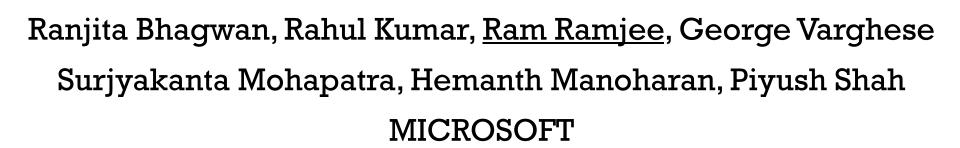
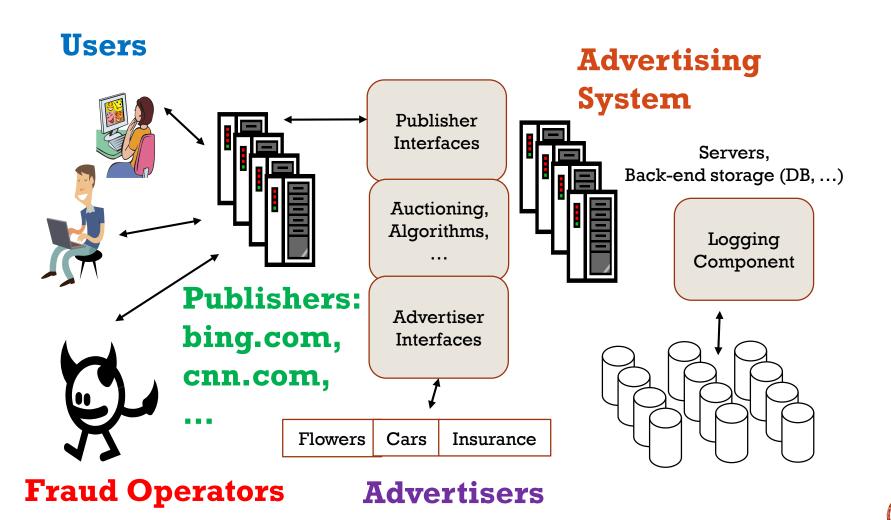
ADTRIBUTOR: REVENUE DEBUGGING IN ADVERTISING SYSTEMS

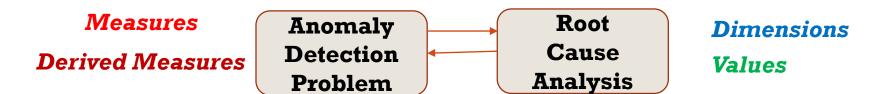


ADVERTISING SYSTEMS ARE COMPLEX



REVENUE DEBUGGING IN ADVERTISING SYSTEMS

Why is Revenue/Revenue-per-search down anomalously?



- Datacenter in Dublin had latency issues that resulted in fewer ads being served
- Buckets 18, 23, and 24 were using a new algorithm for ad relevance that wasn't working as expected.
 - Buckets: experimental trials with different algorithms
- The papal election was in progress, and users were searching for mainly non-monetizable queries such as "Pope"

CONTRIBUTIONS

Novel algorithm for root cause analysis in Ad Systems

Uses explanatory power, succinctness and surprise

2. Attribution for derived measures

• E.g., attribute an element's contribution to revenue-per-search (revenue/# searches)

3. Adtributor Tool

- 95+% accuracy in identifying root causes in Ad Systems
- Saves 1+ hour on average of manual troubleshooter time

OUTLINE

Characteristics of Ad systems

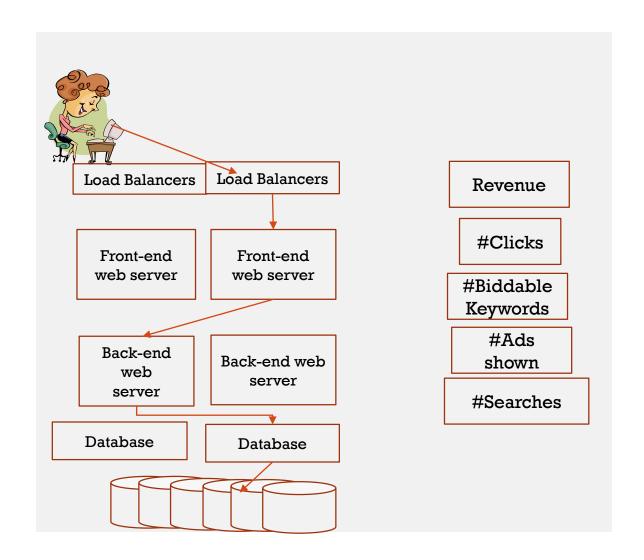
Root cause analysis

Attribution for derived measures

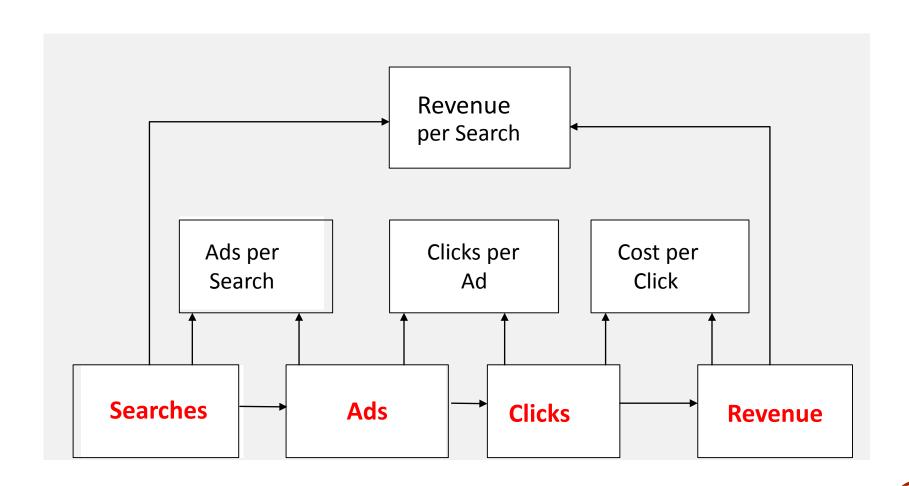
Adtributor Demo

Evaluation

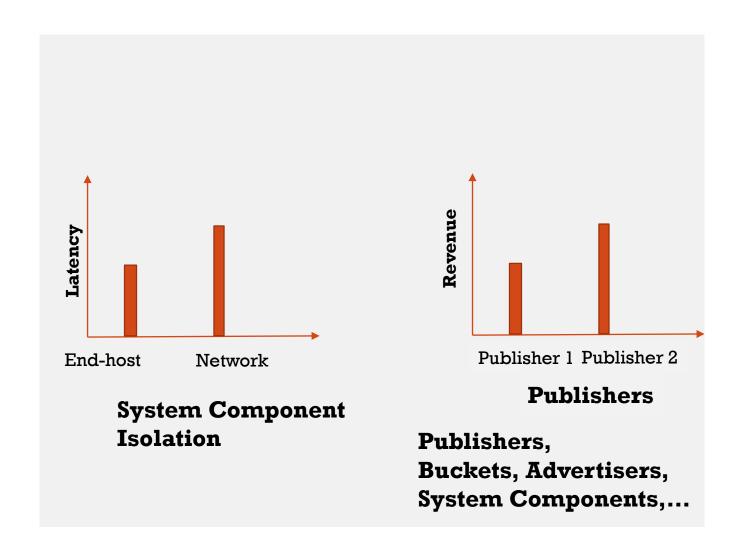
CHARACTERISTIC I: AGGREGATE ANALYSIS



CHARACTERISTIC II: FUNDAMENTAL AND DERIVED MEASURES



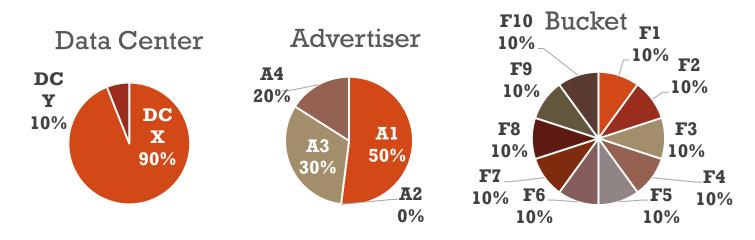
CHARACTERISTIC III: MULTI DIMENSIONAL ANALYSIS



ROOT CAUSE ANALYSIS

- Example
 - Expected Revenue: \$100, Actual Revenue: \$80
 - Revenue down by 20% → anomaly!
- Potential root causes
 - One data center had \$18 less revenue than forecasted
 - Three advertisers spent \$20 less than forecasted
 - 10 buckets resulted in \$20 less revenue than forecasted
- Should we attribute root cause to dimension data center, advertiser or bucket? Which values?

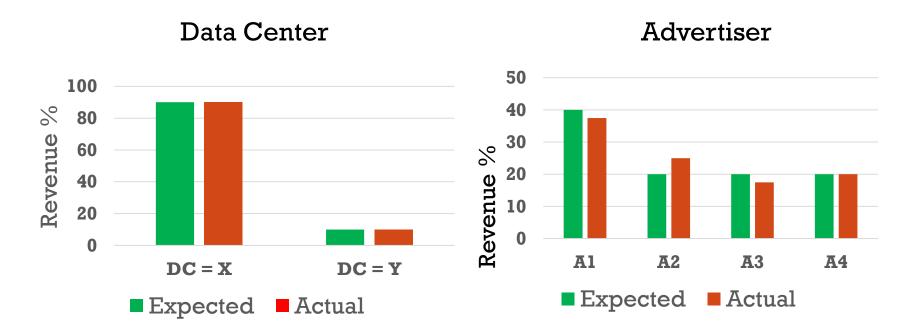
EXPLANATORY POWER AND SUCCINCTNESS



Pie charts show contribution to change by dimension-values.

- Explanatory: root cause should explain most of change
- Succinctness: root cause likely to be few elements
- ➤ DataCenter == X
- \triangleright Advertiser == A1 OR Advertiser == A3 OR Advertiser == A4

SURPRISE



- Root cause likely to deviate most from expectation
 - Relative entropy of actual vs expected probability (JS-divergence)
- Advertiser == A1 OR Advertiser == A3 OR Advertiser == A4

 $D_{JS}(P,Q) = 0.5(\Sigma_i p_i \log \frac{2p_i}{p_i + q_i} + \Sigma_i q_i \log \frac{2q_i}{p_i + q_i})$

ALGORITHM

- Find the dimension and smallest set of values that maximally explain the anomalous change while also maximizing surprise
- Multi-objective optimization
- Greedy algorithm
 - Smallest set → each value contributes > 10% of change
 - Maximally explains → set should explain > 2/3 of change
 - Maximize surprise

```
For each m \in M // Compute surprise for all measures,
       For each i \in D // all dimensions,
           For each j \in E_i // all elements for a dimension
               p = V_{ij}^e(m)/V^e(m) // Equation 6
               q = V_{ij}^a(m)/V^a(m) // Equation 7
               S_{ij}(m) = D_{JS}(p,q) // Equation 10
   ExplanatorySet = \{\}
   For each i \in D
       SortedE = E_i.SortDescend(S_{ij}(m)) //Surprise
       Candidate = \{\}, Explains = 0, Surprise = 0
       Foreach j \in SortedE
11
           EP = (V_{ij}^{a}(m) - V_{ij}^{e}(m))/(V^{a}(m) - V^{e}(m))
13
           if (EP > T_{EEP}) // Occam's razor
               Candidate.Add += E_{ii}
14
               Surprise += S_{ij}(m), Explains += EP
15
           if (Explains > T_{EP}) // explanatory power
16
17
               Candidate.Surprise = Surprise,
18
               ExplanatorySet += Candidate, break
19 //Sort Explanatoryset by Candidate.Surprise
   Final = ExplanatorySet.SortDescend(Surprise)
21 Return Final. Take(3) // Top 3 most surprising
```

ATTRIBUTION FOR DERIVED MEASURES

Explanatory Power of element j in dimension i for measure m is simply=(A_ij(m) - F_ij(m)))/(A(m) - F(m)). e.g. A1: (10-50)/(90-100)=400%

• Why derived measures?

Below 20% threshold Below 20% threshold Above 20% threshold

Adver- tisr	Estimated Revenue	Actual Revenue	% change	Adver- tisr	Estimated Clicks	Actual Clicks	% change	Adver- tisr	Estimated CPC	Actual CPC	% change
Overall	100	90	-10	Overall	500	580	16	Overall	0.2	0.155	-22.5
A1	50	10	400	Al <	100	20	-100	Al 🦪	0.5	0.5	
A2	0	0	0	A2	200	360	200	A2	0	0	
A3	40	70	-300	A 3	100	100	0	A3	0.4	0.7	
A4	10	10	0	A4	100	100	0	A4	0.1	0.1	

How do we attribute for derived measures?

Assuming only one advertiser performs the same as its actual performance, and all other advertiser perform as expected Intuition: use expected value for all other elements and actual **values for only this element**e.g. A1: (10+0+40+10)/(20+200+100+100) = 0.143 , (0.2-0.143)/0.2=-28.5%

A2: (0+50+40+10)/(360+100+100+100)=0.152, (0.2-0.152)/0.2=-24%. Below is the formula

Captured by Partial Derivatives in Finite Difference Calculus

$$F(.)/G(.) = (Delta_F*G - Delta_G*F)/(G*(G + Delta_G))$$

DEMO

Adtributor

EVALUATION

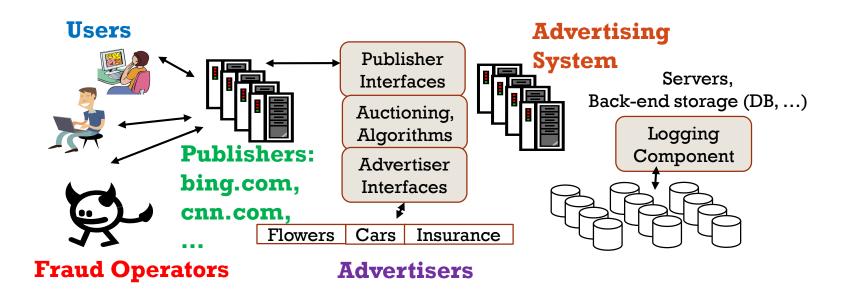
Parameter	Value
Anomalies	128
No. of matches	118
Manual errors	4
Adtributor's errors	5
Ambiguous	1
Accuracy	95.3%

- Evaluated 128 alerts generated over a 2 week period over 8 markets (US, UK, DE, FR: PC, Mobile for each)
- Compared Adtributor output with manual root-causing
- Time saved: l+ hour on average per alert

RELATED WORK

	Root causing	Multiple Dimensions	Derived Measures
Network Component Failure Isolation (e.g., SCORE, Sherlock, etc.)	Explanatory Power, Succinctness	Does not handle	Does not handle
Network Traffic Pattern Finding (Autofocus, HHH)	Explanatory Power, Succinctness	Explores all combinations of dimensions dynamically, Heuristic: unexpectedness	Does not handle
Data mining (Summarization, Surprising Patterns)	Explanatory Power, Succinctness	Many techniques (e.g., Minimize description length)	Does not handle
Revenue Debugging	Explanatory Power, Succinctness	Explores single dimensions Pre-declared <i>statically</i> Surprise: JS divergence	Partial derivative, Finite differences

SUMMARY



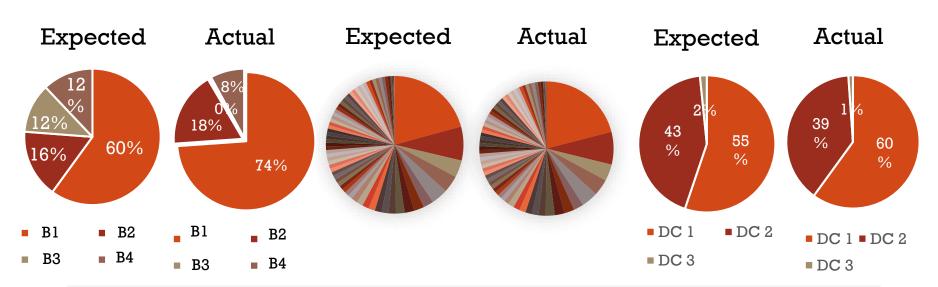
- > Algorithm for Root Cause Analysis in Advertising Systems
 - Uses explanatory power, succinctness, and surprise
- > Attribution for derived measures
 - Finite difference, partial derivative-based approach
- > Adtributor tool
 - 95+% accuracy, saves 1+ hour of manual troubleshooting time

APPLYING OUR APPROACH MORE GENERALLY

- This problem/solution is not specific to advertising
- Datacenter Diagnostics problem (Bodik et al., Eurosys 2010)
 - Problem: When there is a slowdown in the datacenter, where is the slowdown? Is it CPU, Memory or Disk that is the bottleneck?
- Derived metric attribution
 - MoS score attribution in VOIP networks: which link is responsible for drop in the Mean Opinion Score (MoS) for a given VOIP call?

CASE STUDY: ANOMALOUS REVENUE DROP

Dimension: Browser Dimension: Bucket Dimension: Data Center



- ➤ Maximum surprise (deviation from expected value) seen for the browser dimension
 - Configuration error caused no ads to be shown on B3 for that time

