
Argus: End-to-End Service Anomaly Detection and
Localization From an ISP’s Point of View

He Yan1 Ashley Flavel1 Zihui Ge1 Alexandre Gerber1
Dan Massey2 Christos Papadopoulos2 Hiren Shah1 Jennifer Yates1

1AT&T Labs - Research 2Colorado State University
{yanhe,af360w,gezihui,gerber,hiren}@research.att.com

{massey,christos}@cs.colostate.edu

Abstract—Recent trends in the networked services industry

(e.g., CDN, VPN, VoIP, IPTV) see Internet Service Providers

(ISPs) leveraging their existing network connectivity to provide

an end-to-end solution. Consequently, new opportunities are

available to monitor and improve the end-to-end service quality

by leveraging the information from inside the network. We

propose a new approach to detect and localize end-to-end

service quality issues in such ISP-managed networked services by

utilizing traffic data passively monitored at the ISP side, the ISP

network topology, routing tables and geographic information.

This paper presents the design of a generic service quality

monitoring system “Argus”. Argus has been successfully deployed

in a tier-1 ISP to monitor millions of users of its CDN service

and assist operators to detect and localize end-to-end service

quality issues.This operational experience demonstrates that

Argus is effective in accurate, quick detection and localization of

important service quality issues.

I. INTRODUCTION

The Internet has become the mainstay of many networked
services (e.g., content distribution network (CDN), VoIP, VPN,
IPTV). End-to-end service quality is the most important metric
in evaluating these networked services and largely decides
the reputation and revenue for the service providers. Existing
end-to-end service quality management system can be largely
divided into two branches: active probing and passive monitor-
ing. Active probing based systems (e.g., Keynote [2], Gomez
[1]) that periodically probe the service from agents at different
network locations to detect end-to-end performance issues
have several limitations. First, without active probes from a
vast number of network locations throughout the Internet, the
monitoring coverage is limited and some end-to-end service
quality issues may not be detected. Secondly, probe packets
also place additional overhead on the network and may be
treated differently than normal packets.

In passive monitoring based systems (e.g., [5]), first each
end-user detects the end-to-end service quality issues individ-
ually based on performance metrics extracted from passively
monitored traffic and service quality issues detected by in-
dividual end-users are correlated spatially and temporally to
determine the scope of the problem. Although it overcomes the
limitations in active probing based systems, passive monitoring
at end-user side has it own limitations. First these systems
require end-users to install monitoring software, which may
cause a deployment issue as there is no incentive for end-users
to help service providers manage their services. Moreover, the
effectiveness of these systems is limited by the sparsity of
passive end-to-end performance measurements for individual

end-users, which further depends how frequently they access
the services. For example, if an end-user only accesses the
service a few times in a day, systems based on passive
monitoring at end-user side may not have sufficient samples
to detect service events.

Although networked services are becoming a part of daily
life, existing approaches are still quite limited in monitoring
end-to-end service quality. Recent trends in the networked
services industry see Internet Service Providers (ISPs) lever-
aging their existing network connectivity to provide end-to-
end service. Consequently, new opportunities are available to
monitor and improve end-to-end service quality by leveraging
the information from inside the network. We argue that the
most effective way to manage end-to-end service quality in
these ISP-managed services is to passively monitor the traffic
to/from end-users from the ISP’s point of view.

In this paper, we design a system called “Argus” to de-
tect and localize end-to-end service anomaly events in ISP-
managed networked services in a proactive manner. In contrast
to existing systems based on active probing or passive monitor-
ing at end-user side, our approach monitors end-to-end service
quality from an ISPs point of view in a centralized manner
utilizing traffic data passively monitored at the ISP side [7],
the network topology, routing information and geographic
information. Although our approach is directly applied to ISPs,
it can be extended to other general service providers (e.g.
Google, Akamai) with proper network topology and routing
information.

The organization of the rest of the paper is as follows.
Section 2 presents the system design and detailed description
of Argus. We describe how to apply Argus in an ISP-managed
CDN service in Section 3. Section 4 evaluates the accuracy of
service events detected in the CDN service by Argus using
a list of labeled events from the CDN service team and
Keynote [2] agents. In Section 5, we present the overall results
for all detected service events and two representative case
examples from our operational experience with Argus in the
CDN service. Finally we present the related work in Section
6 and conclude the paper in Section 7.

II. THE DESIGN OF “ARGUS”

In this section, we describe the design of “Argus”, a
generic detection and localization system for end-to-end ser-
vice anomaly events. “Argus” turns the end-to-end perfor-
mance measurements for individual end-users into actionable

The 31st Annual IEEE International Conference on Computer Communications: Mini-Conference

978-1-4673-0775-8/12/$31.00 ©2012 IEEE 2756

Fig. 1. The architecture of Argus

Fig. 2. An example of spatial aggregation in Argus

service anomaly events in real-time. Specifically we adopt a
five-stage approach for “Argus” as shown in Figure 1.

A. Spatial Aggreagtion
In order to avoid keeping track of the end-to-end service

quality associated with millions of individual end-users and
address the sparsity issue in the end-to-end performance
measurements for individual end-users, “Argus” first spatially
aggregates end-to-end performance measurements associated
individual end-users into user-groups. Each user-group is set
of end-users that share some common attributes. As shown in
Figure 2, all end-users from a “BGP prefix” can form a “BGP
prefix” user-group and the users from the same origin AS can
form a AS user-group. The attributes on individual end-users
can be obtained from different data sources such as network
topology, routing information and geographic locations. In
practice, how to aggregate the end-to-end performance mea-
surements spatially reflects where operators want to detect and
localize service events.

B. Temporal Aggregation
After the step of spatial aggregation, each user-group has a

set of end-to-end performance measurements from individual
end-users associated with it. The next important question to
answer is that how to detect service anomaly events for each
user-group. The challenge here is that the end-to-end perfor-
mance measurements belonging to each user-group could be
quite noisy as they are collected from different end-users. Our
solution is to focus on the summary statistics (e.g., 50th per-
centile, 95th percentile, min, max) of the distribution instead
of based on individual end-to-end performance measurements.
Obviously, we lose some details regarding individual end-users
by focusing on the summary statistics. But it is acceptable as
the goal is to detect service events that impact the user-groups.
The service events detected on user-groups are more likely to

be actionable from service provider’s perspective compared to
the service events detected on individual end-users.

In this step, for each user-group (obtained in the pervious
step), we temporally aggregate its end-to-end performance
measurements into time-bins. Once time-bins are formed, a
summary statistic is selected from all the end-to-end perfor-
mance measurements in each time-bin to form a summary

time series. Several summary statistics can be used here
– minimum, maximum, average, median or other percentile
values. Different statistics may provide an advantage for
tracking certain type of issues. For example, if the end-to-
end performance measurement is round trip time (RTT), the
minimum may well capture baseline RTT due to network
propagation delay while being oblivious to varying queuing
delay that may be due to network congestion while average
can well capture the service event due to network congestion.
Since our main goal is to detect service events that impact a
relatively large collection of users in each user-group, “Argus”
uses the median as the summary statistic for each time-bin by
default. We find the median quite effective in tracking service
side or network side issues while being robust to variability
in performances of individual end-users due to their local
processing or local queuing delays.

C. Event Detection
Once we transform the end-to-end performance measure-

ments into summary time series of each user-group, we
can apply time series analysis techniques to extract service
anomaly events from them. There are a wide range of time
series anomaly detection algorithm in the literature, ranging
from Box-Jenkins linear time-series forecasting techniques,
to frequency domain Fourier analysis or Wavelet analysis
based approaches, to structural analysis such as principal
component analysis. Due to the scale of our application, it
is desirable to have online anomaly detection with minimal
runtime complexity and memory requirement. We base our
approach on the classic additive Holt-Winters (HW) algorithm
[3], a widely used one-pass online time series forecasting
method. One of the key strengths of HW is that it involves very
light-weight computation and has very few states to maintain.

At a high level, HW runs three exponential smoothing
processes on three components of the summary time series:
the baseline, the linear trend, and the seasonal effect to dy-
namically formulate forecast values based on historical values.
Specifically, the forecast value ŷt at time t is formulated as
follows:

ŷt = at�1 + bt�1 + ct�n

where at is the baseline at time t � 1, bt is the linear trend
at time t � 1 and ct�n is the seasonal effect at time t � n.
Note n is the number of cycles in one season (e.g., 24 cycles
in one day to model hourly seasonality) and t� n means the
same cycle in the previous season (e.g., the seasonal effect for
1pm in the previous day is needed to formulate the forecast
value for 1pm today). Given a new value yt, at, bt and ct are
updated exponentially with parameters↵, �, � respectively.

In order to determine if a new value yt in the summary time
series is abnormal or not, we compare the current residual
error (e.g., absolute difference between the actual value yt
and the forecast value ŷt) with the historical residual errors
from the same cycle in previous seasons. In this way, seasonal
variability in residual errors can be captured. The update

2757

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000 1200 1400

rtt
(m

s)

time interval index

actual values

Fig. 3. Anomalies in a summary time series that consists of the average
RTTs, one for each 5 minutes

formula for dt is similar to that of ct and uses the same
parameter �:

dt = � ⇥ |yt � ŷt|+ (1� �)⇥ dt�n

Specifically, for each yt, we calculate its descretized abnormal
level A as follows: A = 0, 1, 2, 3, 4, 5 when |yt � ŷt| is
in [0, 0.5 ⇥ dt�n), [0.5 ⇥ dt�n, 1 ⇥ dt�n), [1 ⇥ dt�n, 1.5 ⇥
dt�n), [1.5 ⇥ dt�n, 2 ⇥ dt�n), [2 ⇥ dt�n, 2.5 ⇥ dt�n) and
[2.5 ⇥ dt�n,1) respectively. Although it is configurable,
we typically consider A of 4 or above as anomalous as
suggested in [4]. This is a relatively aggressive setting (i.e.,
more anomalies). However, it is an appropriate setting as our
event localization and prioritization (next two stages) is robust
to false positives. We further combine consecutive anomalous
values in the summary time series into a single anomaly event
and keep track of all on-going anomaly events, with the begin
time of the event being the begin time of the first anomalous
value.

Although the classic HW has been proven effective in
many different application settings, when dealing with the real
service performance measurements, we have uncovered several
serious deficiencies with HW and proposed corresponding
enhancements.

1) Robust Forecast against Dirty Data and Service Dis-
ruptions: “Dirty data” is unfortunately unavoidable in real
service performance measurements – problems in various
software/hardware components of data collectors and ingestion
servers can occur, rendering the performance data nonsensical.
Furthermore, there are many situations in which network prob-
lems can cause service disruptions, driving the performance
data out of the norm. For example, in Figure 3, the huge dip
(the average RTT is decreased significantly due to missing
measurements) is caused by a bug in the data collector and
the spike is caused by a link congestion. It is highly desirable
that forecast and anomaly detection can be robust against the
“dirty data” and service disruptions in our context. In our
approach, at, bt and ct are not updated if the abnormal level
A of the current value yt is above a configurable threshold
Au, which depends on the nature of the summary time series.
For a stable time series, Au should be configured tightly so
that most anomalies are excluded in formulating the forecast
values. For a noisy time series, less tight Au is desirable to
avoid excessive number of anomalies.

As a head-to-head comparison, we take a close look at the
dip in Figure 3 and plot the different behaviors for classic
HW and our approach in Figure 4. One deficiency in classic
HW is that the forecast values can be easily contaminated by
nonsensical performance data as shown here. On the contrast,

our approach has a more stable forecast line and thus more
robust in detecting anomalies.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 460 480 500 520 540

rtt
(m

s)

time interval index

actual values
forecast values

detected anomalies

(a) Classic HW

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 460 480 500 520 540

rtt
(m

s)

time interval index

actual values
forecast values

detected anomalies

(b) Our Approach

Fig. 4. Forecast values and detected anomalies for classic HW and our
approach using the same set of parameters. Au is set to 4 in our approach.

2) Fast Adapt to Permanent Service Performance Changes:
Network and service upgrades can often introduce a perma-
nent level-shift on the end-to-end service performance. Once
“Argus” is confident that a permanent change has taken place,
it is ideal to “forget” about the extended long historical data
and adapt the model to capture the recent performance only.
To achieve so, a shadow set of baseline ast , linear trend bst ,
seasonal effect cst and residual error dst is updated in parallel
using its own ↵s,�s and �s. Compared with the working set of
baseline at, linear trend bt, seasonal effect ct and residual error
dt, the shadow set is updated differently in two aspects. First,
the shadow set gives more weights to the recent observations
via using relative large ↵s,�s and �s while the working set
gives more weight to the history compared to the recent
observations by using relative small ↵,� and �. Secondly,
anomalies are used to update the shadow set while they are
ignored when updating the working set as we mentioned in
II-C1. In this way, the shadow set can quickly adapt to the
permanent level-shift.

A moving window of size L is used to keep track the
recent values. Once the percent of abnormal values in the
moving window exceeds a threshold P (suggesting that a
permanent level-shift has occured), the working set is replaced
with the shadow set as the shadow set should have adapted
to the permanent level-shift. The configuration of L and P
determines the trade-off between the timeliness in adapting
to permanent changes and the risk of wrongly adapting to
temporary abnormal changes.

3) Leverage Temporal Continuity in Residual Errors: In
the classic HW, the exponential smoothing is applied on the
residual errors dt on a per cycle basis. For example, if there
are 24 hourly cycles in one season, the exponential smoothing
only applies to the residual errors of the same hour in different
days. In order to leverage temporal continuity in residual errors
perform in neighboring cycles (e.g., the neighboring hours
in a day), weighted moving average is used for smoothing
the residual errors dt among neighboring cycles. Specifically,
given a new value yt, the residual errors for current cycle and
its neighboring cycles t�w, · · · , t, · · · , t+w are updated as
follows:

dt+i = �w⇥(1� |i|
w + 1

)⇥|yt � ŷt|+(1��w⇥(1� |i|
w + 1

))⇥dt+i�n

where w is the smoothing window size, i is offset compared
with the current cycle ranging from �w to w and �w is derived

2758

from � given the window size w. Similar to the working set,
the residual errors in the shadow set are also smoothed among
neighboring cycles in this way.

Leveraging temporal continuity is critical in particular when
the the number of cycles in one season is large (e.g., 288 5-
min intervals in a day). Smoothing the residual errors over
neighboring cycles restores the continuity and makes anomaly
detection more robust.

4) Fine-Grained Detection with Coarse-Grained Model:
In the classic HW, the detection interval has to be aligned
with the cycles in a season. For example, if the classic HW
models a time series with 24 hourly cycles in one season,
the anomaly detection interval has to be hourly. In order to
trigger anomaly detection more frequently (e.g., once per 5
minutes), the classic HW has to model the time series with
more cycles (e.g., 288 5-minutes cycles in one season). The
memory consumption in HW is proportional to the number of
cycles as one ct and one dt need to be maintained per cycle.
Thus increase from 24 hourly cycles to 288 5-minutes cycles
in one reason can considerably increase memory consumption
by 12 times. Considering the millions of time-series need to
be monitored in a service, fine-grained model might not be
affordable.

In our approach, we enable the fine-grained detection with a
coarse-grained model by linear interpolation of the parameters
from two consecutive cycles in the model. If the anomaly
detection interval is T (e.g., 20 minutes), one hourly bin (e.g.,
11:20 - 12:20) may span over two consecutive hourly cycles
(e.g., 11:00 -12:00 and 12:00 - 13:00) in the model. The c0t
for the hourly bin (11:20 - 12:20) are derived by the sum of
two third of ct for cycle (11:00 -12:00) and one third of ct
for cycle (12:00 -13:00). d0t is calculated similarly.

D. Event Localization

As each end-to-end performance measurement contributes
to the summary time series of multiple user-groups (as shown
in Figure 2), a single underlying network failure such as a
link failure may manifest itself at multiple user-groups in the
spatial aggregation . For example, if an underlying network
event has caused an increase of RTT for most of end-users
associated with the same “BGP prefix A”, “Argus” by design
should detect the RTT service anomaly event for the user-
group “BGP prefix A”. Due to the nature of BGP routing, these
end-users should share the same origin AS and AS path, and if
these end-users from “BGP prefix A” dominate other end-users
associated the same origin AS or AS path, “Argus” would
also detect RTT service anomaly events for the corresponding
user-groups of origin AS and the AS path. In this case, it is
desirable for “Argus” to localize the issue to the “BGP prefix
A” and report a single service anomaly event. For another
example, if a router failure has caused a throughput service
anomaly event for all the end-users that are reached by the
service provider via “AS path A”, all the children user-groups
of “AS path A” at the lower level in the hierarchy (as shown in
Figure 2) such as the BGP prefix user-groups would experience
the throughput service anomaly event as well. In this case, it is
desirable for “Argus” to localize the anomaly to the AS path.
Due to space limitations, we present the formulation of event
localization problem, its complexity analysis and a heuristic
to solve the problem in our technique report [9] .

E. Event Prioritization
After event localization stage, “Argus” employes a ranking

function to prioritize the localized service anomaly events.
Since each anomaly event may contain multiple anomalous
time-bins, we first estimate the severity score of each time-
bin and then use the aggregate score of all time-bins as the
severity score of the service event. The ranking function used
to estimate the severity score of each anomalous time-bin
incorporates two factors – the significance of the relative size
of the anomaly and the breadth of its impact scope. The
significance of the anomaly can be measured by the deviation
score |d| from the EHW algorithm. The impact scope can be
measured by the the number of distinct end-users observed in
the time-bin, which we denote as c. We choose distinct end-
users since it is robust against anomalies dominated by a few
outlier end-users.

Specifically, for anomaly event e, its baseline ranking score
re is defined as:

re =
X

b2 bins of e

Ab ⇥ Cb

where Ab and Cb is the abnormal level and the number of
distinct end-user for bin b. In this way, long lasting events are
likely given higher priority than short events.

III. OPERATIONAL RESULTS

In this section, we summarize the results of running the
“Argus” system monitoring a CDN hosted in a tier-1 ISP.
This ISP is referred to as “local ISP” in the remainder of
this section.

A. Overall Results
To convey a basic understanding of how “Argus” works,

we focus on the anomaly events detected by “Argus” from
20th July 2010 to 20th August 2010. Note that these anomaly
events were detected by running “Argus” in fixed-length bin
mode with bin size as 3,600 seconds (1 hour) based on the
RTT measurements passively collected at the North-East CDN
node.

During this one-month period, “Argus” detected 2,909
anomaly events across all user-groups in the hierarchy (Figure
2). Table I shows the anomaly event distribution across all
user-groups. In general, the lower level user-groups are re-
sponsible for more anomaly events as they are much more than
the higher level user-groups. In addition, for each type of user-
group, only a small fraction (bad user-groups) are responsible
for the anomaly events and generally there is no heavy hitter
among the bad user-groups. According to Table I, the CDN
nodes are extremely stable across the month, with no anoma-
lies detected at their user-groups. Anomaly events localized
to “Origin AS”, “City”, “BGP prefix” and “City+BGP prefix”
are most likely attributable to events outside the local ISP. In
contrast, the anomalous events localized to “Egress Router”,
“Nexthop AS”, “AS path” are more likely to be attributable
to events within the local ISP (although they could still have
been caused within other ISPs).

We now we focus on the time durations of the 2,909
anomaly events. Our results clearly show that the majority
of the anomalies are very short in duration, whilst long-
lasting events are rare. Specifically, the events with duration
3,600 seconds are the most common and represent 90% of all

2759

User-group Type # Total User-
groups # Events # Bad User-

groups
CDN Node 1 0 0

Egress Router 185 66 36
Nexthop AS 125 54 25
Origin AS 820 172 97
AS path 1055 213 119

City 1758 593 289
BGP prefix 4646 600 425

City+BGP prefix 8784 1211 851

TABLE I
ANOMALY EVENTS BREAKDOWN BY USER-GROUP TYPE

anomaly events. In addition, this statement holds true for every
user-group type in the hierarchy (due to space limitations, we
don’t discuss the details of per user-group type distribution
here).

As the final step towards understanding the overall results,
we look into the details of the top 100 events, as defined using
the ranking function described in Section II-E. We spatially
and temporally correlate the detected service events with the
underlying network events from within the local ISP in a bid to
identify the root cause by using a system called G-RCA [10] .
Table II shows the root causes of the top 100 anomaly events,
as identified using our correlation analysis. 13 of the service
events are identified as caused by either events that happened
within the local ISP (e.g., link failures, link congestion and
CDN assignment change) or from events that are visible within
the local ISP (such as BGP routing changes announced by
other ISPs). For the rest (majority) of them, we couldn’t find
any evidence from inside the local ISP, which suggests that
the service anomalies may be caused within other ISPs.

User-group Type Root Cause # events

Egress Router
CDN assignment change 1
Link Congestion 1
Link Failure 1
Outside the local ISP 2

Nexthop AS
CDN assignment change 1
BGP routing change 1
Link Failure 1
Outside the local ISP 1

Origin AS
CDN assignment change 1
BGP routing change 2
Outside the local ISP 8

AS path BGP routing change 2
Outside the local ISP 13

City Outside the local ISP 21

BGP Prefix BGP routing change 2
Outside the local ISP 22

City+BGP prefix Outside the local ISP 20

TABLE II
TOP 100 ANOMALY EVENTS AND THEIR ROOT CAUSES BREAKDOWN BY

USER-GROUP TYPE

IV. RELATED WORK

There has been extensive prior work detecting and localizing
the end-to-end performance issues. Broadly speaking, they are
classified into two categories: active and passive.

Active approaches require the injection of probe packets into
the network. The pioneering active approach [8] traceroutes
between 37 participating sites are collected and analyzed to
characterize the end-to-end performance issues. Similar to [8],

[6] detects path outage among hosts using ping and localizes
the observed path outage using traceroute. PlanetSeer [11]
relies on active probes to diagnose the root cause of Internet
path failures that are detected by passive monitoring the end-
users of a CDN service deployed on PlanetLab. Commercial
systems such as Keynote [2] and Gomez [1] are also available
to detect issues from the end-user’s perspective by active
probing. All these work employ active probing while “Argus”
purely depends on passive monitoring.

Passive approach purely depends the existing traffic. There
are two sub-categories: passive monitoring at end-user side
and passive monitoring at service provide side. A recent work
[5] based on passive monitoring at end-user side proposed
to push passive monitoring to the end systems themselves and
implemented such a prototype system based on BitTorrent. The
effectiveness in [5] actually depends the sparsity of passive
measurements for individual end systems. An end system
with very few measurements would be able to detect event
effectively. The deployment is another issue as there is no
strong incentive for end systems to corporate. Different from
[5], “Argus” is based on passive monitoring at service provide
side. It collects the end-to-end performance measurements
corresponding to individual end-users at service provider side.
Unlike [5], the benefit with our approach is that it is easy to
deploy and see data from a wide range of users.

V. CONCLUSION

Detecting and localizing user-perceived service events is
critical for service providers. We argue that the most effective
way to do that in an ISP managed service is to passively moni-
tor the end-to-end performance associated with end-users from
inside the ISP network. In this paper, we presented the design
of “Argus”, a generic user-perceived service event detection
and localization system. We demonstrate the effectiveness of
“Argus” by applying it in a CDN service managed by a tier-1
ISP. Our experience with applying “Argus” in the CDN service
has been very positive.

REFERENCES

[1] Gomez, inc. website. http://www.gomez.com/.
[2] Keynote systems, inc. website. http://www.keynote.com/.
[3] P. Brockwell and R. Davis. Time series: theory and methods. Springer

Verlag, 2009.
[4] J. Brutag. Aberrant behavior detection and control in time series for

network monitoring. In Proceedings of the 14th Systems Administration
Conference (LISA 2000).

[5] D. Choffnes, F. Bustamante, and Z. Ge. Crowdsourcing service-level
network event monitoring. ACM SIGCOMM Computer Communication
Review, 40(4):387–398, 2010.

[6] N. Feamster, D. Andersen, H. Balakrishnan, and M. Kaashoek. Measur-
ing the effects of internet path faults on reactive routing. In Proceedings
of the 2003 ACM SIGMETRICS, page 137. ACM, 2003.

[7] A. Gerber, J. Pang, O. Spatscheck, and S. Venkataraman. Speed testing
without speed tests: estimating achievable download speed from passive
measurements. In Proceedings of the 10th annual conference on Internet
measurement, pages 424–430. ACM, 2010.

[8] V. Paxson. End-to-end routing behavior in the Internet. ACM SIGCOMM
Computer Communication Review, 36(5):56, 2006.

[9] H. Yan. Passively Monitoring Crowds to Detect and Isolate End-to-End
Performance Issues in Wide-Area Services. Technical Report 10-102,
Colorado State Univeristy, 2010.

[10] H. Yan, L. Breslau, Z. Ge, D. Massey, D. Pei, and J. Yates. G-rca: a
generic root cause analysis platform for service quality management in
large ip networks. In Proceedings of the 6th International COnference,
page 5. ACM, 2010.

[11] M. Zhang, C. Zhang, V. Pai, L. Peterson, and R. Wang. PlanetSeer: In-
ternet path failure monitoring and characterization in wide-area services.
In Proc. USENIX OSDI, 2004.

2760

