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Abstract—We study the problem of scalable monitoring of
operational 3G wireless networks. Threshold-based performance
monitoring in large 3G networks is very challenging for two
main factors: large network scale and dynamics in both time
and spatial domains. A fine-grained threshold setting (e.g., per-
location hourly) incurs prohibitively high management complex-
ity, while a single static threshold fails to capture the network
dynamics, thus resulting in unacceptably poor alarm quality (up
to 70% false/miss alarm rates). In this paper, we propose a
scalable monitoring solution, called threshold-compression that
can characterize the location- and time-specific threshold trend
of each individual network element (NE) with minimal threshold
setting. The main insight is to identify groups of NEs with similar
threshold behaviors across location and time dimensions, forming
spatial-temporal clusters to reduce the number of thresholds
while maintaining acceptable alarm accuracy in a large-scale 3G
network. Our evaluations based on the operational experience on
a commercial 3G network have demonstrated the effectiveness
of the proposed solution. We are able to reduce the threshold
setting up to 90% with less than 10% false/miss alarms.

I. INTRODUCTION

In this paper, we focus on designing algorithms for scalable
monitoring of operational 3G wireless networks. Monitoring
of such a wide-area cellular network is challenging for two
factors. First, both the network scale and the user population
are quite large. The sheer volume of massive data collected
from the large number of network elements (NEs) (e.g., Node
B and sectors, etc) inside the 3G infrastructure can easily
overwhelm a standard monitoring tool. Second, 3G networks
exhibit richer dynamics in both temporal and spatial domains
compared with their wired counterparts. User-perceived per-
formance tends to vary over time and at different locations,
reflecting the human activity over time and mobility-induced
service diversity across geographic areas. Consequently, cap-
turing sustained service impairments while ignoring inherent
service fluctuations at each NE at runtime becomes important
for 3G network monitoring.

The current practice for monitoring the health of a large-
scale network is to use pre-defined thresholds of selected
key performance indicator (KPI) metrics. However, direct
application of such a threshold-based alarming model does
not scale in 3G networks due to the two factors identified
above. Consider Figure 1, which shows threshold examples
of different NEs based on their historical data. A single
representative static threshold per KPI fails to capture such
spatial and temporal dynamics, leading to unacceptably poor
alarm quality with nearly 70% false positives/negatives. On
the other hand, a finer-grained location- and time-dependent
threshold setting (e.g., each NE has its own thresholds at
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(b) Location 2

Fig. 1. Thresholding examples of different locations based on historical data.
The observation below the threshold is considered alarming condition.

the given times of day) can capture network dynamics but
incurs prohibitively high system management complexity. The
number of thresholds to be maintained grows very large with
the increasing number of NEs and monitoring time granularity.
For example, given that one regional area has about 5,000
cells and 30 KPIs (using the statistics collected from one of
the largest commercial 3G networks in the US), the per-NE
hourly threshold scheme has as many as 5K × 24× 30 = 3.6
million thresholds in a single area. Considering that there are
also other types of NEs (e.g., Node B, RNC, SGSN, GGSN) to
monitor in 3G networks, it is increasingly difficult to monitor
a large number of NEs with this fine-grained threshold based
scheme. Therefore, naive pre-defined threshold scheme does
not scale to operational 3G networks.

In this paper, we propose a scalable threshold-based solu-
tion, called Threshold Compression, which has both merits
of a small number of used thresholds and accurate cap-
turing of spatial-temporal network dynamics. Our threshold
compression approach is motivated by two observations: (1)
certain groups of NEs exhibiting similar threshold behaviors:
The spatial dynamics is attributed to geographic locations of
NEs and users in the corresponding region; (2) stable/similar
threshold trends over some period of time: The temporal
dynamics is characterized by the users’ 3G usage pattern, thus
likely following the diurnal pattern of human activity. Based on
these observations, the main insight for our scalable solution
is to identify such groups of NEs with similar threshold
behaviors across locations and over time, forming spatial-
temporal clusters to reduce the threshold settings while retain-
ing acceptable alarm accuracy in a large-scale 3G network.

To this end, we first examine the fundamental tradeoff
between the size of threshold settings and the resulting alarm
accuracy. We then formulate the threshold compression prob-
lem taking the alarm quality into account. We show the
hardness of the problems, and then devise a practical thresh-
old compression solution that characterizes the tradeoff via
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intelligent threshold aggregation. We use real traces to show
that our threshold-based solution scales very well with the
large number of NEs, and delivers satisfactory performance of
small threshold settings without much loss of alarm accuracy
in a large 3G network. Overall, we have made three main
contributions in this work:
• We examine different types of thresholding schemes for

each KPI metric. We observe that some KPIs exhibit
strong spatial and temporal dynamics (e.g., user through-
put, number of active users, CPU load, etc), and for
those KPIs, we find that the current static threshold
schemes face severe scaling difficulties for 3G network
monitoring. We also find that they work better on some
KPIs that show relatively stable performance over time
(e.g., accessibility, packet loss rate, etc), but their alarm
quality is still far from the operational requirement.

• We observe the similar threshold behavior across cer-
tain groups of NEs. We formulate the threshold com-
pression problem taking the alarm quality as well as
the management-oriented requirements into account. We
prove that this problem is not only NP-hard but in-
deed very hard to approximate. We develop a practical
algorithm suite to identify the spatial-temporal clusters
with similar threshold behaviors within the optimization
framework.

• We report extensive performance evaluation results based
on the operational experience on a commercial 3G net-
work. We have confirmed the effectiveness of the pro-
posed solution. Our solution can reduce the number of
thresholds by 90% but still retains accuracy of less than
10% false and miss alarm rates. We also demonstrate the
robustness of the solution in that our algorithm yields
consistent spatial-temporal groups, rather than arbitrary
grouping over time.

II. PRELIMINARIES

In this section, we first present the data sets we use in this
paper, then describe the current practice for pre-computing
thresholds with different levels of monitoring granularity.

A. Data Sets

The 3G network keeps a large number of counters that
log various network events at each NE level, among which
are chosen (or combined with multiple counters) as key
performance indicators (KPI) to monitor the health of the
network.We collected these KPI data from one of the largest
commercial 3G service providers in the United States. Our
data sets contain 30 KPIs recorded from June 2010 to October
2010 in a single regional area covering thousands of sectors,
hundreds of Node Bs, tens of RNCs, and several SGSNs. We
note that the data that we use for this study does not contain
personally identifiable information.
End-to-End KPI. Some KPIs are categorized as end-to-end
(E2E) KPIs. These E2E KPIs are the end-user perceived per-
formance metrics including downlink user throughput, packet
loss rate, round trip delay, dropped call rate, etc. They are

reported at each NE level in an aggregated manner in the 3G
infrastructure hierarchy.
In-network KPI. There are also various types of event
measurements collected inside the 3G infrastructure, which
are called in-network KPIs. These KPIs include the number
of users in cell, average CPU load, RNC utilization, connection
setup success rate, paging success rate, retainability rate, etc.
They are also reported at each NE level in an aggregated
manner in the 3G infrastructure hierarchy.
Measurement normalization. For proprietary reasons, all
KPI values presented in this paper are normalized by an
arbitrary constant. Normalization does not change the dynamic
range represented in figures.

B. Pre-computing Thresholds

The current practice for monitoring the network is to set
statistically-derived threshold levels, allowing alarming condi-
tions to be identified as a function of the mean and standard
deviation of the historical data [13]. The mean defines what
might be considered a normal reading for a given KPI, and the
standard deviation gives a way of determining the probability
that the KPI will vary from the mean, so as to help differentiate
normal variations from an abnormal event.
Removing major anomalies. Before calculating the mean
and standard deviation, the data should be reviewed for the
presence of outliers that are unusually low or high and are
obviously not part of a normal data scheme. Such anomalies, if
not removed, can lead to a biased mean and standard deviation,
thus contributing to misleading threshold levels. We filter out
major anomalies from our data sets via Holt-Winters (HW)
forecasting method [14] that can handle trend as well as
seasonality, so that diurnal, weekly, and seasonal patterns of
individual NEs are considered accordingly.
Mean and standard deviation. Based on the data without
anomalies, the mean (µ) and standard deviation (σ) are cal-
culated. The threshold value (T ) is defined according to the
alarming direction (dip or spike)1 of each KPI:

T = µ− c× σ, for “dip” KPIs
T = µ+ c× σ, for “spike” KPIs

where c is a control-limit parameter that determines the
threshold below (“dip” KPIs) or above (“spike” KPIs) which
the observation is considered alarming condition. It is common
practice to use two (/one) standard deviations from the mean
as critical (/warning) alarm levels. Setting thresholds at the two
standard deviation level gives the 95% confidence interval for
a normal distribution. In this study, we report the results based
on c = 2 as the critical alarm level unless otherwise stated.
Thresholding granularity. There are several possible
thresholding schemes with different monitoring granularity.
We consider four representative schemes: (1) per-NE-hourly:
The above threshold pre-computation is performed for each

1“Dip” KPIs include user throughput, connection success rate, etc.
“Spike” KPIs include packet loss rate, average CPU load, etc.
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(b) CPU-load KPI (spike)
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(c) Packet-loss KPI (spike)

Fig. 2. Different threshold schemes on a certain NE. Dip (/spike) indicates threshold direction: observation below (/above) is considered alarming condition.

Threshold scheme #thresholds FPR FNR
per-NE-hourly 25320 - -
per-NE-static 1055 31.1% 51.8%

per-NEtype-hourly 24 51.2% 47.5%
per-NEtype-static 1 53.2% 58.0%

TABLE I
THRESHOLDING ON DL-THROUGHPUT KPI.

Threshold scheme #thresholds FPR FNR
per-NE-hourly 39144 - -
per-NE-static 1631 57.9% 76.7%

per-NEtype-hourly 24 71.2% 80.3%
per-NEtype-static 1 73.5% 87.4%

TABLE II
THRESHOLDING ON CELL-USER-COUNT KPI.

Threshold scheme #thresholds FPR FNR
per-NE-hourly 25320 - -
per-NE-static 1055 10.2% 37.2%

per-NEtype-hourly 24 11.0% 50.3%
per-NEtype-static 1 11.3% 51.2%

TABLE III
THRESHOLDING ON PACKET-LOSS KPI.

individual NE for each hour,2 so as to capture the performance
trends on specific location and hour; (2) per-NE-static: The
thresholds are computed individual-NE based (with aggre-
gating all hours) and thus, each NE has a single (location-
specific) threshold value per KPI; (3) per-NEtype-hourly: The
thresholds are computed for each hour (with aggregating all
NEs of the same type) such that hourly thresholds are applied
to all NEs (e.g., all Node Bs); (4) per-NEtype-static: The
threshold is computed via aggregating all hours and all NEs
of the same type, thus resulting in a single threshold per KPI.

III. SCALING LIMITATIONS OF THRESHOLD METHODS

We use the threshold settings and the resulting alarm
quality based on our KPI data (from one regional area in an
operational 3G network) to elaborate the scaling difficulties of
each threshold solutions introduced above.

Per-NE-hourly thresholding is ideal for monitoring the
dynamic nature of 3G network characteristics (see Figure 1),
thus enabling to detect an abnormal event from the location-
and time-specific normal variations. However, the number of
thresholds to be maintained per KPI grows very large (×24)
with the number of NEs in the monitoring area. Tables I,
II, and III show the number of thresholds required for each
schemes on three different NodeB-level KPIs when monitoring

2In this study, we use hourly bin, since going with finer granularity
(e.g. 15-min) offers marginal benefit but increases complexity.

a single area that covers nearly thousand Node Bs; per-
NE-hourly requires more than 25K thresholds per NodeB-
level KPI. Note that there are also other types of NEs each
associated with 30 different KPIs. Our dataset (nearly 6K NEs
in total) indicates that per-NE-hourly can have as many as
6K × 24× 30 = 4.3 million thresholds in a single area, thus
making it increasingly difficult to manage a large number of
NEs with this fine-grained thresholding approach.

On the other hand, aggregate-based threshold schemes (per-
NE-static, per-NEtype-hourly, per-NEtype-static) have
small threshold settings, but all result in very poor alarm
quality. We evaluate the alarm accuracy of those schemes
based on the alarm statistics of per-NE-hourly.We observe
that those schemes lead to unacceptably high false positive
rate (FPR) and false negative rate (FNR). The tables clearly
show the fundamental trade-off relationship between cost (i.e.,
the size of threshold setting to be maintained) and gain (i.e.,
alarm accuracy) in 3G network monitoring.

The main reason for such high false/miss alarm rate is that,
simple aggregate-based thresholds fail to capture 3G network
dynamics, i.e., location and time specific behavior of each
NE at a given time. Figure 2 depicts the threshold settings
by the different schemes at a certain Node B. Neither of
static threshold schemes (per-NE-static, per-NEtype-static)
can appropriately react to the temporally abnormal situations.
For example in Figure 2(b), abnormal spike at 4 am is not
detected (i.e., false negative) and furthermore, per-NEtype-
static falsely raises an alarm for the normal high-load obser-
vations between 10 am to 6 pm (i.e., false positive). Temporal-
only thresholding (per-NEtype-hourly) is better, but its alarm
accuracy is still poor due to lack of location-specific trends.

Nevertheless, one interesting observation is that, for packet-
loss KPI in Figure 2(c), threshold settings of all different
schemes somewhat overlap over time. We also observe similar
trend in some other KPIs such as accessibility, retainability
that show stable performance over time. This can explain the
relatively better alarm quality (lower FPR and FNR in Table
III especially when per-NE-static is applied). We however
note that this alarm quality is still far from the operational
requirement as detailed in Section VI.

In summary, the fine-grained thresholding that captures
well the 3G network dynamics imposes significantly high
management complexity, while the simple aggregate-threshold
schemes result in too poor alarm accuracy to be employed in
the operational 3G monitoring system. This tradeoff relation-
ship is a key challenge for large-scale 3G network monitoring.
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IV. OVERVIEW OF THRESHOLD COMPRESSION

The main insight for our solution is that, although each
NE has its own spatial and temporal thresholding behavior,
such dynamic trend is not completely unique across locations
and across time. In other words, a certain group of NEs (or
some period of times) show quite similar threshold behavior.
Taking the fine-grained thresholds (per-NE-hourly) as input
(see Figure 3), threshold-compression identifies such similar
groups of NEs and hours, and forms spatial-temporal clusters
to have a small threshold setting while maintaining good alarm
quality for large-scale 3G network monitoring.
Case for similar threshold behavior. Our threshold com-
pression approach is motivated by two key observations: (1)
threshold behavior similarity among a certain group of NEs,
and (2) stable/close threshold trends over some period of time.
Figure 4 shows the cumulative distribution of how many other
NEs (proportional to total NE count) have close threshold
values (difference within 10%) to that of each individual NE
on Downlink-throughput-KPI. We observe a quite high spatial
similarity in the NE-pairwise comparison. For 50% NE cases,
each bears at least 10 hours of similar thresholds to other 25%
NEs; 15 hours of similarity to other 17% NEs. We also find
some NE-pairs that have similar threshold behavior across all
hours. Figure 6 presents such example NE-pairs. This spatial
similarity is attributed to the geographic locations of NEs and
the user population in the corresponding area. For example,
NEs in the same metropolitan area are likely to have similar
high demand (i.e., competing cell capacity with more users).

Time-domain similarity is more evident and easier to under-
stand. Figure 5 depicts the hourly pattern of the mean number
of active users in a cell (averaged across NEs) via cell-user-
count KPI. We observe that there are primarily two stable
periods in time. There are a lot of active users between 12:00
GMT and 22:00 GMT and a relatively small number of users
between 02:00 GMT and 07:00 GMT, which correspond to
a day time and a night time in North America. This clear
daily trend is attributed to the users’ 3G usage pattern, likely
following the diurnal pattern of human activity. Such trend
is also observed in other KPIs: similar high (/low) demand
during peak (/sleep) hours. Although their diurnal shape is
not as apparent as the cell-user count (due to the fact that
user-population is just one of the impacting factors), we
still observe ample opportunity to exploit temporal similarity.
For example in Figure 6, each NE-group shows very stable
threshold behavior during peak hours between 11:00 GMT
and 22:00 GMT, which can form a temporal-domain cluster.
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Fig. 3. Threshold compression solution overview.
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Desirable properties of threshold compression. To ensure
scalable monitoring performance as well as practical threshold
management, threshold-compression should have the fol-
lowing properties: (1) High compression gain: The resulting
threshold setting should remain small even with a large number
of NEs; (2) Low false alarm rate: The compressed thresholds
must result in good alarm quality, i.e, low false positive and
false negative rates, and thus, we use a concept of thresh-
old closeness to approximate the per-NE-hourly thresholds.
Figure 7 illustrates the threshold closeness with two input
parameters α and β that define the bounds at which false
positives and false negatives are equal to α and β proportions
to the total number of historical data points (at each NE
and hour). According to the parameters, each per-NE-hourly
threshold T i,jorig has lower (T i,jlower) and upper (T i,jupper) bound
of (NE i and hour j), creating a permissible interval for
corresponding threshold-compression threshold T i,jcomp. Note
that each α and β takes a value between 0 and 1, and they
are the tunable input parameters for threshold-compression
algorithm (see Figure 3); (3) Management-oriented policy: The
spatial-temporal clusters must be easy to manage and update
in the monitoring system. To this end, we employ a consistent
NE grouping policy where each NE can belong to only one
NE group (but there can be multiple hour groups within an
NE group), hence a two-level hierarchical clustering structure.

#false positive < (#data points * a)

Torig

Tlower

Tupper

Permissible 
interval

<“spike” KPI case>

#false negative < (#data points * ß)

#false negative < (#data points * ß)

Torig

Tlower

Tupper

<“dip” KPI case>

#false positive < (#data points * a)

Fig. 7. Threshold-closeness defined by the number of false positives and
false negatives based on input parameters α and β applied to historical data.
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V. THRESHOLD COMPRESSION ALGORITHM

In this section we present the detailed procedure of
threshold-compression that provides an optimization of the
desirable properties described in the previous section. To this
end, we first formulate the threshold compression problem
taking the alarm quality as well as the required clustering
policy into account. We then show the hardness of the problem.
Finally, we present a practical algorithm suite that can intel-
ligently identify spatial-temporal clusters of similar threshold
behaviors and generate the associated compressed thresholds.

A. Problem Formulation

We first introduce the following notations. Let N and H be
the set of NEs in the region and the set of time steps (e.g.,
hours), respectively. We use spatial-temporal block, STBi,j to
denote NE i ∈ N of time step j ∈ H in two-dimensional
spatial and temporal space. We let C(i, j) represent the cluster
ID to which threshold-compression assigns STBi,j . Each
cluster x is given a compressed threshold Tcomp(x) that is
shared by all member STBi,j in x, thus T i,jcomp = Tcomp(x)
such that C(i, j) = x. We formulate the threshold compression
objective as the following optimization problem.
Objective function:

The goal is to find the minimum number of spatial-temporal
clusters (or equivalently the minimum threshold setting) from
a given fine-grained threshold setting.

min |{C(i, j) : i ∈ N, j ∈ H}|

Constraints:
(C1) Each compressed threshold must be within the permis-

sible threshold interval of each cluster member STBi,j .
∀i,∀j, C(i, j) = x ⇒ Tcomp(x) ≤ T i,jupper
∀i,∀j, C(i, j) = x ⇒ Tcomp(x) ≥ T i,jlower

(C2) NE grouping must be consistent across time. In other
words, each NE can belong to only one NE group, which
however can have multiple hour groups.

∀i, i′, C(i, j) = C(i′, j) ⇒ ∀j, C(i, j) = C(i′, j)

(C3) (Optional rule): Each cluster must consist of continu-
ous time steps.
∀j ≤ j′, C(i, j) = C(i, j′) ⇒ j ≤ k ≤ j′,∀i, C(i, j) = C(i, k)

We explore the fundamental nature of this threshold com-
pression problem by seeking an efficient algorithm that mini-
mizes the cluster count while satisfying constraints (1)-(3).

B. Hardness Result

We show that unfortunately, the threshold compression
problem is not only NP-hard (regardless of the continuity
optional rule) but indeed very hard to approximate as well.

Theorem 1: Threshold compression problem is inapprox-
imable within Ω(n1−ε) for any ε > 0, unless ZPP = NP, where
n is the number of NEs.

The proof is omitted due to space constraints, and can be
found in our technical report [8].

C. Threshold Compression Algorithm Suite

We now present our practical solution to the threshold
compression problem. We take a two-staged approach. We
first decouple the spatial NE grouping from the original two-
dimensional clustering problem, then further proceed with
temporal-domain clustering within each identified NE group.
Our two-staged approach is not only motivated from the
inherent problem complexity, but also driven by the consistent
NE grouping policy (hence a two-level hierarchical structure)
described in Section IV.

Our key strategy for clustering is to combine STBs if they
(i) have common intersection in their permissible intervals
represented by T i,jlower and T i,jupper, and (ii) meet the consistent
NE grouping rule. Note that having common intersection
among the cluster members ensures the satisfying alarm qual-
ity. By setting a compressed threshold within the common
intersection, the operator expects to have the desired low false
alarm rate specified by input parameters α and β.

1) NE grouping: Greedy coloring approach: The first stage
identifies NE groups each showing similar threshold behavior
each hour among its members. Here, the concept of NE group
is a logical one. As the first-level of clustering hierarchy,
each NE group, in fact, consists of 24 hour-groups, which
will be compressed further in the next stage via time-domain
clustering. In other words, those 24 hour-groups are associated
with the same set of NEs when we refer to the NE group. As a
pre-processing step, the permissible threshold intervals T i,jlower
and T i,jupper of all STBi,j are first calculated based on per-
NE-hourly thresholds by applying α and β to the historical
measurement data. Then, a group of NEs who have common
intersection in their threshold intervals each of 24 hours form
an NE group.

The NE grouping problem thus naturally reduces to the
graph coloring that asks the minimum number of colors
(NE groups) assignable to each vertex (NE) such that no
edge (common intersection) connects two identically colored
vertices (group members). This graph coloring instance is NP-
hard as well, and we employ a greedy coloring heuristic, which
works quite well in practice. Specifically we apply the Welsh-
Powell algorithm [12] that uses at most maxi min{d(vi)+1, i}
colors, that is at most one more than the maximum degree of
the graph.

We first convert our problem instance to a graph G(V,E),
where each NE corresponds to a vertex in G. For each
vertex pair vi and vi′ , we put an edge between them if their
counterpart NEs i and i′ have disjoint threshold intervals in
any hour. Then the vertices colored γ (by the greedy coloring
algorithm) can be readily transformed to NE-group γ in our
problem. We note that such (multiple) NEs among which do

NE        Vertex

Grouping constraint       Edge

NE group        Color

NE1

NE2 NE5

NE4

NE3

Fig. 8. Transforming NE grouping to coloring.
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not share an edge in G (e.g., NE1, NE2, and NE4 in Figure 8)
indeed have common intersection in their intervals every hour,
even though we construct G via pairwise operations.

Lemma 1: If a group of NEs, when converted into the graph
coloring instance, do not have an edge among them, they all
must have common interval intersection every hour.

Proof: Consider NEs v1, v2, . . . , v` that do not have an
edge. It means for every hour, any two of them have a non-
empty intersection of their corresponding threshold intervals.
We show that indeed in every hour, all v1, v2, . . . , v` have
one common non-empty intersection of their corresponding
intervals. First, note that by a simple induction on h, one can
show common intersection of h intervals is just one interval.
So it only remains to show that this interval is not empty, i.e.,
has at least one point in it. This follows since the minimum
upperbound among all pair-wise intersection intervals is such
a point which belongs to all intervals.

Once identified, each NE group γ defines its own permis-
sible threshold interval Φγ,jlower and Φγ,jupper (for each hour j)
to reflect each member’s interval:

Φγ,jlower = max
i∈Cγ
{T i,jlower}, Φγ,jupper = min

i∈Cγ
{T i,jupper}

Setting the group threshold interval to the common intersection
among the members makes the next-stage clustering procedure
to keep control on the resulting alarm quality. Recall that
each NE group retains 24 hour-groups until the time-domain
clustering.

The running time of the first-stage NE grouping algorithm
is bounded by the initial graph conversion process that has
O(|N |2|H|), as the time complexity of the Welsh-Powell col-
oring algorithm is proven to be O(|N |2), and the subsequent
NE-group interval setting takes O(|N ||H|).

2) Hour grouping: Minimum cover selection: As the next
level of the clustering hierarchy, the time-domain clustering
takes the NE grouping result as input to perform the hour
grouping for each identified NE-group. Here, we focus our
description on the hour grouping on a certain NE group γ, as
it is an identical procedure for all other NE groups. Within
NE group γ, there are initially 24 hour-groups, each of which
we simply refer an hour. Then each hour j is represented by
its threshold interval Φγ,jlower and Φγ,jupper (i.e., the common
intersection among all members at hour j) as a result of NE
grouping.

Given the set of intervals, the hour grouping problem is
to find the minimum number of interval groups such that (i)
each interval belongs to one of the interval groups, and (ii)

Hour        Interval

Group rule        Intersection

Hour group        Interval group

Fig. 9. Minimum interval group selection example. Intervals (horizontal
lines) are sorted by start points. Vertical lines indicate the interval groups
found by the optimal greedy algorithm.

there is common intersection in each interval group. We use
a simple greedy algorithm that leads to an optimal solution to
this problem. The algorithm is as follows (Figure 9 illustrates
the process). We first sort all the interval endpoints (∀j∈H :
Φγ,jlower,Φ

γ,j
upper) in ascending order of their values. We scan the

list (in ascending order) until first encountering an upperbound
point Φγ,j

′

upper. We then put all intervals containing this point
(i.e., all hours j : Φγ,jlower ≤ Φγ,j

′

upper) into a new interval group
C ′h, and delete them from the list. We repeat this process until
there is no interval in the list. At first glance, it is certainly
not obvious that this simple greedy rule returns an optimal set
of interval groups. We show that our greedy rule indeed finds
the minimum number of interval groups.

Theorem 2: The greedy interval selection rule produces the
optimal minimum number of hour groups.
The proof can be found in our technical report [8].

Now, all hours in each identified interval group C ′h of NE
group γ can form a spatial-temporal cluster C ′′δ . In order to
preserve the threshold-closeness property for all members, we
compute the common intersection across all NEs i ∈ Cγ and
hours j ∈ C ′h in the spatial-temporal cluster:

χlower = max
i∈Cγ ,j∈C′

h

{T i,jlower}, χupper = min
i∈Cγ ,j∈C′

h

{T i,jupper}

Finally, we set the compressed thresholds Tcomp(δ) within the
common intersection, and we use the median point in this
study:

Tcomp(δ) = (χlower + χupper)/2

We again note that this compressed thresholds Tcomp(δ) is
shared by all NEs and hours in C ′′δ , thus reducing the threshold
setting while still preserving the location and time specific
thresholds.

Continuous hour grouping. The above optimal greedy
algorithm can be naturally extended to the continuous hour
grouping. We sort the intervals by hours instead of their
values, and group maximum possible contiguous hours having
common intersection with the smallest hour in the list, then
delete them in the list; we repeat the process until covering all
intervals. It is not hard to see that this greedy algorithm also
returns the optimal continuous hour grouping solution.

The hour grouping process is executed for each NE group,
and therefore the running time of this second-stage algo-
rithm is O(|N ||H| log|H|) for both (dis)continuity rule cases.
Therefore, the time complexity of the entire algorithm suite
is still bounded by the first-stage graph conversion process
O(|N |2|H|), as the first- and the second-stage algorithms run
in sequence, and |N | is much larger than |H| in practice.

VI. EVALUATION

We evaluate the performance of threshold-compression on
our historical data obtained from the commercial 3G network.
This training dataset contains 30 KPIs recorded from June
2010 to August 2010 in one regional area that covers several
thousands of NEs. We show that the compression results on
this training data are very positive, which will be further
validated via operational experience in Section VII.
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Fig. 10. Compression gain on different KPIs. Each compression gain value
represents the highest gain when the resulting FPR and FNR are both within
10% and 20% ranges.

Threshold scheme #thresholds FPR FNR
per-NE-hourly 25320 - -

threshold-compression 3763 8.4% 2.7%
per-NE-static 1055 31.1% 51.8%

per-NEtype-hourly 24 51.2% 47.5%
per-NEtype-static 1 53.2% 58.0%

TABLE IV
THRESHOLDING ON DL-THROUGHPUT KPI.

Threshold scheme #thresholds FPR FNR
per-NE-hourly 27120 - -

threshold-compression 3969 10.2% 5.8%
per-NE-static 1130 14.4% 23.5%

per-NEtype-hourly 24 41.0% 45.2%
per-NEtype-static 1 41.1% 46.0%

TABLE V
THRESHOLDING ON RTT KPI.

Threshold scheme #thresholds FPR FNR
per-NE-hourly 32160 - -

threshold-compression 3538 6.1% 3.4%
per-NE-static 1340 23.7% 35.8%

per-NEtype-hourly 24 36.2% 84.4%
per-NEtype-static 1 34.0% 86.3%

TABLE VI
THRESHOLDING ON ACCESS-SUCCESS-RATE KPI.

A. Results

Figure 10 shows the threshold compression gain on different
KPIs. The compression gain is defined as the threshold-setting
reduction relative to the fine-grained per-NE-hourly setting.
Each compression gain in the figure represents the highest
threshold-compression gain observed when the resulting
false/miss alarm rates FPR and FNR (based on the per-
NE-hourly alarm statistics) are both within 10% (and 20%)
range. We observe that, within 10% false/miss alarm condition,
most KPIs show very high compression gain nearly 80–90%.
Consulted by the operations team, we consider a 10–15% FPR
still within the acceptable false alarm range.3 Indeed, they
are willing to accept FPR even up to 20%, since a moderate
level of false positive alarms only creates some additional
manpower to drill-down the events. On the other hand, the
operations team puts more stringent control on false negatives
(i.e., FNR less than 10%), because the consequence of miss
alarms is more severe than that of false alarms. Thus, we set

3In this study, we use slightly different definitions of FPR =
FP/(FP+TP) and FNR = FN/(FN+TP), to adapt them to the context
where TP is much smaller than TN.
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the target alarm accuracy within 15% and 10% for FPR and
FNR respectively in our evaluation.

To show the explicit benefits of threshold-compression
over the existing schemes, we compare all the threshold-setting
sizes and false/miss alarm rates produced by each thresholding
scheme. Tables IV, V, and VI show the thresholding results
on three different NodeB-level KPIs. As shown in the table,
threshold-compression balances very well the problematic
tradeoff relationship between the threshold setting and the
alarm quality, while other schemes are unable to achieve both.
We see that threshold-compression produces the comparable
scale of threshold setting with per-NE-static but with much
lower false/miss alarms. We point out that, for certain KPIs
(e.g., RTT KPI in Table V), per-NE-static thresholds give
somewhat relatively better alarm accuracy than the other
three straightforward approaches, yet it is still far from the
operational requirement.

Compression gain. Threshold-compression can achieve
higher (or lower) compression gain by tuning the input pa-
rameters α and β that explicitly control the proportions of
false and miss alarms to the historical data points. Increasing
(/decreasing) those values extends (/reduces) the permissible
threshold intervals in all NEs at all hours, thus implementing
more strict (/relaxed) grouping rule. Figure 11 depicts the
compression gain trend on DL-troughput KPI with these
parameters. Here, we vary one parameter while fixing the
other to 0.01. We see that (i) compression gain increases with
each parameter and (ii) it diminishes with parameter β. This
is because inherently the number of TP (true positives) is
much smaller than that of TN (true negative) in our context,
therefore limiting the FN-associated threshold range (which is
controlled by β). We however note that high compression gain
via increasing parameters may not be always desirable, since
it comes with sacrificing alarm quality as we describe below.

False/miss alarm rates Figure 12 plots the corresponding
FPR and FNR in the same experiment. We see that FPR
grows with α while FNR stays low with fixed β, and vice
versa. This trend clearly shows the direct relationship between
the threshold-closeness parameters and the alarm accuracy;
increasing α (or β) leads to a higher false (or miss) alarm
rate but a constant miss (or false) alarm rate. Thus, although
we can achieve high compression gain of 85% with α=0.08
and β=0.01 (as an example in Figure 11), it results in an
unacceptably high FPR of 35% (in Figure 12). Fortunately,
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KPI name Comp.Gain FPR FNR
DL-throughput 75.2 15.6 9.4

Packet-loss 84.0 10.5 4.3
RTT 82.5 9.1 8.8

CPU-load 65.1 17.4 12.8
Cell-user-count 71.3 16.8 11.9
Iub-throughput 73.9 15.1 8.8

MAC-throughput 74.6 14.7 11.5
Accessibility 83.0 13.6 7.1
Retainability 81.6 13.4 8.5

Call-drop-rate 80.3 12.8 7.3
TABLE VII

VALIDATION RESULTS BY APPLYING THE COMPRESSED THRESHOLD
SETTINGS (DERIVED FROM THE TRAINING DATA) TO REAL DATA ON

VARIOUS KPIS. EACH ENTRY REPRESENTS A PERCENTAGE

the alarm quality trend in the figure gives us a clear idea of
how α and β should be chosen according to our target alarm
accuracy. By setting α=0.03 and β=0.04, we can meet the
target FPR (<15%) and FNR (<10%), which turns out to
lead to compression gain of 82%.

B. Summary

Our evaluation results demonstrate that our threshold-
compression solution scales very well with a large number
of NEs, and delivers good compression performance (i.e., the
small threshold setting) with little loss of alarm accuracy. More
specifically, most KPIs from our two-month training dataset
achieve nearly 80–90% compression gain under the desired
false and miss alarm rates within 15% and 10%, respectively.

VII. OPERATIONAL EXPERIENCE

In this section, we present our experiences in applying the
threshold-compression solution on the real data collected
from the operational 3G network over a two-month period,
from August 16, 2010 to October 15, 2010. We directly apply
the compressed threshold settings derived from the past two-
month training dataset to the real KPI measurements of the
corresponding NEs and hours. The goals of this validation
are two-fold: (i) see whether the pre-generated compressed
thresholds still retain the desired alarm quality when applied
to the real system, and (ii) demonstrate the robustness of the
solution by examining the grouping consistency between two
datasets.

A. Alarm Accuracy

Table VII shows the alarm accuracy results (in terms of both
false and miss alarm rates) of various KPIs when we employ
the compressed threshold settings generated from the training
data for monitoring the real measurement data. For each KPI,
we use the threshold setting that satisfies our target accuracy
(i.e., FPR and FNR within 15% and 10% respectively) in the
training data, and its compression gain is also presented in
the table. We compare these threshold-compression alarm
results against the per-NE-hourly alarm statistics in the real
measurement period.

The results are quite encouraging. We see that the resulting
FPR and FNR are within (or very close to) the range of our
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Fig. 13. Spatial-temporal clustering consistency between the training data
and the monitoring data on various KPIs. Each result is obtained using the
same parameters α = β = 0.01.
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Fig. 14. Clustering consistency trend by input parameters α and β on DL-
throughput KPI.

desired alarm accuracy for all KPIs, and we also obtain the
similar results for other KPIs. This good alarming performance
can be explained by two reasons: (i) reflection of historical
trends: The compressed thresholds are generated from the
original spatial-temporal thresholds, which are initially derived
based on the historical data (via more sophisticated procedures
described in Section II) to capture the normal variations
on specific locations and hours. In this study we train our
compression thresholds using two-month historical data that
is long enough to encode such representative trends, enabling
our solution to perform reasonably well in monitoring other
time period; (ii) stable clustering trend over time: Although we
use the grouping results of the training period, the members in
each identified cluster still share the similar behavior in other
time period as well. This is because each individual NE has
its own spatial and temporal behavior as shown in Section
IV. We verify such trend by showing that our threshold-
compression algorithm is likely to produce the stable spatial-
temporal groups, rather than arbitrary grouping over time as
we present below.

B. Robustness

We examine how our solution performs on different time
periods. We apply the threshold-compression algorithm on
both the training data and the monitoring data, and compare
their clustering results. Figure 13 shows the consistency results
between two datasets on various KPIs. Here, the clustering
consistency is defined by the ratio of the number of members
that belong to the same spatial-temporal clusters in both
datasets to the total member count in the data. We use the same
parameters for comparison, and the results from α = β = 0.01
are presented in the table. We observe that the grouping results
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are quite stable. All KPIs show above 70% consistency in this
particular setting. This stablility results verify the first point we
stated in the previous subsection. Setting α = β = 0.01 makes
the permissible intervals close to the original thresholds, and
therefore the clustering consistency results mainly depend on
the threshold similarity between two different time periods.
Note that both grouping results are from two-month datasets
so that they can provide the representative thresholding trends
on specific locations and hours.

We further investigate how the consistency changes by
relaxing the threshold closeness constraint. Figure 14 plots the
consistency trend on DL-throuhput KPI with varying the pa-
rameters. We see that the threshold-compression algorithm
starts to produce somewhat different clustering results as we
relax the grouping rule. We expect such behavior, since extend-
ing the permissible intervals tends to allow two (or multiple)
members each with a quite different threshold to form a cluster
as long as their intervals intersect. However, the results are still
promising. A closer look at the figure shows that the clustering
consistency remains still high up to a certain point, e.g., higher
than 70% until α or β reaches 0.05. This result indicates that
our solution indeed generates the stable grouping under the
desired alarm quality. Recall that we set α=0.03 and β=0.04
to meet the acceptable target FPR (<15%) and FNR (<10%),
which also gives good compression performance nearly 80%.
We find that such case is also applied to most KPIs.

The stable grouping results above verify the second point we
stated in the previous subsection, and explain the good alarm
accuracy results when we apply the pre-generated compressed
thresholds to the actual monitoring data. The clustering consis-
tency results also confirm the similarity observations we made
in Section IV. The grouping stability results can be interpreted
as follows. The similar behaviors across locations are consis-
tent over time. That is, the members in each identified cluster
indeed behave very closely one another across time, just like
one single entity, which is the key idea of our threshold-
compression solution.

VIII. RELATED WORK

There have been quite a few studies on the 3G networks.
Most of them focus on the performance measurements of
current 3G networks [2], [4], [9], whereas only few studies
focus on monitoring a large-scale 3G network. Ricciato et al.
[11] study the bottleneck detection via TCP monitoring in the
UMTS core network. They use TCP parameters (e.g., RTT and
retransmissions) as a set of bottleneck indicators. Khanafer
et al. [5] present an automated troubleshooting by adopting
the Bayesian model for UMTS network diagnosis. Our work
differs from the previous approaches in that (i) we explicitly
consider the 3G network specific spatial and temporal dynam-
ics, (ii) show that such dynamics make the direct usage of the
thresholds increasingly difficult to manage a large number of
NEs, and (iii) validate our scalable thresholding approach in
an operational 3G network.

The work by Laiho et al. [7] is probably the most closely
related to our study in the sense that they focus on sim-

plifying network analysis via visualizing similarly behaving
cells. However, their grouping has different meaning from
ours, as they group the cells based on their instantaneous
performance. Such time-varying grouping results are hardly
interpreted as representative clusters in the network. Moreover,
they employ the conventional k-means algorithm [6], which is
effective for large-scale data clustering in general. However,
k-means algorithm performs very poor in our context. We
indeed applied this algorithm as the initial candidate algorithm
to our problem, but it leads to unacceptably poor alarm quality.
This is because k-means algorithm cannot control the resulting
false/miss alarm rates in the course of clustering process while
our threshold-compression algorithm does.

IX. CONCLUSION

Threshold-based performance monitoring in large 3G net-
works is very challenging due to its strong dynamics in
both time and spatial domains. There exists a fundamental
tradeoff between the size of threshold settings and the alarm
quality. Motivated by key observations of spatial-temporal
threshold similarity, we have proposed a scalable monitoring
solution, called threshold-compression that can characterize
the location- and time-specific threshold trend of each indi-
vidual NE with minimal threshold setting. Our experience
with applying our threshold-compression solution in the
operational 3G network monitoring has been very positive,
and demonstrated the effectiveness of the proposed approach,
e.g., threshold setting reduction up to 90% with less than 10%
false/miss alarm rates.

REFERENCES

[1] E. S .Gardner. Exponential smoothing: the state of the art. Journal
of Forecasting, 4(1), 1-28, 1985.

[2] A. Gerber et al. Estimating achievable download speed from
passive measurements. ACM IMC, 2010.

[3] U. Gupta, D. Lee, and Y. Leung. Efficient algorithms for interval
graphs and circular-arc graphs. Networks, 1982.

[4] K. Jang et al. 3G wireless network performance measured from
moving cars and high-speed trains. ACM MICNET, 2009.

[5] R. Khanafer et al. Automated diagnosis for UMTS networks
using Bayesian network approach. IEEE TVT, 2008

[6] D. Arthur and S. Vassilvitskii. k-means++: the advantages of
careful seeding. ACM SODA, 2007

[7] J. Laiho et al. Advanced analysis methods for 3G cellular
networks. IEEE TWC, 2005.

[8] S.-B. Lee el al. Scalable monitoring via threshold compression
in a large operational 3G network. AT&T Technical Report, 2011.

[9] X. Liu et al. Experiences in a 3G network: interplay between the
wireless channel and applications. ACM MOBICOM, 2008.

[10] S. Makridakis et al. Forecasting: Methods and Applications.
John Wiley & Sons, 1998.

[11] F. Ricciato et al. Bottleneck detection in umts via TCP passive
monitoring: a real case. ACM CoNEXT, 2005.

[12] D. Welsh and M. Powell. An upper bound for the chromatic
number of a graph and its application to timetabling problems.
Computer Journal, 85–86, 1967.

[13] D. Wheeler and D. Chambers. Understanding statistical process
control. SPC press, 1992.

[14] P. R. Winters. Forecasting sales by exponentially weighted
moving averages. Management Science, 6:324-342, 1960.

1358


