional hyperplanes
(x,w) + b = +£1 parallel to the separation hyperplane

(x,w)+b=0

by
S
+
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What is the margin? The distance between the two new
hyperplanes.
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What is the margin? The distance between the two new
hyperplanes.

@ The minimum distance between the hyperplane
(x,w) + b =1 and the origin is p; = ﬁ. (why?)

@ The minimum distance between the hyperplane
(x,w) + b = —1 and the origin is p, = T*-£

fwll

@ The margin is |p1 — p2| = 2/||w||.



How to calculate p; and p,?

Note X = pyw/||w/||, where w/||w/|| is the unit vector along
the direction w. Since X is on the blue hyperplane, then

(w/lwll,w) +b=1

_b

which follows p; = Wl Similarly, we obtain p, = W'



Non-linear Decision Boundary
Predict y =1 if
o = b+ 0121 + 0o + U317
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s there a different / better choice of the features f1, fa2, f3,...?

Andrew Ng



Choosing the landmarks
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The kernel-based function is exactly equivalent to preprocessing the data by applying similarity
function to all inputs, then learning a linear model in the new transformed space.

SVM with Kernels
= Given (2, y1), (23, (2)2 (2 (M),
- choose l(l) = :1;(1) l(2) =T 2) ,,,l(m) — CC(m)

Given ex?lnple T — v ,§°
- |f1|= similarity (z, (V) L=1{3 £es
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The kernel-based function is exactly equivalent to preprocessing the data by applying similarity function to all inputs, then learning a linear model in the new transformed space.


Commonly used kernels

@ Homogeneous polynomials
k(x,y) = ({x, )
@ Inhomogeneous polynomials
k(x,y) = ((x.y) +1)

@ Gaussian Kernel

K(x,y) = exp (_u)

2072

e Sigmoid Kernel

k(X’y) = ta”h(77<X7Y> + V)



Polynomial kernel

k(x,y) = ({(x,y))?

Example: n=2,d =2, x = (x1, %)
o O(x) = (X12»\/§X1X2,X22)




Polynomial kernel

k(x,y) = ({(x,y))?

Example: n=2,d =2, x = (x1, %)
o O(x) = (X12a \/§X1X2,X22)

@ Neither the mapping ® nor the feature space is unique
o O(x) = (xlz,xle,xle,x%)

o O(x) = % (X — X3, 2x1%0, X + x3)



Logistic regression vs. SVMs

. =number of features (x & R”+1), M = number of training examples

~ Ifn is large (relative tom): (€q. n2m, nzto,000 , m=10- 1o60)

— Use logistic regression, or SVM without a kernel (“linear kernel”)
-)En is small, M is intermediate: (ae L-toss , m=lo- ‘_°_z°;‘)<“
—» Use SVM with Gaussian kernel oy 720

Ot ¥ O
If nis small, mis large: (n= [-to00, nh= _gf"_ocf_i) — “eg °
- Create/add more features, then use Egistic regression or SVM
| without a kernel ™

N\
=> Neural network likely to work well for most of these settings, but may be
slower to train.

Andrew Ng
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