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ABSTRACT
Data items archived in data warehouses or those that arrive online
as streams typically have attributes which take values from multi-
ple hierarchies (e.g., time and geographic location; source and des-
tination IP addresses). Providing an aggregate view of such data
is important to summarize, visualize, and analyze. We develop
the aggregate view based on certain hierarchically organized sets
of large-valued regions (“heavy hitters”). Such Hierarchical Heavy
Hitters (HHHs) were previously introduced as a crucial aggregation
technique in one dimension. In order to analyze the wider range
of data warehousing applications and realistic IP data streams, we
generalize this problem to multiple dimensions.

We identify and study two variants of HHHs for multi-dimensional
data, namely the “overlap” and “split” cases, depending on how an
aggregate computed for a child node in the multi-dimensional hier-
archy is propagated to its parent element(s). For data warehousing
applications, we present offline algorithms that take multiple passes
over the data and produce the exact HHHs. For data stream appli-
cations, we present online algorithms that find approximate HHHs
in one pass, with proven accuracy guarantees.

We show experimentally, using real and synthetic data, that our
proposed online algorithms yield outputs which are very similar
(virtually identical, in many cases) to their offline counterparts.
The lattice property of the product of hierarchical dimensions (“di-
amond”) is crucially exploited in our online algorithms to track ap-
proximate HHHs using only a small, fixed number of statistics per
candidate node, regardless of the number of dimensions.

1. INTRODUCTION
Data warehouses frequently consist of data items whose attributes

take values from hierarchies. For example, data warehouses accu-�
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mulate data over time, so each item (e.g., sales) has a time attribute
of when it was recorded. We can view hierarchical attributes such
as time at various levels of detail: given transactions with a time
dimension, we can view totals by hour, by day, by week and so
on. There are attributes such as geographic location, organizational
unit and others that are also naturally hierarchical. For example,
given sales at different locations, we can view totals by store, city,
state, country and so on.

Emerging applications in which data is streamed also typically
have multiple hierarchical attributes. The quintessential example
of data streams is the IP traffic data. We consider streams of pack-
ets in an IP network, each of which defines a tuple (Source ad-
dress, Source Port, Destination Address, Destination Port, Packet
Size). IP addresses are naturally arranged into hierarchies: individ-
ual addresses are arranged into subnets, which are within networks,
which are within the IP address space. For example, the address
66.241.243.111 can be represented as 66.241.243.111 at full detail,
66.241.243.* when generalized to 24 bits, 66.241.* when general-
ized to 16 bits, and so on. Ports can be grouped into hierarchies,
either by nature of service (“traditional” Unix services, known P2P
filesharing port, and so on), or in some coarser way: in [5] the au-
thors propose a hierarchy where the points in the hierarchy are “all”
ports, “low” ports (less than 1024), “high” ports (1024 or greater),
and individual ports. So port 80 is an individual port which is in
low ports, which is in all ports.

Our focus is on aggregating and summarizing such data. A stan-
dard approach is to capture the value distribution at the highest de-
tail in some succinct way. For example, one may use the most fre-
quent items (“heavy hitters”), or histograms to represent the data
distribution as a series of piece-wise constant functions. We call
these the flat methods since they focus on one (typically, the high-
est) level of detail. Flat methods are not suitable for describing the
hierarchical distribution of values. For example, an item at a cer-
tain level of detail (e.g., first 24 bits of a source IP address) made
up by aggregating many small frequency items may be a heavy
hitter item even though its individual constituents (the full 32-bit
addresses) are not. In contrast, one needs a hierarchy-aware notion
of heavy hitters. Simply determining the heavy hitters at each level
of detail will not be the most effective: if one of the nodes were
a heavy hitter, so would all its ancestors. For example, if a 32-bit
IP address were a heavy hitter, then so too would all its prefixes.
A definition was proposed in [3, 5] where heavy hitters can be at
potentially any level of detail, but in order to provide the maximum
information for a given summary size, the hierarchical heavy hitters
(HHH) discounted for descendants that were also HHHs.



In practice, data warehousing applications and IP traffic data
streams have not one, but several, hierarchical dimensions. In the
IP traffic data, for example, Source and Destination IP addresses
and port numbers together with the time attribute yield � dimen-
sions, although typically the Source and Destination IP addresses
are the two most popular hierarchical attributes. So, in practice,
one needs summarization methods that work for multiple hierar-
chical dimensions. This calls for generalizing HHHs to multiple
dimensions. As is typical in many database problems, generaliz-
ing from one dimension to two or more dimensions presents many
challenges.

Multidimensional HHHs are a powerful construct for summariz-
ing hierarchical data. To be effective in practice, the HHHs have
to be truly multidimensional. Heuristics like materializing HHHs
along one of the dimensions will not be suitable in applications.
For example, as described in [5], aggregating traffic by IP address
might identify a set of popular domains and aggregating traffic by
port might identify popular application types, but to identify popu-
lar combinations of domains and the kinds of applications they run
requires aggregating by the two fields simultaneously.

A major challenge is conceptual: there are sophisticated ways for
the product of hierarchies on two (or more) dimensions to interact
and how precisely to define the HHHs in this context is not obvious.
In the previous example, note that traffic generated by a particular
application running on a particular server will be counted towards
both the total traffic generated by that port as well as the total traffic
generated by that server. Hence, there is implicit overlap. Alterna-
tively, one may wish to count the traffic along one but not both of
these two generalizations (e.g., traffic on low ports is generalized to
total port traffic whereas traffic on high ports is generalized to total
server traffic). In this case, the traffic is split among its ancestors
such that the resulting aggregates are on disjoint sets.1 The choice
of how to count depends on the semantics desired for the analysis.

Even if we have a suitable definition of multidimensional HHHs,
it is typically computationally very difficult to exactly calculate
them. Even a straightforward generalization of some of the flat
methods for summarization from one dimension to two proves ex-
pensive. For histograms in two dimensions with hierarchical at-
tributes, polynomial time algorithms can be obtained by dynamic
programming; still the running times are very high, and even meth-
ods to approximate them are computationally very expensive [12,
13]. Calculating such flat summaries at every combination of detail
will be prohibitive. For very large data sets, such as data ware-
houses, random access becomes very expensive, and instead we
will look for methods which use only one or few linear passes
through the data.

We address the challenge of developing and computing HHHs in
multiple dimensions, and our contributions are as follows:

1. We generalize HHHs to multiple dimensions and illustrate
different variants of multidimensional HHHs (namely, the
overlap and split cases), giving formal definitions of them.
Conceptually they depend on how an aggregate computed
for a child node in the multi-dimensional hierarchy is prop-
agated to its parent element(s). The lattice structure of the
product of the hierarchies on each dimension gives different
ways to “contribute” to the parents.

2. We present two sets of algorithms for calculating HHHs in
multiple dimensions. For data warehousing applications, we
present offline algorithms that take multiple (sorting) passes

1Here we have considered a binary split. As we shall see in Sec-
tion 3.4, fractional split combinations are also possible.

over the data and produce the exact HHHs. For data stream
applications, we present online algorithms that find approxi-
mate HHHs in one pass, with accuracy guarantees. They use
a very small amount of space and they can be updated fast as
the data stream unravels. As in [10, 3], the algorithms keep
upper and lower bounds on the counts of items. Here, the
items exist at various nodes in the lattice, and we must keep
additional information to avoid over- and under-counting in
the presence of multiple parents and descendants. The lat-
tice property of the product of hierarchical dimensions (the
“diamond”) is crucially exploited in our online algorithms
to track approximate HHHs using only a small, fixed num-
ber of statistics per candidate node, regardless of the number
of dimensions. Going from dimensions � to � to � entails
increasing the number of statistics we need to maintain for
candidates but, beyond that, surprisingly, no further statistics
are needed, irrespective of the number of dimensions.

3. We do extensive experiments with 2- and 3-dimensional data
from real IP applications and show that our proposed online
algorithms yield outputs that are very similar (virtually iden-
tical, in many cases) to their offline counterparts.

2. PREVIOUS WORK
Multidimensional aggregation has a rich history in database re-

search. We will discuss the research directions that are most rele-
vant to us.

There are a number of “flat” methods for summarizing multidi-
mensional data, that are unaware of the hierarchy that defines the
attributes. For example, there are histograms [13, 6] that summa-
rize data using piecewise constant regions. There are also other
representations like wavelets [14] or cosine transforms [9]; these
attempt to get the skew in the data using hierarchical transforms,
but are not synchronized with the hierarchy in the attributes nor
do they avoid outputting many hierarchical prefixes that potentially
form heavy hitters.

In recent years, there has been a great deal of work on finding the
“Heavy Hitters” (HHs) in network data: that is, finding individual
addresses (or source-destination pairs) which are responsible for a
large fraction of the total network traffic [10, 7, 4]. Like other flat
methods, heavy hitters by themselves do not form an effective hier-
archical summarization mechanism. Generalizing HHs to multiple
dimensions can be thought of as Iceberg cube [2]: finding points in
the data cube which satisfy a clause such as HAVING COUNT(*)���

n.
More recently, researchers have looked for hierarchy-aware sum-

marization methods. The Minimum Description Length (MDL) ap-
proach to data summarization uses hierarchically derived regions to
cover significant areas [8]. This approach is useful for covering say
the heavy hitters at a particular detail using higher level aggregate
regions, but it is not applicable for finding hierarchically signifi-
cant regions, i.e., a region that contains many subregions that are
not significant by themselves, but the region itself is significant.

The notion of Heavy Hitters was generalized to be over a sin-
gle hierarchy in [3] where the authors defined Hierarchical Heavy
Hitters (HHHs). The case for finding heavy hitters within multiple
hierarchies is advanced in [5] where the authors provide a variety of
heuristics for computing the multidimensional HHHs offline. This
work is closest in spirit to ours. Our work here studies the HHHs in
multiple dimensions in greater depth, identifying two fundamental
variations of the approach as well providing the first-known online
algorithms that work with small space, and give provable accuracy
guarantees.
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Figure 1: The lattice induced by the element (1.2.3.4, 5.6.7.8)

3. PROBLEM DEFINITIONS

3.1 Notation
Formally, we model the data as 	�
 -dimensional tuples. Each

attribute in the tuple is drawn from a hierarchy. Let the (maximum)
depth of the � ’th dimension be �� . For concreteness, we shall give
examples consisting of pairs of 32-bit IP addresses, with the hier-
archy induced by considering each octet (i.e., 8 bits) to define a
level of the hierarchy. For our illustrative examples then, 
 � �
and �� � �� ��� ; our methods and algorithms apply to any arbi-
trary hierarchy. The generalization of an element on some attribute
means that the element is rolled-up one level in the hierarchy of that
attribute: the generalization of the IP address pair (1.2.3.4, 5.6.7.8)
on the second attribute is (1.2.3.4, 5.6.7.*). We denote by �������������! 
the parent of element � formed by generalizing on the � ’th dimen-
sion: ���"���#���%$ �"$ ��$ � �&�'$ (�$ )"$ *+ ,�-�+ � ���%$ �"$ �"$ � �.�'$ (�$ *+ . An element is
fully general on some attribute if it cannot be generalized further,
and this is denoted *: the pair (*, 5.6.7.*) is fully general on the first
attribute but not the second. Conversely, an element is fully speci-
fied on some attribute if it is not the generalization of any element
on that attribute. The operation of generalization over a defined
set of hierarchies generates a lattice structure that is the product of
the 1-d hierarchies. Elements form the lattice nodes, and edges in
the lattice link elements and their parents. The node in the lattice
corresponding to the generalization of elements on all attributes we
denote as “*”, or ALL, and has count 	 .

An example lattice induced by the element ���%$ �'$ �"$ � �&�"$ (�$ )"$ /% is
shown in Figure 1. Modeling the structure as a lattice is stan-
dard on work on computing data cubes and iceberg cubes. It is
worth noting that lattices induced by other elements can partially
overlap with this lattice. For example, ���%$ �"$ *'�-�'$ ("$ )"$ *+ , and all its
generalizations, are also part of the lattice induced by the element���+$ �"$ �"$0�%�&�"$ ("$ )'$ )% .

In order to facilitate referring to specific points in the lattice,
we notationally label each element in the lattice with a vector of
length 
 whose � ’th entry is a non-negative integer that is at most � , indicating the level of generalization of the element. The pair
(1.2.3.4, 5.6.7.8) is at generalization level [4,4] in the lattice of IP

address pairs, whereas (*, 5.6.7.*) is at [0,3]. The parents of an el-
ement at 1 � � �#� � �&$&$&$.����2.3 are the elements where one attribute has
been generalized in one dimension; hence, the parents of elements
at [4,4] are at [3,4] and [4,3]; items at [0,3] have only one parent,
namely at [0,2], since the first attribute is fully general. Two ele-
ments are comparable if the label of one is less than or equal to the
other on every attribute: items at [3,4] are comparable to ones at
[3,2], but [3,4] and [4,3] are not comparable. We define 45�.6"�879�:�! ,
the � ’th level in the lattice as the set of labels where the sum of
all values in the vector is � : hence 45�.6"�879��/� �<; 1 � � � 3>= , whereas45�86"�879�?�+ �@; 1A�+� � 3��81 �"�B�83?�81 �"�,�83��81 � �.�-3>= and 45�.6"�C7!��D� �E; 1 D"�FDC3>= .
We may overload terminology and refer to an element being a
member of the set 45�86"�879��7> , meaning that the item has a label
which is a member of that set. No pair of elements with dis-
tinct labels in 4G�.6"�879�:�! are comparable: formally, they form an
anti-chain in the lattice. The levels in the lattice range from D
to 4 �IH �  � , and hence the total number of levels in the lat-
tice is 4KJE� . Lastly, define the sublattice of an element � as
the set of elements which are related to � under the closure of the
parent relation. For instance, (1.2.3.4, 5.6.7.8), (1.2.3.8, 5.6.4.5)
and (1.2.3.*, 5.6.8.*) are all in L.M�N&7O�'P9P9��Q&�'���%$ �"$ �"$A*��-�"$ (�$ *+ . We will
overload this notation to define the sublattice of a set of elementsR

as L&M�N-7O�'P9P���Q-�"� R  �TS�U%V�W L&M�N&7X�"P!P���Q&�'�A�Y .
3.2 Hierarchical Heavy Hitters

The general problem of finding Multi-Dimensional Hierarchical
Heavy Hitters (HHHs) is to find all items in the lattice whose count
exceeds a given fraction, Z , of the total count of all items, after dis-
counting the appropriate descendants that are themselves HHHs.
This still needs further refinement, since it is not immediately clear
how to compute the count of items at various nodes in the lattice.
In previous work considering just a single hierarchy, the semantics
of what to do with the count of a single element when it was rolled
up was clear: simply add the count of the rolled up element to
that of its (unique) parent. In this more general multi-dimensional
case, each item has multiple parents — up to 
 of them. Then this
problem will vary significantly depending on how the count of an
element is allocated to its parents. We consider two fundamen-
tal variations in the next two sections. These variations differ in
how we allocate the count of a lattice node that is not a hierarchi-
cal heavy hitter when it is rolled up into its parents. The overlap
rule says that the full count of the item should be given to each
of its parents and, therefore, counted multiple times, in nodes that
overlap. The overlap rule is implicit in prior work on network data
analysis [5]. However, different summarization semantics may call
for different counting schemes. Hence, we also consider the split
rule, whereby the count of an item is divided between its parents in
some way. This case gives us the useful property that the weight of
all items is conserved as they are rolled up, although it may be less
intuitive than the overlap rule for many applications.

For simplicity and brevity, we will describe the case where all the
input data consists of elements which are fully specified on every
attribute, i.e., leaf elements in the lattice. Our methods naturally
and obviously extend to the case where the input can arrive as a
heterogeneous mix of partially and fully specified items, although
we do not discuss this case in detail.

In this presentation, we omit all proofs for brevity.

3.3 Overlap Rule
By analogy with the semantics for computing iceberg cubes, the

overlap case says that the count for an item should be given to each
of its parents when the item is rolled up. The HHHs in the overlap
case are those elements whose count is at least ZY	 where 	 is the



total count of all items, and D\[]Z_^T� . When an item is identified
as an HHH, its count is not passed up to either of its parents. This
is a meaningful extension of the 1-d case [3], where the count of an
item being rolled up is allocated to its only parent, unless the item
is an HHH.

This seems intuitive, but there are many subtleties of this ap-
proach that will need to be handled in any algorithm to compute
the HHHs under this rule. Suppose we kept only lists of elements
at each level of generalization in the hierarchy, and updated these
as we roll up items. Then the item � � ���%$ �"$ ��$ � �.�'$ ("$ )"$ /� with
a count of one (we will write `Ca � � to denote the count of � ),
would be rolled up to (1.2.3.*, 5.6.7.8) and (1.2.3.4, 5.6.7.*), each
with a count of one. Then, rolling up each of these to the com-
mon grandparent of (1.2.3.4, 5.6.7.8) would give (1.2.3.*, 5.6.7.*)
with a count of two. So additional information is needed to avoid
overcounting errors like this, and similar problems, which can grow
worse as the number of attributes increases. To formally define the
problem, we introduce the notion of the overlap count of an item,
and will then show how to compute this exactly.

Definition 1. Hierarchical Heavy Hitters with Overlap Rule
Let the input b consist of a set of elements � and their respective
counts `8a . Let 4 � H � �� . The Hierarchical Heavy Hitters are
defined inductively based on a threshold Z .

cedfdfdhg contains all heavy hitters �TiEb such that `Cakjl ZY	nm .
c The overlap count of an element � at 45�.6"�C7!��7: in the lat-

tice where 7h[o4 is given by `�p!�A�Y �qH `8asrt�kiubev; L&M�N-7O�'P9P9�?Q-�'�A�Y xweL.M�N&7O�'P9P9��Q&�'� dfdfdzy0{ �  B= . The set dfdfdzy
is defined as the set

dfdfd|y0{ � Sn; �}r&�}in45�86"�879��7> �~}` p �A�Y �j l ZY	nmC=
c The Hierarchical Heavy Hitters with the overlap rule for the

set b is the set dfdfdz� .

PROPOSITION 1. Let � denote the length of the longest anti-
chain in the lattice. In one dimension, � � � ; in two dimen-
sions, � � �\J��h�0������-�F��& . In higher dimensions, we have
�E^�� 2�X� � ���tJ���? #�����C���B����J���? . The size of the set of HHHs
under the overlap rule is at most ���+Z .

This gives evidence of the “informativeness” of the set of HHHs,
and their conciseness. By contrast, if we propagated the counts of
each item to every ancestor and found the Heavy Hitters at every
level, then there could be as many as d �+Z HHHs, where d �
� 2 �O� � ����xJ��8 . Even in low dimensions, d can be many times
larger than � .

In the data stream model of computation, where each data ele-
ment in the stream can be examined only once, it is not possible
to keep exact counts for each data element without using a large
amount of space. To use only small space, the paradigm of approx-
imation is adopted, as formalized in the following definition.

Definition 2. Online HHH Problem: Overlap Case The Multi-
Dimensional Hierarchical Heavy Hitters problem with the overlap
rule on input b with threshold Z is to output a set of items

R
from

the lattice, and their approximate counts ` U , such that they satisfy
two properties:

1. Accuracy: for all �Ei R
, ` �U wT�B	�^q` U ^q` �U , where` �U � H `8a�r'��i}bnv}L&M�N-7O�'P9P���Q-�"�A�� ; and

2. Coverage: for all items ���i R in the lattice H ` a r��sibnv ; L&M�N&7O�'P!P���Q&�'�:�% �w�L&M�N&7O�'P!P���Q&�'� R  B=�[ l ZY	nm .
Note that for accuracy, we ask for an accurate sublattice count

for each output item, rather than the count discounted by removing
the HHHs. This is a useful quantity that we can estimate with high
accuracy. We do not know of ways to accurately approximate the
discounted count.

The “goodness” of an approximate solution is measured by how
close it is in size to that of the exact solution. In the 1-d prob-
lem, the exact solution is the smallest satisfying correctness and,
hence, a smaller approximate answer size is preferred [3]. In the
multi-dimensional problem, one can contrive examples where the
approximate output is smaller than the exact one. In practice, we do
not expect such situations, and this is borne out by our experiments.

3.4 Split Rule
A simpler alternative to the overlap rule is for the count of an

item being rolled up to be split between its parents. This is another
meaningful extension of the 1-d case [3], where the count of an
item being rolled up is given to its only parent. For example, we
could give an equal fraction of the count to each parent, or all to one
parent, chosen randomly, or by some rule. To encompass these and
other variations, we let ���"�������9�9 , the � ’th parent of node � , to haveL������#�! of the count at � , for D|^]L����'���9 �^T� and H � L����'���9 � � .

We shall consider several specific examples of split functions L ,
including:
c Even Split. If � has � parents ( � is non-general on � dimen-

sions) then L��������! � �8�,� , for all dimensions � on which � is
non-general, and D on all other dimensions.

c Smooth split. The Even Split Function has a tendency to fa-
vor nodes which are closer to the center of the lattice. The
Smooth split counteracts this by arranging that all nodes at
each level get an equal contribution from each input item. To
do this, split weights are assigned to lattice nodes in propor-
tion to the numbers in Pascal’s triangle.

c Random allocate. L��������! is 1 on one non-general dimen-
sion, chosen at random a priori, and 0 on all others.

Definition 3. Hierarchical Heavy Hitters with Split Rule Let
the input b consist of a set of elements � and their respective counts` a . Let 4 ��H �  � . The Hierarchical Heavy Hitters are defined
inductively based on a threshold Z .
cedfdfdhg contains all ��i_b such that `Ca�j l ZY	nm .
c The split count of an item � at 45�86"�879��7> in the lattice where
7�[�4 is given by `��A�� � H 2 �X� � L��������! �*z`����C �r�� �
���"���������! �~s`����C  [ l ZY	nm . The set dfdfdzy is defined as
the set

dfdfdzy0{ � Sn; �fin4G�.6"�879��7: ¡~n`��A�Y �j l ZY	nmC=
c The Hierarchical Heavy Hitters with the split rule for the setb is the set dfdfd � .

PROPOSITION 2. There can be at most �.�+Z HHHs from the
Split case.

Definition 4. Online HHH Problem: Split Case The Multi-
Dimensional Hierarchical Heavy Hitters problem with the split rule
on input b with threshold Z is to output a set of items

R
from the

lattice, and their approximate counts ` U , such that they satisfy two
properties:



1. Accuracy: for all �Ei R
, ` �U wT�B	�^q` U ^q` �U , where

` �U � H 2 �X� � L����'���9 �*�` �a r-� � ���"�������!�9 ; and

2. Coverage: all items � in the lattice not included in the output
have ¢Y�:�� |[ l ZY	nm , where ¢Y�:�� is defined as ¢Y���C � ` a r
�£ikb ; ¢Y�:�% � H 2 �X� � L����'�9�! x*t¢Y���C ¤rY� � ���"���������! �~f�¥�iR

.

Again, given solutions whose output satisfies both accuracy and
coverage, we will prefer those whose output is closer in size to that
of the exact solution.

4. OFFLINE ALGORITHMS
We now give offline algorithms which make multiple passes over

the input and compute the Hierarchical Heavy Hitters with the over-
lap rule under Definition 1. We make use of two operators.

c GENERALIZETO takes an item and a label, and returns the
item generalized to that particular label. For example, GEN-
ERALIZETO((1.2.3.4, 5.6.7.8),[0,3]) returns (*, 5.6.7.*).

c ISAGENERALIZATIONOF takes two items, and determines
whether the first is a generalization of the second. For exam-
ple ISAGENERALIZATIONOF((*, 5.6.7.*),(1.2.3.4, 5.6.7.8))
is true, but the comparison is not true for the pairs ((1.2.3.4,
5.6.7.8),(*, 5.6.7.*)); ((*, 5.6.7.*),(1.2.3.4, 1.2.3.4)); or ((*,
5.6.7.*),(1.2.3.*, 5.*)).

4.1 Offline Algorithm for Overlap Rule

Overlap(S, ¦ ):
01 §z¨_©'ªY«¬©%�«}®B®B®F«¬©�¯ ;
02 ©�©�©�°�± ;
03 for ( ²"¨}§�³!²�´¬µ8³!² --) ¶
04 forall ( ²X·8¸�¹�²�º¤§¡¹#»8¹#²:¼½²½¾�¾z¶
05 ²½¿>À�Á¡°�± ;
06 forall ¼O¹GºÃÂ ) ¶
07 Ät¨ GENERALIZETO ¼O¹.Å,²X·8¸�¹�²X¾
08 if Æ�¼OÇ%©ÈºÃ©�©%© : (ISAGENERALIZATIONOF ¼O©�Å.¹#¾
09 and ISAGENERALIZATIONOF ¼AÄ"Å.©+¾ )) then ¶
10 if ( Ä�º�²½¿>À�Á ) ¶
11 É�Ê+«f¨fÉFË ; Ì
12 else ¶
13 ²½¿OÀ#Á¡¨n²½¿OÀ#Á�Í¤¶#Ä%Ì ;
14 É�Ê�¨fÉFË ; Ì&Ì-Ì
15 forall ( ¹GºÈ²X¿OÀ�Á ) ¶
16 if ( É Ë ´�ÎX¦�Ï�Ð ) ¶
17 ©�©%©�¨f©�©%©�Í¤¶-¹FÌ ;
18 print ¼>¹-Å�É,ËB¾ ; Ì&Ì&Ì&Ì

Figure 2: Offline Algorithm for Overlap Case

PROPOSITION 3. The algorithm given in Figure 2 computes the
set of Hierarchical Heavy Hitters defined in Definition 1. It also
solves the Hierarchical Heavy Hitters problem defined in Defini-
tion 2 with � � D .

Computational Cost. The offline algorithm given in Figure 2
makes use of a set representation. It can be implemented by keep-
ing the set 7O�!L&P as a sequence of updates appended one after another,
then sorting and aggregating 7O�!L-P before searching for HHHs. Each
element in the input list corresponds to at most one item in 7O�!L-P , for
any 7O�"N&�87 , hence we must sort a list of length at most 	 . There
are d � � 2 �O� � �� � J��. distinct labels in the lattice, so the total
time complexity of this implementation is the time to sort d lists
of length at most 	 , that is, Ñz� d 	ÓÒ0Ô%Õ�	f . The space needed is
proportional to the size of the input, Ñz��	f .

Split(S, s, ¦ ):
01 §h¨_© ª «¬©  ®F®B®9©�¯ ;
02 ©�©�©�°�± ;
03 ²X¿OÀ�Á�Ö © ª Å9©  ÅB®F®B®9©�¯,× = S;
04 for ( ²"¨f§�³?²�´£µ.³!² --) ¶
05 for ( Ø\º¤§¡¹#»8¹�²�¼½²½¾�¾z¶
06 for ( ¹�ºÈ²½¿>À�Á�Ö Ø�× ) ¶
07 if ( É Ë ´eÎX¦�Ï�Ð ) ¶
08 ©�©�©�¨_©�©�©�Í¤¶,¹,Ì ;
09 print ¼O¹-Å�ÉFË,¾ ; Ì
10 else ¶
11 for ( ¿�¨ Ù-³9¿¡Ú£Û8³9¿ ++) ¶
12 if (Ä+·.ÜC¼O¹-Å!¿O¾ in domain) ¶
13 Ø�ÊÝ¨n²X·8¸�¹�²�¼AÄ+·.Ü8¼>¹-Å�¿O¾�¾ ;
14 if ( Ä+·.ÜC¼O¹-Å9¿O¾�º�²½¿>À�Á�Ö Ø Ê × ) ¶
15 É Ê-ÞBßBà0ËBá âXã «f¨_À-¼O¹-Å�¿X¾�ä�É Ë ;

/* s(e,i) is the split function */ Ì
16 else ¶
17 ²½¿>À�Á�Ö Ø�Ê.×'¨}²½¿>À�Á�Ö Ø�Ê8×CÍ¤¶#ÄC·8Ü8¼O¹&Å!¿X¾9Ì ;
18 É Ê-ÞBßBà0ËBá âXã ¨_À&¼O¹-Å9¿O¾�ä�É,Ë ; Ì&Ì&Ì-Ì&Ì&Ì&Ì

Figure 3: Offline Algorithm for Split Case

4.2 Offline Algorithm for Split Rule

PROPOSITION 4. The algorithm given in Figure 3 computes the
set of Hierarchical Heavy Hitters defined in Definition 3. It solves
the Hierarchical Heavy Hitters problem defined in Definition 4 with� � D .

Computational Cost. The offline split algorithm can be imple-
mented as follows: for each node in the lattice, we keep a list,
initially empty. Every time we update a list (lines 15 and 17 in the
algorithm of Figure 3), we simply append the item and the addi-
tional count to the list. Then, after having processed 45�.6"�879��7: , we
sort each list in 4G�.6"�879��7¡wK�. , and aggregate the counts. Observe
that any node in 45�.6"�C7!��7Gw��8 only receives contributions from
nodes in 45�.6"�C7!��7: .

In this implementation, each sorted and aggregated list has at
most 	 items in it, and each unsorted list has at most 
"	 items in
it. This follows from observing that:

1. each item in the input is represented by at most one item in
each list, hence after sorting and aggregating the list, there
cannot be more items than were in the input, and

2. merging lists of length 	 from 
 children can generate an
unaggregated list of length at most 
"	 .

Since there are d � � 2 �O� � �� � Jå�8 nodes in the lattice, then the
cost of this algorithm is dominated by the time to sort d lists of
length at most 
"	 , that is, Ñz�:
 d 	TÒ0Ô%Õ��:
"	f # . The space require-
ment depends on how efficient an implementation is required: the
implementation we describe above uses space Ñz�#���¤J�
� �	f , where� is the length of the longest anti-chain in the lattice, as before. For
two dimensions then, this is Ñz�:�h�0���� � �# �  �	f .

Note that whether we use the Overlap Rule, or any of the Split
rules, in the case where we have only a single attribute to consider,
then they all behave identically to the rule used in [3].

5. ONLINE ALGORITHMS
We develop hierarchy-aware solutions for the multi-dimensional

HHH problem, under the insert-only model of data streams, also
known as cash-register model [11], where data stream elements
cannot be deleted. For this data stream model, we propose de-
terministic algorithms that maintain sample-based summary struc-
tures, with deterministic worst-case error guarantees for finding



HHHs. Here the user supplies error parameter � in advance and can
supply any threshold Z at runtime to output � -approximate HHHs
above this threshold.

We first introduce the naive algorithm, which we will compare
against experimentally to show that our results are quantitatively
better. At a high level, the naive algorithm keeps information for
every label in the lattice; that is, it keeps d independent data struc-
tures. Each one of these returns the (approximate) Heavy Hitters
for that point in the lattice. This will be a superset of the Hierar-
chical Heavy Hitters, and it will satisfy the accuracy and coverage
requirements for either method; however it will be very costly in
terms of space usage. We evaluate the output on the metric of the
size of the output (ie, number of items output), and we would ex-
pect this naive algorithm to do badly by this measure. Hence, we
propose algorithms which keep one data structure to summarize
the whole lattice, and show that they do better in terms of space
and output size, both analytically and empirically. For exposition,
we discuss the algorithm for the split case first since the overlap
case is more involved.

5.1 Online Algorithms: Split
In this section, we consider the split case, where the count of

an item being rolled up is split between its parents (note that the
split counts can be fractions). Our algorithms maintain a summary
structure æ consisting of a set of tuples that correspond to samples
from the input stream; initially, æ is empty. Each tuple P a i¬æ con-
sists of an element � from the lattice, corresponding to (collections
of) elements from the data stream. Associated with each element
is a bounded amount of auxiliary information used for determining
lower- and upper-bounds on the total frequencies of data stream
elements in the sub-lattice rooted at � .

The algorithms we present for insertion into æ , compression ofæ , and output are conservative extensions of Strategy 2 proposed
in [3] for the 1-d case. With each element � , we maintain the aux-
iliary information �?`CaC�Fç|aC�Bèna& , where:

c `8a is a lower-bound on the (potentially fractional) total split
count rolled up (directly or indirectly) into � ,

c ç a is the difference between an upper-bound on the total
split count rolled up into � and the lower-bound ` a , and

c è a � ���8�Y�?` 28é a#ê JKç 2Cé a�ê  , over all descendants 
����C of �
that have been rolled up into � .

The input stream is conceptually divided into buckets of widthë �íì �î+ï ; we denote the current bucket number as N-ð�ñCòFò a�ó+ô �l �F	£m . There are two alternating phases of the algorithm: insertion
and compression. Intuitively, when an element � is inserted into
the summary structure, its ` a count is updated if it already exists.
Otherwise, the element � is (re-)created, and its �?`+aC�Bç|a+�#èna& val-
ues suitably estimated, preserving their semantics, from � ’s closest
ancestors in the summary structure æ .

During compression, the space is reduced via merging auxiliary
values and deleting elements. The algorithm scans through the tu-
ples at the fringe of the summary structure (i.e., those tuples that
do not have any descendants in the summary structure), and deletes
elements whose upper bound on the total count is no larger than
the current bucket number, i.e., ` a J ç a ^�N-ð9ñ+òBò a�ó%ô . The auxiliary
values ` and è of parent elements of � are also suitably updated.
In doing so, previously non-fringe elements might become fringe
elements and are considered iteratively. At any point, we can ex-
tract and output HHHs given a user-supplied threshold Z . Figure 4
presents the online algorithms for the arbitrary 
 -dimensional case.

PROPOSITION 5. The algorithm given in Figure 4 computes
HHHs accurately up to �B	 . The space used by the algorithm is
bounded by Ñz�#� d �+�F "Ò½Ô+Õ����B	_ # .

Insert(e,f):
01 if Á Ë exists then É Ë «f¨_É ;
02 else ¶
03 for ( ¿�¨ Ù ; ¿YÚnÛ ; ¿ ++) ¶
04 if ( Ä+·.Ü8¼>¹-Å9¿O¾ in domain) then ¶
05 Insert( ÄC·8Ü8¼O¹&Å!¿X¾ , 0); Ì-Ì
06 create Á Ë with ( É Ë ¨_É );
07 õÝË�¨fö�Ë�¨f¸�÷�ø.ß�ß#Ë?ù+ú�ûhÙ ;
08 for ( ¿�¨ Ù ; ¿YÚnÛ ; ¿ ++) ¶
09 if ( Ä+·.Ü8¼>¹-Å9¿O¾ in domain) and ( ö Ê&ÞBßBà0ËBá âXã�ü ö Ë ) ¶
10 õÝË�¨fö�Ë�¨fö Ê-ÞBßBà½Ë#á âXã ; Ì&Ì-Ì
Compress:
01 for each Á Ë in fringe do ¶
02 if ( É Ë «�õ Ë Ún¸ ÷?ø.ß9ß#Ë!ùCú ) ¶
03 for ( ¿�¨ Ù ; ¿YÚ£Û ; ¿ ++) ¶
04 if ( Ä+·.Ü8¼>¹-Å!¿O¾ in domain) ¶
05 É Ê-ÞFßBà0ËBá âOã «f¨_À&¼O¹-Å9¿O¾�ä�É Ë ;

/* s(e,i) is the split function */
06 ö Ê-ÞBßBà0ËBá âXã ¨£ýtþ,ÿ'¼Xö Ê-ÞFß#à½Ë#á âOã Å9É Ë «�õ Ë ¾ ;
07 if ( Ä+·.Ü8¼>¹-Å!¿O¾ has no more children) ¶
08 add ÄC·8Ü8¼O¹&Å9¿O¾ to fringe; Ì&Ì&Ì
09 delete Á Ë ; Ì&Ì
Output( ¦ ):
01 let ©�©�©%É Ë ¨_É Ë for all ¹ ;
02 for each Á Ë in fringe do ¶
03 if ( ©�©�©%É,ËY«�õÝË��eÎO¦�Ï�Ð ) ¶
04 print( ¹ , ©�©%©�É,Ë , É,Ë , õÝË ); Ì
05 else ¶
06 for ( ¿�¨ Ù ; ¿YÚ£Û ; ¿ ++) ¶
07 if ( Ä+·.Ü8¼>¹-Å!¿O¾ in domain) ¶
08 ©�©%©�É Ê-ÞBßBà0ËBá âXã «f¨fÀ-¼O¹-Å�¿X¾�ä�É Ë ;
09 if ( Ä+·.Ü8¼>¹-Å!¿O¾ has no more children) ¶
10 add ÄC·8Ü8¼O¹&Å9¿O¾ to fringe; Ì&Ì&Ì&Ì&Ì

Figure 4: Online Algorithm for Split Case

5.2 Online Algorithms: Overlap
In this section, we consider the overlap case, where the count

of an item being rolled up is given to each of its parents. As dis-
cussed in Section 3.3, there are many subtleties of this approach
that would need to be addressed by an online algorithm. A straight-
forward rolling up of an element’s count to each of its parent ele-
ments, iteratively up the levels of the lattice, as in the split case
above, would result in overcounting errors, which is only wors-
ened as the number of hierarchical attributes increases. To effec-
tively address this situation, our algorithms additionally maintain,
in the 2-dimensional case, a “compensating” count ¢ a with each
element � in the summary structure. This compensating count,
as its name suggests, is used to compensate for the overcounting
that results by a straightforward rolling up of counts, exploiting
the diamond property of count propagation up the lattice struc-
ture. A “diamond” is a region of the lattice that corresponds to the
inclusion-exclusion principle, to prevent such overcounting. This
is illustrated in Figure 5 for 2-d; here the count for node (1.2.*,
5.6.7.*) can be obtained using inclusion-exclusion by adding the
count of nodes (1.2.*, 5.6.7.8) and (1.2.3.*, 5.6.7.*), and subtract-
ing the count of (1.2.3.*, 5.6.7.8).

More specifically, our algorithms for the overlap case maintain a
summary structure æ consisting of a set of tuples that correspond
to samples from the input stream. Each tuple P#a�inæ consists of an
element � from the lattice, and a bounded amount of auxiliary infor-
mation. The algorithms we present for insertion into æ , compres-
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Figure 5: The diamond property: Each item has at most one
“common grandparent” in the lattice.

sion of æ , and output are non-trivial extensions of Strategy 2 pro-
posed in [3] for the 1-d case, to carefully account for the problem
of overcounting. With each element � , in the 2-dimensional case,
we maintain the auxiliary information �?` a �Fç a ��¢ a �#è a  , where:

c ` a is a lower-bound on the total count that is straightfor-
wardly rolled up (directly or indirectly) into � ,

c ç a is the difference between an upper-bound on the total
count that is straightforwardly rolled up into � and the lower-
bound ` a ,

c ¢ a is an upper-bound on the total compensating count, based
on counts of rolled up grandchildren of � , and

c è a � ���8�Y�?` 28é a#ê w�¢ 28é a#ê Jhç 28é a#ê  , over all descendants 
����C 
of � that have been rolled up into � .

In Figure 6, we present the online algorithms for the 2-dimensional
case, to enable better understanding of the subtleties of this ap-
proach. For the 2-dimensional case, we use the notation 7 ���"�����C ������������-�. ,�#�,���������C � ���"�������B�+ and ¢8���"�����C � ���"���A���"�������F�8 ,�F�+ ��������A���"�����'���% ,�-�8 , which evokes the structure of a diamond.

As in the algorithm for the split case, the input stream is con-
ceptually divided into buckets of width ë � ì �î+ï , and the current
bucket number is denoted as N-ð�ñCòBò a�ó%ô � l �B	nm . The insertion phase
is very similar to that of the split case (see Figure 4).

During compression, the algorithm scans through the tuples at
the fringe of the summary structure, and deletes elements whose
upper bound on the total count is no larger than the current bucket
number. The auxiliary values ` and è of parent elements of � are
suitably updated. To account for the possibility of overcounting, the¢ count of the grandparent that is shared by each of � ’s two parents
is also updated with � ’s count. This strategy guarantees that `+a�wÃ¢�a
is a lower-bound on the total count rolled up into � , after compen-
sating for overcounting. For non-fringe elements in the summary
structure, the compensating count ¢'a is “speculative”, and hence
should not be taken into account for estimating the upper-bound on
the total count; this is then given by `CaGJkç\a . However, for fringe
elements of the summary structure, ¢ a is no longer speculative, and
a tighter upper-bound can be obtained as `Ca�we¢%a�J�ç|a . It is this
tighter upper-bound that is used to determine which fringe elements
to compress. As in the split case, during the compression phase,
previously non-fringe elements might become fringe elements and
are considered iteratively.

At any point, we can extract and output HHHs given a user-
supplied threshold Z . The output function again needs to be sen-
sitive to the diamond property, and the fact that counts of an HHH
element should not be considered for determining the HHH-ness of
its parent elements. Observe that, when two elements that share a

Insert( ¹-Å9É ):
01 if Á Ë exists then É Ë «f¨_É ;
02 else ¶
03 if ( ² Ä+·.ÜC¼O¹#¾ in domain) then Insert( ²AÄC·8Ü8¼O¹B¾ , 0);
04 if ( Ü#Ä+·.ÜC¼O¹#¾ in domain) then Insert( Ü#Ä+·.ÜC¼O¹#¾ , 0);
05 create Á Ë with ( É Ë ¨_É , � Ë ¨}µ );
06 õ Ë ¨fö Ë ¨_¸ ÷�ø.ß�ß#Ë?ù+ú û�Ù ;
07 if ( ² Ä+·.ÜC¼O¹#¾ in domain) and ( ö�� Ê-ÞBßBà0Ë9ã�ü ö�Ë ) ¶
08 õ Ë ¨fö Ë ¨}ö � Ê-ÞBßBà0Ë9ã ; Ì
09 if ( Ü#Ä+·.ÜC¼O¹#¾ in domain) and ( ö ß!Ê-ÞBßBà0Ë9ã�ü ö Ë ) ¶
10 õÝË�¨fö�Ë�¨}ö ß?Ê&ÞBßBà0Ë9ã ; Ì&Ì
Compress:
01 for each Á!Ë in fringe do ¶
02 if ( É Ë û�� Ë «�õ Ë Ú}¸ ÷?ø.ß�ß�Ë!ùCú ) ¶
03 if ( ² Ä+·.ÜC¼O¹#¾ in domain) ¶
04 É�� Ê-ÞFßBà0Ë9ã «f¨_ÉFËxû��&Ë ;
05 ö�� Ê-ÞBßBà0Ë9ã ¨}ýtþ,ÿ�¼Xö�� Ê-ÞBßBà0Ë9ã Å�É Ë û�� Ë «�õ Ë ¾ ;
06 if ( ² Ä+·.Ü8¼>¹#¾ has no more children) ¶
07 add ² Ä+·.Ü8¼>¹#¾ to fringe; Ì-Ì
08 if ( Ü#Ä+·.ÜC¼O¹#¾ in domain) ¶
09 É ß!Ê-ÞFß#à½Ë!ã «f¨fÉFËxû��&Ë ;
10 ö ß?Ê&ÞBßBà0Ë9ã ¨}ýtþ,ÿ'¼Xö ß?Ê&ÞBßBà0Ë9ã Å9É Ë û�� Ë «�õ Ë ¾ ;
11 if ( Ü#Ä+·.ÜC¼O¹#¾ has no more children) ¶
12 add Ü#Ä+·.ÜC¼O¹#¾ to fringe; Ì&Ì
13 if ( �,ÄC·8Ü8¼O¹B¾ in domain) �
	 Ê-ÞFß#à½Ë!ã «f¨_É Ë û�� Ë ;
14 delete Á Ë ; Ì&Ì
Output( ¦ ):
01 let ©�©%©�É,Ë�¨_ÉFË8Å9©�©�©��&Ë�¨��-Ë for all ¹ ;
02 let ²XÀ�Á?·&Á�¼>¹#¾Y¨fÜ&À�Á?·&Á�¼O¹#¾�¨}µ for all ¹ ;
03 for each Á Ë in fringe do ¶
04 if (( Æ�²XÀ�Á?·&Á�¼O¹B¾ or Æ�Ü-À#Á?·&Á�¼O¹#¾ ) and
05 ( ©�©%©�É Ë ûz©�©�©� Ë «�õ Ë �sÎX¦�Ï�Ð )) ¶
06 print( ¹ , ©%©�©�É Ë ûh©%©�©� Ë , É Ë û�� Ë , õ Ë );
07 ²XÀ�Á?·&Á�¼>¹#¾Y¨fÜ&À�Á?·&Á�¼O¹#¾�¨ Ù ; Ì
08 else ¶
09 if ( ² Ä+·.ÜC¼O¹#¾ in domain) and
10 ( Æ�²XÀ�Á?·&Á�¼O¹B¾ or Æ�Ü&À�Á?·&Á�¼O¹#¾ ) ¶
11 ©�©%©�É�� Ê-ÞBßBà0Ë9ã «f¨}ýtþ,ÿ�¼½µ+Å9©�©%©�É,Ë�ûh©%©�©�-ËF¾ ; Ì
12 else if ( ²AÄC·8Ü8¼O¹B¾ in domain) and
13 ( ²XÀ�Á?·&Á�¼O¹B¾ and Ü-À#Á?·&Á�¼O¹#¾ ) ¶
14 ©�©%©�É�� Ê-ÞBßBà0Ë9ã «f¨}ýtþ,ÿ�¼½µ+Å9©�©%©�É,ËF¾ ; Ì
15 if ( ² Ä+·.ÜC¼O¹#¾ in domain) ¶
16 if ( ² Ä+·.Ü8¼>¹#¾ has no more children) ¶
17 add ² Ä+·.Ü8¼>¹#¾ to fringe with
18 ²XÀ�Á?·&Á�¼½²AÄC·8Ü8¼O¹B¾�¾Y¨}²XÀ�Á?·.Á�¼O¹#¾ ; Ì&Ì
19 if ( Ü#Ä+·.ÜC¼O¹#¾ in domain) and
20 ( Æ�²XÀ�Á?·&Á�¼O¹B¾ or Æ�Ü&À�Á?·&Á�¼O¹#¾ ) ¶
21 ©�©%©�É ß?Ê&ÞBßBà0Ë9ã «f¨}ýtþ,ÿ'¼½µ+Å9©�©%©�É Ë ûz©�©�©� Ë ¾ ; Ì
22 else if ( ÜBÄ+·.ÜC¼O¹#¾ in domain) and
23 ( ²XÀ�Á?·&Á�¼O¹B¾ and Ü-À#Á?·&Á�¼O¹#¾ ) ¶
24 ©�©%©�É ß?Ê&ÞBßBà0Ë9ã «f¨}ýtþ,ÿ'¼½µ+Å9©�©%©�É Ë ¾ ; Ì
25 if ( Ü#Ä+·.ÜC¼O¹#¾ in domain) ¶
26 if ( Ü#Ä+·.ÜC¼O¹#¾ has no more children) ¶
27 add Ü#Ä+·.ÜC¼O¹#¾ to fringe with
28 Ü-À�Á?·.Á�¼XÜ#Ä+·.ÜC¼O¹#¾?¾�¨fÜ-À�Á?·.Á�¼O¹#¾ ; Ì&Ì
29 if ( �,ÄC·8Ü8¼O¹B¾ in domain) ¶
30 ©�©%©� 	 Ê-ÞBßBà0Ë9ã «f¨£ýtþ,ÿ'¼½µ+Å9©�©�©%É Ë ûh©%©�©� Ë ¾ ; Ì&Ì&Ì

Figure 6: Online Algorithm for Overlap Case



parent are both HHHs, the compensating count at the parent ele-
ment should not be used; doing so would result in overcompensa-
tion. In general, the compensating count at an element � may be
inaccurate if, in the sublattice below it, both a left-recursive (that
is, any element � for which � � 7 ���"�����C ,�>� � 7 ��������7 ���"�����C # ,
etc.) and right-recursive child (that is, any element � for which� � �F���"�����+ ,�X� � �F���"���:�F���"�����C # , etc.) have been determined
HHHs. In Figure 6, 7:L-P��'P-���+ and �%L-P��'P&���C are used for this purpose.
When such elements are encountered, their compensating counts
are ignored to prevent underestimating their discounted counts, and
thus satisfy the coverage constraint of correctness.

PROPOSITION 6. The algorithm given in Figure 6 computes
HHHs accurately to �B	 . The space used by the algorithm is bounded
by Ñz�#� d �C�, 'Ò0Ô%Õ����B	_ # .

Higher Dimensions: The extensions to the 
 -dimensional case,
while not straightforward, naturally build on the diamond prop-
erty of the 2-dimensional case, and correspond to the generalized
inclusion-exclusion principle. Instead of maintaining a single com-
pensating count ¢ a , in higher dimensions, the algorithm maintains
a negative compensating count ¢��a (akin to ¢%a in 2-dimensions),
and a positive compensating count ¢ {a (which has no counterpart in
2-dimensions). When an element � is compressed, some of its an-
cestors at alternating levels of the lattice structure obtain negative
speculative counts, while some others obtain positive speculative
counts; these correspond to the negative and positive terms in the
inclusion-exclusion formula, respectively. With dimensions 
hj]� ,
we use no more than two counts per element, and can get results
similar to ones we have proposed here for 
 � � . Details will be in
the journal version of this paper.

6. EXPERIMENTS
In this section we investigate the goodness of the proposed on-

line algorithms for both the “overlap” and “split” problem variants.
They are evaluated according to two metrics: the size of the output
generated by the algorithm, and the amount of memory used during
execution. As a yardstick, we consider the size of the (exact) output
from the offline algorithm.

For comparison purposes, we used the naive algorithm men-
tioned in Section 5 using LossyCount from [10], to find heavy
hitters on the set of all multi-dimensional prefixes of all stream
items. Whereas this algorithm uses two auxiliary variables (the
minimum frequency, ` , and the difference between the maximum
and minimum frequencies, ç ) and the proposed algorithm uses
four �?`��Fç¬�#è � and ¢� , the storage ratio between these data struc-
tures is much less than two due to the overhead of storing the item
identifiers.2 Even without this, the gaps between these two algo-
rithms will be large enough to justify the extra space per tuple, as
we shall see. Hence, all plots are in terms of the number of tuples.

We used both real and synthetic data sets in the experiments. The
real data consists of two-dimensional IP addresses (source and des-
tination) from network “flow” measurements (FLOW) and packet
traces (PACKET). The IP address space was viewed on the byte-
level for some experiments, and on the bit-level for others.

6.1 Overlap Case
2For example, prefix compression can be employed in the proposed
data structure.

We ran the proposed online algorithm for the overlap problem,
along with the naive algorithm for comparison, using a variety of
parameter values (for Z , � , and the depth of the hierarchies used).
Figure 7 plots the output sizes for both algorithms as a function of
timestep, with (a) Z � D"$ �'�,� � D�$0� , and (b) Z � D�$ D%�"�F� � D"$ D"� ,
where the hierarchies are induced by considering every N -bit pre-
fix of the IP addresses. The difference in sizes is quite significant
with the proposed algorithm, yielding a factor of 7 times smaller
size in the former, and a factor of 13 in the latter. Compared to
the exact answer (as computed by the offline algorithm at timestep
100K), the naive algorithm was 25 and 12 times larger, respectively,
whereas, in both cases, the output from the proposed algorithm was
slightly less than twice that of the exact. For visualization purposes,
we plot the outputs at timestep 100K from the three algorithms in
Figure 8, where each prefix in each dimension is mapped to a range
in 1 D"�,� � � wK�-3 and drawn as a rectangle in the plane. The x- and
y-axes represent the source and destination addresses, respectively.
Figures 8(a) and (c) (from the exact algorithm and our online al-
gorithm) indicate that there is a narrower distribution of source
than destination addresses; this is consistent with the fact that the
flows are outbound. However, the long horizontal rectangles in
Figure 8(b) from the naive algorithm are misleading and indicate
the opposite. Qualitatively, we see that the outputs of the offline
and online algorithms are very similar, and that the online output is
only a slightly larger superset of the offline output; in contrast, the
output from the naive algorithm is cluttered. We believe that such
plots enable network managers to visualize important features in IP
traffic.

The differences between the two algorithms with the PACKET
data, using the same parameter values, was even greater, as shown
in Figure 9. We observed similar results for the other parameter
value combinations and data sets we tried but omit them for brevity.

The proposed algorithm not only gave better answers than the
naive one, but also did so using less memory. Figure 10 plots the
data structure sizes as a function of timestep with the same param-
eter values used in Figure 7. In both cases, the proposed algo-
rithm on average used roughly half as much memory as the naive
one. These differences were still greater using the PACKET data,
as shown in Figure 11.

6.2 Split Case
We considered different instances of the split problem based on

the hash function used. We implemented the Even Split, the Smooth
Split and Random Allocate Functions; see Section 3.4 for their de-
scriptions. Figure 12 presents plots of (a) output size; and (b) data
structure size, as a function of timestep, for the Smooth Split Func-
tion. Figure 13 presents plots of (a) output size; and (b) data struc-
ture size, as a function of timestep, for the Random Allocate Func-
tion. All of these experiments were carried out using FLOW withZ � D�$ D��'�-� � D�$ D"� and byte-level prefixes. The most significant
feature of our experiments with split is that, not only was the output
size of our methods the same as that of the exact algorithm, but also
the items in the output were identical to those from the exact algo-
rithm. Meanwhile, the naive algorithm used a factor of six more
space for its data structures, and gave more than six times as much
output than our algorithm for the split case using the Smooth Split
Function. For the Random Allocate Function, we observed another
factor of six difference in the size of the output, and a data structure
that was four times as big.

6.3 Higher Dimensions
To understand how the proposed online algorithm performs rela-

tive to the naive one in higher dimensions, for the overlap prob-
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(a) exact (b) naive (c) proposed

Figure 8: Visualizations of sample outputs from FLOW on bit-level prefixes, with Z � D�$ D�� at timestep 100K, from (a) exact (offline),
(b) naive (online), and (c) proposed (online) algorithms.

lem, we ran a similar set of experiments on FLOW with time
(which is hierarchical by hour, minute, second then ms) as a third
attribute; the incoming stream elements do not arrive ordered on
this attribute. Figure 14 shows (a) output size and (b) data structure
size with Z � D�$ D��'�-� � D"$ D"� on byte-level prefixes. The relative
output sizes, compared to the exact answer, increased for both of
the online algorithms in 3-d, but significantly more for the naive
algorithm. Our proposed algorithm gave 1.5 times as many items
as the exact algorithm; for FLOW with two attributes, the ratio was
1.25. (In absolute numbers, the difference in sizes went from 8 to
27.) In contrast, the naive algorithm output 6 times as many items
as the exact algorithm; the ratio was 2.6 in two dimensions. (In
absolute numbers, the difference went from 51 to 275.) In addi-
tion, the proportional gap between the sizes of the respective data
structures widened even further by more than a factor of two. The
superiority of our proposed algorithm compared to the naive one
appears to grow with increasing dimension.

7. EXTENSIONS
Our previous work on finding HHHs in one dimension consid-

ered the model where the input consists of deletions as well as in-
sertions of data items [3]. Typically in the applications referred
to in Section 1, deletions do not occur, since we can consider the
streams or warehouses as representing sequences of insertions only.
We now discuss how to generalize our results to allow deletions,
also known as the turnstile model [11].

If there are very few deletions relative to the number of inser-

tions, then by simply modifying our online algorithms to subtract
from counts to simulate deletions, the results will be reasonably ac-
curate. If there are � insertions and � deletions, then the error in
the approximate counts will be in terms of �8���\J��� , which will
be close to the “desired” error of �.���Ãw��� for small � . However,
if deletions are more frequent, then we will not be able to prove
that the counts are adequately approximated, and we will need a
different approach. In [3], sketches are used to handle the case
of deletions: using compact, randomized data structures that give
(probabilistic) guarantees to approximate the counts of items in the
presence of insertions and deletions. A similar approach to that
in [3] will apply here: we can keep sketches of items, and start-
ing from *, descend the lattice looking for potential HHHs, then
backtrack and adjust the counts as necessary.3 There is one ma-
jor disadvantage of this approach, which is that we must maintain
a sketch for every node in the lattice, and update this sketch with
every item insertion and deletion. Thus the space cost scales withd , the product of the depths of the hierarchies, which may be too
costly in some applications. Since, in our motivating applications
of data warehouses and data streams, explicit deletion transactions
are not common, we do not discuss this extension further.

Other extensions, such as finding the HHHs in a recent time
window can be done by employing our methods in the framework
of [1]. It is also straightforward to adapt our methods to take se-
lection predicates when these are given up front; it would be more

3This is similar to the bottom-up searching approaches in data-
cubes.
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challenging to allow these to be specified after the data has been
seen.

8. CONCLUSIONS
Finding truly multidimensional hierarchical summarization of

data is of great importance in traditional data warehousing environ-
ments as well emerging data stream applications. We formalized
the notion of hierarchical heavy hitters (HHHs) in its variations,
and studied them in depth. In particular, we proposed online al-
gorithms for approximately determining the HHHs to proven ac-
curacy in only one pass using very small space regardless of the
number of dimensions; in detailed experimental study, these algo-
rithms are shown to be remarkably accurate in estimating HHHs.
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Figure 14: Comparison of output and data structure sizes from the online algorithms for the overlap problem with three hierarchical
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