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This short report, compiled upon request from Dave Siegrist and Ted Senator, sur-
veys the spectrum of technologies that can help with Biosurveillance. We indicate
which we have chosen, so far, to use in our development of analysis methods and
our reasons.

1 Time-weighted averaging

This is directly applicable to a scalar signal (such as “number of respiratory cases
today”. This method, more commonly used in computational finance, simply
compares the count during the current time period with the weighted average of
the counts of recent days. Exponential weighting is typically used, where the
half-life is known as the “time window” parameter. This time-window parameter
is typically chosen by hand. We prefer the Serfling and Univariate HMM methods
described below.

2 Serfling method

This method (Serfling, 1963) is a cyclic regression model, and is the standard CDC
algorithm for flu detection. It is, again, applicable to scalar signals. It assumes
that the signal follows a sinusoid with a period of one year, and thus finds the four
parameters ������� and 	 in


��� ������������������������� �"!�#%$ !&��	�'(��) � (1)

where the parameters are chosen to minimize the sum of squares of residuals* � ),+� . It is an easy matter of regression analysis to determine, on any date, whether
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 � is sufficiently large that the probability of such a large 
"� in the absence of an
epidemic (the p-value) is so low that an alarm should be signaled. Rich Tsui has
investigated this method extensively (Tsui, Wagner, Dato, & Chang, 2001) and it
is used within the current RODS system.

3 ARIMA model

This (along with its simpler cousin, the ARMA model) is the staple method (Hamil-
ton, 1994) of understanding time series data, though it is primarily used for predic-
tion instead of signaling alarms. It asks the question “what is the signal likely to be
in the current time period based on recent time periods”. The “AR” in “ARIMA”
refers to Auto-regression: the idea that we’ll try to predict 
"� as a linear func-
tion of 
�� � � � 
�� � + � # # # 
 � ��� for some time-window p. The parameters of this linear
function can be learned by linear regression over large amounts of historical data.
The “IMA” part of ARIMA comes from the correction that we should take into
account that 
�� � � � 
�� � + � # # # 
 � ��� are themselves noisy values. It can be turned into
an alarm-signaller in a similar manner to the Serfling method: do a statistical test
to see how surprised we are by the recent value of our signal compared with the
mean and variance of our prediction. Rich Tsui has implemented this within the
RODS system.

4 Combining ARIMA with other factors

ARIMA will not, by itself, model seasonal effects in the data in the same way that
Serfling would. It is not hard to get the best of both worlds by adding a sinusoidal
term to the regression. But we can go further than that. For example we could add
a day-of-week-specific term, or other terms to compensate for effects that would
otherwise distort the predicted signal. (Remember, distorting the predicted signal
could cause false positives or negatives if the basis of sounding an alarm is com-
parison between the predicted signal and the actual signal). Based on the DARPA
Biosurveillance Kickoff meeting, I believe this combination ARMA/regression
approach is being used by members of Howard Burkom’s team at JHU/APL. We
think it is an excellent approach, but we do not plan to duplicate effort within the
DARPA program by reproducing it (though we will likely trade ideas and code
with Howard’s team).

2



5 Univariate HMM

This approach uses Hidden Markov Models (Rabiner, 1989; Moore, 2001b) with
discrete hidden state and a continuous output signal. The hidden state is whether
or not there is an epidemic of some disease (e.g. influenza) in progress. There can
be more than two possible states if we allow more than two levels of epidemic,
or if we allow epidemics of different diseases. The parameters of the HMM can
be learned from data and, as before, the probability distribution of today’s signal
can be predicted and compared with today’s actual value. A great merit of this
approach is that it can easily allow non-Gaussian noise, and even multimodal
distributions for the signal. Rich Tsui has implemented and tested this method
extensively within RODS and favors it as a practical detector.

6 Kalman filter used as an adaptive ARIMA model

Loosely speaking, this is similar to the HMM approach, but in which the hidden
state is a continuous variable. Although Kalman filters (Hamilton, 1994) are pri-
marily used as state estimators for control systems it is quite easy to use them as
underlying state estimators for a signal such as “rate of recent respiratory prob-
lems”. And again, it is then easy in principle (though fiddly in practice) to learn
the parameters from historical data, and signal alarms when today’s observation
falls outside the model’s expectations. Rich Tsui has implemented this but prefers
the HMM approach.

7 Recursive-least-square (RLS) adaptive filter

This is another AR regression method, implemented in an efficient way using
some nifty linear algebra tricks. Apart from computational speed, which is not
important for scalar problems with merely tens of thousands of datapoints (which
is what we are dealing with with hourly signals over a period of years), it is hard to
distinguish the advantages and disadvantages of this from ARIMA-type methods.
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8 Support vector machine (SVM)

This is a non-linear AR method in which today’s signal is predicted as a non-linear
function of recent days’ signals. SVM (Burges, 1998; Moore, 2001c) could have
been replaced by any of dozens of machine learning algorithms that can predict
real-valued outputs based on inputs. Rich Tsui has implemented this method,
but we find no particular advantage compared with other methods. (Note that
traditionally SVMs are used for classification instead of regression, so additional
pain is needed to apply them to this problem).

9 Artificial neural networks (ANN)

Neural networks can be used in an AR-like fashion, or by numerous other meth-
ods such as recurrent connections, to model time series with nonlinear dynamics.
They require careful attention and tweaking. Rich Tsui has implemented this ap-
proach but we do not make much use of it.

10 CuSUM method

This econometric method (Bos & Fetherston, 1992) tests to see whether there has
been a recent change in the behavior of a time series. Unlike most of the above
methods it can detect changes in variance instead of merely changes in value. It
will, however, signal a false alarm if changes occur that other methods such as
HMM or ARIMA would not react to, such as a steady rise in the mean. Rich Tsui
has implemented it but does not find it very useful.

11 Randomization tests

Many of the above methods can precisely quantify, for every test, what is the level
of anxiety (formally, what is the p-value...the chance that we’d have seen a signal
as strong as this if the process was proceeding as normal). But in some of the
more powerful tests below, a correct p-value is hard to find because of the effect
of multiple testing. If I do 100 tests instead of 1 test, and I signal an alarm if
any one test reveals an anomaly, then my chance of false positives will probably
go up considerably—up to 100-fold depending on the degree of independence
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between then tests. This is very serious: if a surveillance system were installed at
all of 100 military bases, for example, there would probably be one or two false
alarms every day, and any central monitoring agency would find it hard to believe
subsequent alarms. The extent of my danger of false alarms depends entirely on
how strongly correlated my multiple tests are. A conservative way of dealing
with this is the Bonferroni correction. But that can be so conservative that it
allows an unacceptable chance of a false negative. An alternative is to simulate
1000 samples of the data from the recent picture and perform the multiple tests
on each of those samples. Then we can ask the question: on what fraction of
simulated runs did the surprise level of the loudest alarm beat the surprise level of
the loudest alarm on the real data? That fraction is a very good approximation for
the true p-value of today’s data. This technique, known as randomization-based
testing (Efron & Tibshirani, 1993) is employed extensively in our own systems,
and is also used in spatial scan statistics and WSARE described below.

12 Spatial Scan Statistics

This method (Kulldorf, 1997) searches for geographical overdensities of disease
cases. It looks for small geographical regions (usually circular) in which the frac-
tion of the population with some disease is significantly higher than in general.
By using sensible statistics and randomization tests, great care is taken to ensure

� We don’t get fooled by multiple testing (randomization is the most common
defense against that).

� We don’t get fooled by general population overdensities.

A more sophisticated kind of scan statistic also looks for overdensities in time:
it searches the joint space of local geography and recent time windows to find
out whether there’s been a recent upswing in disease levels. JHU/APL, under
the guidance of Dr. Howard Burkom, has been extensively investigating this ap-
proach. We (Pitt/CMU) also plan to use this approach and, projecting out from
preliminary discussions with Dr. Burkom in Feb 2002, will probably do this in
collaboration with Dr. Burkom instead of as a separate endeavor.
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13 Bayesian Networks

Given a multidimensional database with many attributes, Bayesian networks (Cooper
& Herskovits, 1992; Cooper, 1995, 1999; Pearl, 1996; Moore, 2001a) are a pop-
ular and well-principled way of concisely representing the interrelationships be-
tween the attributes. They give a succinct model of the joint probability density
function from which the attributes are drawn. Common extensions include Dy-
namic Bayesian Networks, which additionally model the relationship between the
attributes in this time period to those in the previous time period. We make ex-
tensive use of Bayesian networks in our approaches to Biosurveillance, including
their use within WSARE and PANDA (described below).

14 Contingency Table Analysis

This tool is the primary workhorse of traditional epidemiology. Table 1 shows an
example 2-by-2 table analysing the number of thirty-somethings who have needed
treatment today compared with a previous time-period. Contingency table analy-
sis asks the question: if there was really no relationship between thirty-somethings
and the time they choose treatment, what is the chance we’d have seen a distribu-
tion that skewed as much as, or more than, this? This question could be answered
by an extensive randomization test, but happily there is an exact analytical way
to compute this chance (which is a p-value). The method is known as the Fisher
Exact Test (Good, 2000). Running Fisher’s Exact Test on Table 1 yields a score
of 0.00005058, which indicates that the count

� ��������� for cases matching the rule
Age Decile  � are significantly different from the count

� � ��	�
� ....there’s only
a 5-in-100,000 chance we’d have seen a distribution this extreme under the null
hypothesis.

Table 1: A sample 2x2 Contingency Table

� ��������� � � ��	�
�
����� ��� ����� �  � 48 45����� ��� ����� ��� � 86 220

We (and almost everyone else) use contingency table analysis and Fisher’s
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exact test in many subcomponents of our detection system.

15 Scalar Outlier detection

Outlier detection is simple. From historical data we learn a probability density
function of the signal we are monitoring. Then on each time period we signal a
warning if the current signal is in an area with very low density. This is a simple
approach often used in Statistical Quality Control (SQC) but it is unlikely to be
useful to us compared with the earlier ARIMA or Scalar HMM methods.

16 Anomaly detection

In exactly the same general approach as outlier detection it is possible to model
the joint distribution of a set of variables (see, for example (Eskin, 2000)). For ex-
ample, we could learn the joint distribution over all features of a case admitted to
an ED. Then, for each case, we can compute the likelihood of that particular case
and compare it to the likelihood of other cases. We can then signal an anomaly
when we see extremely strange cases. This method has been used very success-
fully for detecting strange galaxies for astrophysicists, and for detecting errors in
consumer marketing databases. It has also been used for network intrusion de-
tection, where the extent of its success is debatable. It is possible that it might be
useful for biosurveillance but it is not a high priority for us because we anticipate a
greater likelihood of attacks being discovered by strange commonalities between
multiple cases (see WSARE below, or Spatial statistics above), or by cumulative
evidence from multiple cases (see PANDA below)

17 Change-point statistics

There is a branch of statistics (Carlstein, 1988) that considers a time series of
(usually scalar) signals in which each is generated independently from some fixed
but unknown distribution F until a certain unknown time T after which they may
instead be generated independently from some fixed but unknown distribution
G. This technology is good at finding out if such a change ever occurred and
when it occurred as accurately as possible with very few assumptions about the
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nature of the distribution. We believe this could be relevant technology, though
the assumptions it is built upon are still idealized compared with our scenario.

18 FDR tests

The False Discovery Rate statistic is a relatively new approach to compensating
for testing multiple hypotheses. It is

� ...much more computationally efficient than randomization, though some-
times not as accurate.

� ...somewhat computationally slower than the traditional Bonferroni approach,
but much more accurate.

The False Discover Rate (FDR) method (Benjamini & Hochberg, 1995; Miller,
Genovese, Nichol, Wasserman, Connolly, Reichart, Hopkins, Schneider, & Moore,
2001) guarantees that the fraction of the number of false positives over the num-
ber of tests in which the null hypothesis was rejected will be no greater than �

for a user-specified choice of � . We use FDR instead of randomization in cases
where randomization would be impractical. One example is “outer-loop” cases of
multiple testing, such as when we report on historical data which of our earlier
dates had significant events.

19 Kd-trees

These are classical geometric data structures (Friedman, Bentley, & Finkel, 1977;
Bentley, 1980; Omohundro, 1987; Moore, 2001d) for retrieving nearby points
efficiently, and finding all individual points within a certain distance from a query
quickly. These are not of much use as statistical techniques in themselves, but
they are very useful for accelerating spatio-temporal queries in which we need to
quickly retrieve a set of cases from some region at some time. There are also disk-
resident versions of the same structures, which have attractive paging properties.
These include R-trees (Guttman, 1984).

An extension of kd-trees are Multi-resolution kd-trees. Kd-trees have tradi-
tionally been used for the efficient retrieval of data points nearest a query point.
By adding sufficient statistics about all the data points (Priebe, 1994; Deng &
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Moore, 1995) below each node in the tree it is possible to speed up other opera-
tions, such as locally weighted regression (Moore, Schneider, & Deng, 1997) and
mixture model based clustering and density estimation algorithms (Moore, 1999).
At each node during the search, the algorithm considers whether it 1) can ignore
all the points below that node because they are irrelevant to the current query, 2)
can estimate the effects of all the points below that node without visiting them in-
dividually, or 3) must recurse further down the tree. The result is that most queries
need only visit a small number of nodes in the tree.

We have not yet used kd-tree technology in the biosurveillance work, but we
intend to do so in two ways.

� We will try a mixture of a Gaussian and Background distribution, as de-
scribed in the kickoff meeting, to identify compact regions with increased
prodrome levels.

� We plan to collaborate with Dr. Burkom’s group to use kd-trees to scale up
spatial scan statistic computations.

20 All-dimensions trees

Many data mining algorithms are built upon making a huge number of queries to
the data of the form: how many records are there with attribute x has value y and
attribute z has value a, etc. When the number of records in the data set becomes
large, the cost of answering these queries can dominate the computation involved.
Algorithms that rely on this include rule learning, decision trees, Bayes net learn-
ing, and frequent sets. An all-dimension tree (Moore & Lee, 1998; Anderson &
Moore, 1998; Komarek & Moore, 2000) builds a cache that efficiently stores these
answers in a form that allows the queries to be answered without going back to
the data. The result is that after the cache is built, the queries are answered in
computation time independent of the number of records in the data set. We will
use this to scale up WSARE to allow it to run on surveillances that are receiving
thousands up to millions of new observations a day.

9



21 WSARE

WSARE (Wong, Moore, Cooper, & Wagner, 2002) is a generic detection system
built specifically for quick integration into data sources of the kind being investi-
gated in the DARPA Biosurveillance program. It looks for answers to the question
”What’s Strange About Recent Events” in which no individual record might look
anomalous yet there has been a significant change in some aspect of the multi-
dimensional interrelationship between all the features being monitored. WSARE
is designed to do a different and complementary task to the traditional detection
systems which focus on one attribute of the data, typically a daily aggregate count
such as the number of respiratory cases in a certain day. The traditional systems
will be much more sensitive to the specific diseases they are trying to detect, but
may be less sensitive to an insidious disease that only affects a specific group while
not causing enough of a perturbation in the daily aggregate count of the monitored
symptom. For example, suppose that a disease causes elderly males from a cer-
tain neighborhood to be sick but the number of cases caused by this disease is not
sufficient to skew the daily aggregate counts above an alert threshold.

WSARE approaches this problem using a rule-based anomaly detection ap-
proach. This system searches for irregularities in the data using rules. An ex-
ample of such a rule would be ”Prodrome = Respiratory AND Home Zipcode =
84102”. This rule indicates that WSARE is determining if the number of cases
with respiratory problems in the 84102 zipcode area are unusual or not. On each
day, WSARE looks at the current 24 hours worth of data and compares it against
the past week’s worth. WSARE considers all possible rules and selects the most
statistically significant rule for the current 24 hours, using a randomization test to
guard against multiple-hypothesis testing errors. This rule is printed as the final
result, along with a message stating if the anomalous pattern, which corresponds
to the rule, should be interpreted as significant.

The current version of WSARE under development uses a Bayesian Network
to model what distribution of cases we should expect to see to day based on known
facts (e.g. day of week, time of year, recent FLUSTAR reports for the city) so that
it can more accurately determine deviations from the predicted background. The
Bayes Net is learned from historical data.

WSARE is different from the above methods primarily because it inspects the
interrelationships of very many attributes simultaneously instead of monitoring
one individual signal. It is complementary to PANDA, below, because PANDA
begins with a many-attribute investigation of how surprising each case is and then
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very carefully analyses the degree of surprise about the recent pattern of surprising
cases: PANDA has the potential to spot a problem based on a small handful of very
specific cases whereas WSARE screens for problems detectable by a large scale
change over a sizable sub-population of cases.

22 PANDA

We are in the process of developing the PANDA system (Patient-based ANomaly
Detection and Assessment). PANDA will contain probabilistic causal models of
patient diseases, including diseases that are likely due to bioterrorism. For each
patient, PANDA will dynamically construct a probabilistic causal model (Cooper,
1999; Cooper & Yoo, 1999; Cooper, 2000) using a Bayesian network represen-
tation. Such a patient-specific causal model includes variables that represent risk
factors (e.g., infectious disease exposures of various types), disease states, and
patient symptoms. Some of the variables in each patient-specific network are
linked (via arcs) to population variables, such as a variable that represents spatio-
temporal information about the release of an infectious agent. Also, if the disease
state of a patient P is potentially influenced by another patient Q (e.g., if Q has a
contagious disease and P was exposed to Q), then the causal model for P would
have arcs into it from the model for Q.

The inter-linked patient-specific causal models will form a large causal Bayesian
network that represents the entire population being modeled. PANDA will use
such a network to infer the spatio-temporal probability distribution of disease for
the population as a whole, as well as the probability distribution of disease for
each patient in the population. None of the other approaches in this document (or
elsewhere) construct a detailed spatio-temporal probabilistic causal model of the
population and use that model to infer the disease status of (1) the population and
(2) each member of the population.

The PANDA approach is powerful and general. There are two major chal-
lenges that we will face in implementing it: (1) assessing the causal models, and
(2) achieving computational tractability. The former will require focusing on the
most important causal relationships, rather than trying to be causally complete.
The latter will probably require approximation algorithms for inference, includ-
ing simulation algorithms.
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23 FLUMOD (Spatial HMM)

In addition to analysing temporal sequences of univariate signals over a region
with HMMs as described above, we can also analyse patterns and dynamics in
space and time, by defining an HMM in which the hidden state corresponds to the
cross-product of disease states in many neighborhoods. We will use this to further
refine our models of the background distribution—what we “should” be seeing on
each day in the absence of any new public health threat. This project is under way
as of February 2002.
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