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Final breakthrough, 358 years after its conjecture:

“It was so indescribably beautiful; it was so simple and
so elegant. | couldn’t understand how I'd missed it and
| just stared at it in disbelief for twenty minutes. Then
during the day | walked around the department, and
I’d keep coming back to my desk looking to see if it
was still there. It was still there. | couldn’t contain
myself, | was so excited. It was the most important
moment of my working life. Nothing | ever do again
will mean as much."
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Types of Deep Learning
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https://selfdrivingcars.mit.edu/references

Philosophical Motivation for Reinforcement Learning

Takeaway from Supervised Learning:

Neural networks are great at memorization and not (yet) great at
reasoning.

Hope for Reinforcement Learning:

Brute-force propagation of outcomes to knowledge about states
and actions. This is a kind of brute-force “reasoning”.

I II u == m:ﬁ?ﬁﬁ:g?ens For the full updated list of references visit: Course 6.5191: Lex Fridman: Januar y
II Technology https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu 2018
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Agent and Environment

e At each step the agent:
* Executes action
* Receives observation (new state)
* Receives reward

e The environment:
* Receives action
* Emits observation (new state)

e Emits reward - :
nvironmen
Reward

Action

III' M Massachuselts  [q the full updated list of references visit: [80] Course 6.5191: Lex Fridman: January

Institute of . . .
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Examples of Reinforcement Learning

Reinforcement learning is a general-purpose framework for decision-making:
* An agent operates in an environment: Atari Breakout
* An agent has the capacity to act

e Each action influences the agent’s future state

e Success is measured by a reward signal

e @Goalis to select actions to maximize future reward

o ns=2 5 1

I II W Massachusetts o the full updated list of references visit: [85] Course 6.5191: Lex Fridman: January
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Examples of Reinforcement Learning

Cart-Pole Balancing

* Goal —Balance the pole on top of a moving cart

» State — Pole angle, angular speed. Cart position, horizontal velocity.
* Actions — horizontal force to the cart

 Reward — 1 at each time step if the pole is upright

achusetts  [or the full updated list of references visit: [166] Course 6.5191: Lex Fridman: January

te of ) ) ;
nl:)ﬁ;v https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu 2018

IIII- a

sti

g2
&

o
=

=
=



https://selfdrivingcars.mit.edu/references

Examples of Reinforcement Learning

nmme HPparLL

Doom

* Goal —Eliminate all opponents

e State — Raw game pixels of the game
* Actions — Up, Down, Left, Right etc

* Reward — Positive when eliminating an opponent,
negative when the agent is eliminated

I II W Massachusetts o the full updated list of references visit: [166] Course 6.5191: Lex Fridman: January

Institute of . . .
II Tec[-:nl:“ogv https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu 2018



https://selfdrivingcars.mit.edu/references

Examples of Reinforcement Learning

Bin Packing

« Goal - Pick a device from a box and put it into a container

« State - Raw pixels of the real world

« Actions - Possible actions of the robot

 Reward - Positive when placing a device successfully, negative otherwise

I II W Massachusetts o the full updated list of references visit: [166] Course 6.5191: Lex Fridman: January

Institute of . . .
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Examples of Reinforcement Learning

N |

Human Life
« Goal - Survival? Happiness?
« State - Sight. Hearing. Taste. Smell. Touch.

 Actions - Think. Move.
* Reward — Homeostasis?

I II u == m:::l:::::?eus For the full updated list of references visit: Course 6.5191: Lex Fridman: January
II Technology https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu 2018
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Key Takeaways for Real-World Impact

* Deep Learning:
* Fun part: Good algorithms that learn from data.
* Hard part: Huge amounts of representative data.

* Deep Reinforcement Learning:
* Fun part: Good algorithms that learn from data.
» Hard part: Defining a useful state space, action space, and reward.
* Hardest part: Getting meaningful data for the above formalization.

I II u == m:::s;::::etts For the full updated list of references visit: Course 6.5191: Lex Fridman: January
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S0, Ao, 7T1,S1,AA1, 72, ..

Markov Decision Process

Sn—1,An—-1,Tn Sn

T A T
state Terminal state
action
reward
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Major Components of an RL Agent

An RL agent may include one or more of these components:
* Policy: agent’s behavior function
 Value function: how good is each state and/or action

* Model: agent’s representation of the environment

S0, A0, 71,S1,A1, 72, vos, Sn—=1,An—-1,T1, S

T A T
state Terminal state
action
reward
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Robot in a Room

+1
-1 up
80%
10%
START 10%

* reward +1 at [4,3], -1 at [4,2]

* reward -0.04 for each step

* what’s the strategy to achieve max reward?

 what if the actions were deterministic?

move UP
move LEFT
move RIGHT

actions: UP, DOWN, LEFT, RIGHT

When actions are stochastic:

Course 6.5191:
Intro to Deep L

Lex Fridman:

earning fridman@mit.edu



Is this a solution?

-

1)

*

* only if actions deterministic
* not in this case (actions are stochastic)

* solution/policy

actions: UP, DOWN, LEFT, RIGHT

When actions are stochastic:

upP

80%
10%
10%

* mapping from each state to an action

move UP
move LEFT
move RIGHT

Course 6.5191:
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Optimal policy

tions: UP, DOWN, LEFT, RIGHT
# # # +1 o ’ ’ ’

When actions are stochastic:

| | w

80% move UP

« « 10% move LEFT
10% move RIGHT
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Reward for each step -2
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Reward for each step: -0.1
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Reward for each step: -0.04

-)

=)

=)

I H B Massachusetts
I I Institute of
Technology

Lex Fridman:

aaaaaaa



Reward for each step: -0.01
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Reward for each step: +0.01
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Value Function

e Future reward R=ri+ry+r3+ -+ 1y

Re=r+npt+tngpt+t-+n

e Discounted future reward (environment is stochastic)

Ry = ri+yrip +y°rya+ - +y"iry,
=1+ V(41 T V(T2 + )
=7+ YR¢41

e A good strategy for an agent would be to always choose
an action that maximizes the (discounted) future reward

I u- :"'"ﬁ"““h“fe“s R f . 84 Course 6.5191: Lex Fridman: Januar
II Tgir:nlgli;y ererences: [ ] Intro to Deep Learning fridman@mit.edu 2018



Q-Learning

» State-action value function: Q%(s,a)

* Expected return when starting in s,
performing a, and following &t

* Q-Learning: Use any policy to estimate Q that maximizes future reward:
* Qdirectly approximates Q* (Bellman optimality equation)
* Independent of the policy being followed
* Only requirement: keep updating each (s,a) pair

Qr11(st, at) = Qt(st, at)+a (Rt—l—l + 7 max Qe(st41, a) — Qe(st, at))

Old State

g2

£
=S =
o c
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a ac":?"*ts Course 6.5191: Lex Fridman: January
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Exploration vs Exploitation

 Deterministic/greedy policy won’t explore all actions
* Don’t know anything about the environment at the beginning
* Need to try all actions to find the optimal one

 g-greedy policy
*  With probability 1-€ perform the optimal/greedy action, otherwise random action
* Slowly move it towards greedy policy: € -> 0

I II H B Massachusetts Course 6.5191: Lex Fridman: January

Institute ot ) ) .
II Tgi;nl;ﬁ;y Intro to Deep Learning fridman@mit.edu 2018



Qtr1(st, at) = Qe(st, at)+ (Rt-l—l +ymax Qe(se11,a) — Qelst, at))

Q-Learning: Value Iteration

Old State
Al | A2 A3 A4
S1 +1 +2 -1 0
S2 +2 0 +1
S3 -1 +1 0

Reward

initialize Q[num states,num actions] arbitrarily

observe initial state s

repeat
select and carry out an action a
observe reward r and new state s’

Qls,al = Q[s,al + alr + y max,, Q[s',a’'] - Qls,al)

s = s’
until terminated

H B Massachusetts
I I Institute of
Technology

References: [84]
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Q-Learning: Representation Matters

* In practice, Value Iteration is impractical
 Very limited states/actions
e Cannot generalize to unobserved states

* Think about the Breakout game

 State: screen pixels

* Image size: 84 X 84 (resized)
. Consecutive 4 images 25684X84x4 o\ in the Q-table!

* Grayscale with 256 gray levels

oo Massachusetts . Course 6.5191: Lex Fridman:
III II {'22 ':.‘f,'i° Refe rences: [83' 84] Intro to Deep Learning fridman@mit.edu

January
2018



Philosophical Motivation for Deep Reinforcement Learning

Takeaway from Supervised Learning:

Neural networks are great at memorization and not (yet) great at
reasoning.

Hope for Reinforcement Learning:

Brute-force propagation of outcomes to knowledge about states
and actions. This is a kind of brute-force “reasoning”.

Hope for Deep Learning + Reinforcement Learning:

General purpose artificial intelligence through efficient
generalizable learning of the optimal thing to do given a
formalized set of actions and states (possibly huge).

I II u == mngj;:::setts For the full updated list of references visit: Course 6.5191: Lex Fridman: Januar
II Technology https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu 2018
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Deep Learning is Representation Learning

(aka Feature Learning)

Output
(object identity)

Deep
Learning

3rd hidden layer
(object parts)

Representation
Learning

2nd hidden layer
(corners and
contours)

Machine
Learning

1st hidden layer
(edges)

Artificial
Intelligence

Visible layer

(input pixels)

Intelligence: Ability to accomplish complex goals.

Understanding: Ability to turn complex information to into simple, useful information.

I II W Massachusetts o the full updated list of references visit: [20] Course 6.5191: Lex Fridman: January

Institute of . . .
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DQN: Deep Q-Learning

Use a function (with parameters)

_ : s—  Function [— Qsa
to approximate the Q-function a——» APProXimator |, targets or errors
* Linear

* Non-linear: Q-Network

Q(s,a;0) = Q*(s,a)

Q-value 1

Network

L4

Q-value 2

S State \
/ Network 4vM » S State

a Action

Q-value 3

I II Wmm Massachusetts  [orthe full updated list of references visit: [83] Course 6.5191: Lex Fridman: January

Institute of . . .
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Deep Q-Network (DQN): Atari

Convglution Convglution Fully cgnnected Fully cgnnected
\_Vr.cwﬂ:u'}
,D'D n /| A\ A
D D 551‘é / D ° . ° n
g ° » . i \
DDQrDQ. @ =
X 8\ ) ° ° °
|\ 5o . L L] /
0 |:| \ § : O . ¢ o 2
\ 2 :Efg L4 Ld L]
oo ] - \= 1/ 1 T —
Layer Input Filter size | Stride Num filters | Activation | Output
conv1 84x84x4 8x8 4 32 RelLU 20x20x32
conv2 20x20x32 4x4 2 64 RelLU 9x9x64
conv3 9x9x64 3x3 1 64 RelLU TX7x64
fcd Tx7x64 512 RelLU 512
fc5 512 18 Linear 18

Mnih et al. "Playing atari with deep reinforcement learning." 2013.

l - Massachusetts
Institute of
Technology

For the full updated list of references visit:
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DQN and Double DQN (DDQN)

* Loss function (squared error):

L = E[(r + ymax,Q(s',a’) — Q(s,a))?]

Y Y
target prediction

* DQN: same network for both Q

 DDQN: separate network for each Q

* Helps reduce bias introduced by the inaccuracies of
Q network at the beginning of training

I II u == m:;fs;‘:“sens For the full updated list of references visit: [83] Course 6.5191: Lex Fridman: Januar
II https://selfdrivingcars.mit.edu/references
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DQN Tricks

Experience Replay

» Stores experiences (actions, state transitions, and rewards) and creates
mini-batches from them for the training process

Fixed Target Network

* Error calculation includes the target function depends on network
parameters and thus changes quickly. Updating it only every 1,000

steps increases stability of training process.

Q(Sna) - Q(s,,a) +a |71 + WIHI?X Q(3t+1,1))

target Q function in the red rectangular is fixed

Reward Clipping

* To standardize rewards across games by setting
+1 and all negative to -1.

Skipping Frames

» Skip every 4 frames to take action

= Q(Sh a')

all positive rewards to

g2
a
&

sti
chnology https://selfdrivingcars.mit.edu/references

achusetts
ute of

For the full updated list of references visit: [83 167]
’

=
=

=
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DQN Tricks

* Experience Replay

» Stores experiences (actions, state transitions, and rewards) and creates
mini-batches from them for the training process

* Fixed Target Network

* Error calculation includes the target function depends on network

parameters and thus changes quickly. Updating it only every 1,000
steps increases stability of training process.

Q(st,a) « Q(s¢,a) + a |Te41 + 'ym}e)lx R(8t+1,p)|— Q(s¢,a)

target Q function in the red rectangular is fixed

Replay X x
Target x x
Breakout 316.8 240.7 10.2 3.2
River Raid 7446.6 4102.8 2867.7 1453.0
Seaquest 2894 .4 822.6 1003.0 275.8
Space Invaders 1088.9 826.3 373.2 302.0
I s oy oot (83, 167)

Intro to Deep Learning fridman@mit.edu 2018
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Deep Q-Learning Algorithm

initialize replay memory D
initialize action-value function Q with random weights
observe initial state s
repeat
select an action a
with probability &€ select a random action
otherwise select a = argmax,-Q(s,a’)
carry out action a
observe reward r and new state s’
store experience <s, a, r, s’> in replay memory D

sample random transitions <ss, aa, rr, ss’> from replay memory D
calculate target for each minibatch transition

if ss’ is terminal state then tt = rr

otherwise tt = rr + ymax,.Q(ss’, aa’)
train the Q network using (tt - Q(ss, aa))? as loss

s = s'
until terminated

I II Wmm Massachusetts  [orthe full updated list of references visit: [83 167] Course 6.5191: Lex Fridman: January
?

Institute of . . .
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Atari Breakout

= O

ima.. - ima.. -

ima.. -

After After After
10 Minutes 120 Minutes 240 Minutes
of Training of Training of Training
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Policy Gradients (PG)

DQN (off-policy): Approximate Q and infer optimal policy
PG (on-policy): Directly optimize policy space

raw pixels hidden layer

i\\,‘ﬁ . probability of
-"“??% . mﬂving Up Good illustrative explanation:
Fé’ﬁr‘m http://karpathy.github.io/2016/05/31/rl/
SR O——
23 ‘?“‘W “Deep Reinforcement Learning:

77 : . Pong from Pixels”

Policy Network

I II B Massachuselts  For the full updated list of references visit: [63] Course 6.5191: Lex Fridman: January
II Technology https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu 2018
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Policy Gradients — Training

Policy Gradients: Run a policy for a while. See what actions led to high rewards. Increase their probability.

uP DOWN uP uP DOWN_ o DOWN_ o DOWN uP WIN
DOWN o UP uP DOWN uP UP LOSE
UP uP DOWN o DOWN_ DOWN_ o DOWN up LOSE

oW gP g U, gDOW g UP " . e WIN

!

-0
!
Ld A

* REINFORCE (aka Actor-Critic): Policy gradient that increases probability of
good actions and decreases probability of bad action:

VoE|R:| = E[VglogP(a)R;]

* Policy network is the “actor”

* R,is the “critic”

I BB Massachuselts For the full updated list of references visit: Course 6.5191: Lex Fridman: January
Institute of . . [63 204]
II Technology https://selfdrivingcars.mit.edu/references ’

Intro to Deep Learning fridman@mit.edu 2018
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Policy Gradients (PG)

* Pros vs DQN:

* Able to deal with more complex Q function
* Faster convergence

 Since Policy Gradients model probabilities of actions, it is capable of
learning stochastic policies, while DQN can’t.

* Cons:
e Needs more data

12 A
—— DDQN

A2C

o] e o
1 WW* ‘ Il \/w W

Average Kill Counts
[=)]

2 -
0 -
0 2500 5000 7500 10000 12500 15000 17500 20000
Episodes
I II B Massachuselts  For the full updated list of references visit: [63] Course 6.5191: Lex Fridman: January
Technology https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu 2018



https://selfdrivingcars.mit.edu/references

Game of Go

Dia. 4 Dia. b Dia. 6 .
liberties atari capture result
Game size Board size N 3N Percent legal legal game positions (A0947??}[”]
1x1 1 3 33% 1
2x2 4 81 70% 57
3x3 9 19,683 64% 12,675
4x4 16 | 43,046,721 56% 24,318,165
5x5 25| 8.47x10" 49% 4.1x10M
9x9 81| 4.4x10%8 23.4% 1.039x1038
13x13 169 | 4.3x1080 8.66% 3.72497923x107°
19x19 361 | 1.74x10172 1.196% 2.08168199382x10170
I o™ et cherenee [170] mro to Desplearing  fidman@miteds 2018
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Human expert
positions

AlphaGo (2016) Beat Top Human at Go

Supervised Learning
policy network

‘ Self Play ’

Reinforcement Learning
policy network

‘ Self Play ’

Self-play data

DeepMind challenge match

AlphaGo (Mar 2016)

4-1

Nature match

AlphaGo (Oct 2015)

5-0

KGS

Crazy Stone and Zen

)'11?;‘

Lee Sedol (9p)
Top player of
past decade

Beats

Fan Hui (2p)
3-times reigning
Euro Champion

Amateur
humans

Value network

H B Massachusetts

Institute of
Technology
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AlphaGo Zero (2017): Beats AlphaGo
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AlphaGo Zero Approach

 Same as the best before: Monte Carlo Tree Search (MCTS)

» Balance exploitation/exploration (going deep on promising positions or
exploring new underplayed positions)

* Use a neural network as “intuition” for which positions to
expand as part of MCTS (same as AlphaGo)

a Selection b  Expansion c Evaluation d Backup
mak. Q+ u(P) ‘ i T‘ L ]

! Lo@ O 4 &L _ |-

i3 13 Rt 141 ol :

Q +u(P) -/nax ,

14

Ik

1

1
»H‘\ 5

1

I II u == m:ﬁf:;‘::sens For the full updated list of references visit: [170] Course 6.5191: Lex Fridman:
II Technology https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu

2018


https://selfdrivingcars.mit.edu/references

AlphaGo Zero Approach

 Same as the best before: Monte Carlo Tree Search (MCTS)

» Balance exploitation/exploration (going deep on promising positions or
exploring new underplayed positions)

* Use a neural network as “intuition” for which positions to
expand as part of MCTS (same as AlphaGo)

e “Tricks”

* Use MCTS intelligent look-ahead (instead of human games) to improve
value estimates of play options

e Multi-task learning: “two-headed” network that outputs (1) move
probability and (2) probability of winning.

* Updated architecture: use residual networks

I II il- Massachusetts For the full updated list of references visit: [170] Course 6.5191: Lex Fridman:
s

Institute of . . .
Technology https://selfdrivingcars.mit.edu/reference Intro to Deep Learning fridman@mit.edu
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DeepStack first to beat professional poker players (2017)

(in heads-up poker)

(INVERSE)
BUCKETING BUCKETING
f CARD
FEEDFORWARD ZERO-SUM COUNTERFACTUAL
NEURAL NET MEURAL NET VALUES
1:_,25_ T -
o o o oy h"“ﬂ-[
500 0 100g Toog . A
S~
I\ 1 iy
N N ~F
vl iy o (N
1 B
111 v
N ::
| l | e
M P2 Pq ] ! a 2
L
T—— L ‘\\-\_\R‘-ﬂ “—\_x\ P1 “-'"‘"--..__‘_‘-_H-“H
________-____ p2
T Hidden Layers Output Zero-sum Output
= fully connected Bucket Error Counterfactual
* linear, PReLU values values
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To date, for most successful robots operating in the real world:
Deep RL is not involved

(to the best of our knowledge)
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To date, for most successful robots operating in the real world:
Deep RL is not involved

(to the best of our knowledge)

WAYMO 02
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Unexpected Local Pockets of High Reward

Tl‘ﬂBC

gifs.com
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Al Safety

Risk (and thus Human Life) Part of the Loss Function
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DeepTraffic: Deep Reinforcement Learning Competition

DeepTraffic

Main Page - Leaderboard - About DeepTraffic
Americans spend 8 billion hours stuck in traffic every year.
Deep neural networks can help!

5 IanesSide = 3;

6 patchesAhead = 3@; —_
= 7 patchesBehind = 18;

8 trainIterations = 18608;

| 1@ // the number of other autonomous vehicles controlled by your network
a 11 otherAgents = @; // max of 9

13 var num_inputs = (lanesSide * 2 + 1) * (patchesAhead + patchesBehind);

-~ O ~ Apply Code/Reset Net Save Code/Net to File Load Code/Net from File

oo g

Submit Model to Competition

72 mon - U
Cars Passed: U 31;58 = <o — =
= o y i ==
195 3 & N
Y~ S3d
n] 2HH
U -0.55L.J.
ok ok ozk ogk ok osk ok osk o8k osk ik

o - T B

D D Value Function Approximating Neural Network:

input(280) fc(50)

= LOAD CUSTOM IMAGE

Road Overlay: red

None v

" 2 REQUEST VISUALIZATION
Simulation Speed:

Fast v vehicle skins

https://selfdrivingcars.mit.edu/deeptraffic
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