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Concept drift primarily refers to an online supervised learning scenario when the relation between the input
data and the target variable changes over time. Assuming a general knowledge of supervised learning in
this article, we characterize adaptive learning processes; categorize existing strategies for handling concept
drift; overview the most representative, distinct, and popular techniques and algorithms; discuss evaluation
methodology of adaptive algorithms; and present a set of illustrative applications. The survey covers the
different facets of concept drift in an integrated way to reflect on the existing scattered state of the art. Thus,
it aims at providing a comprehensive introduction to the concept drift adaptation for researchers, industry
analysts, and practitioners.
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1. INTRODUCTION
Our digital universe is rapidly growing. The volume of data generated in 2012 has
been estimated to surpass 2.8 zetabytes (2.8 trillion gigabytes) as reported in the IDC
survey [Gantz and Reinsel 2012]. Efficient and effective tools and analysis methods for
dealing with the ever-growing amount of data in different applications and fields are
of paramount need. Traditionally in data mining, already collected data is processed
in an offline mode. For instance, predictive models are trained using historical data
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given as a set of pairs (input, output). Models trained in such a way can be afterwards
applied for predicting the output for new unseen input data.

However, very often data comes in the form of streams. Accommodating large volumes
of streaming data in the machine’s main memory is impractical and often infeasible.
Hence, only an online processing is suitable. In this case, predictive models can be
trained either incrementally by continuous update or by retraining using recent batches
of data. But computational efficiency is not the only issue in supervising learning from
data steams.

In dynamically changing and nonstationary environments, the data distribution can
change over time, yielding the phenomenon of concept drift [Schlimmer and Granger
1986; Widmer and Kubat 1996]. The real concept drift1 refers to changes in the condi-
tional distribution of the output (i.e., target variable) given the input (input features),
while the distribution of the input may stay unchanged. A typical example of the real
concept drift is a change in users’ interests when following an online news stream.
While the distribution of the incoming news documents often remains the same, the
conditional distribution of the interesting (and thus not interesting) news documents
for that user changes. Adaptive learning refers to updating predictive models online
during their operation to react to concept drifts.

Over the last decade, research related to learning with concept drift has been in-
creasingly growing, and many drift-aware adaptive learning algorithms have been
developed. In spite of the popularity of this research topic, no comprehensive survey on
concept drift handling techniques is available to the community. One of the reasons for
this is that the problem is of a wide scope and spans across different research fields.
Moreover, terminology is not well established; thus, similar adaptive learning strate-
gies have been developed independently under different names in different contexts.

Taking account of the current picture of research on concept drift, being very popular
but also scattered among various communities, there is a strong need for a compre-
hensive summary of the research done so far to unify the concepts and terminology
among the researchers and to survey the state-of-the-art methodologies and techniques
investigated in the past.

Several reviews related to drift-aware learning are available. However, they either
do not focus exclusively on concept drift or relate to specific topics of adaptive learn-
ing. Thus, these reviews are fragmented and/or outdated. Currently, the most cited
survey on concept drift was published back in 2004 in Tsymbal [2004]. The following
overviews, which are related to the topic of concept drift focused on ensemble tech-
niques [Kuncheva 2004, 2008], inductive rule learning algorithms [Maloof 2010], or
mainly nonincremental learning techniques [Zliobaite 2009] that can use computa-
tional resources unrestrictedly, thus were limited in scope. Reviews on data streams
[Gaber et al. 2005; Gama 2010; Bifet et al. 2011] only partially deal with data drift.
Data streams research covers adaptive learning only to some extent, while the main
focus remains on making learning algorithms incremental and optimizing the balance
of computational resources and the predictive accuracy.

Several reviews are limited to specific application fields. A focused position pa-
per [Grisogono 2006] presents a set of requirements for complex adaptive systems
to be used for defense. A recent focused review [Kadlec et al. 2011] surveys adap-
tation mechanisms that have been used for soft sensors. Finally, a recent article
[Moreno-Torres et al. 2012] focuses on describing various ways in which data dis-
tribution can change over time and only briefly covers adaptation techniques from
the dataset shift community perspective, mostly leaving out works on concept drift. A
recent review [Alberg et al. 2012] focuses on decision trees.

1The term real refers to one particular type of concept drift. It doesn’t mean that other types of drift are not
concept drifts.
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The present contribution provides an integrated view on handling concept drift by
surveying adaptive learning methods, presenting evaluation methodologies, and dis-
cussing illustrative applications. It focuses on online supervised learning when the
relation between the input features and the target variable changes over time.

The article is organized as follows. In Section 2, we introduce the problem of con-
cept drift, characterize adaptive learning algorithms, and present motivating applica-
tion examples. Section 3 presents a comprehensive taxonomy of methods for adaptive
learning. Section 4 discusses the experimental settings and evaluation methodologies
of adaptive learning algorithms. Section 5 concludes the survey.

2. ADAPTIVE LEARNING ALGORITHMS
Learning algorithms often need to operate in dynamic environments, which are chang-
ing unexpectedly. One desirable property of these algorithms is their ability of incor-
porating new data. If the data-generating process is not strictly stationary (as applies
to most of the real-world applications), the underlying concept, which we are predict-
ing (e.g., interests of a user reading news), may be changing over time. The ability
to adapt to such concept drift can be seen as a natural extension for the incremental
learning systems [Giraud-Carrier 2000] that learn predictive models example by ex-
ample. Adaptive learning algorithms can be seen as advanced incremental learning
algorithms that are able to adapt to evolution of the data-generating process over time.

This section introduces concept drift and characterizes adaptive learning.

2.1. Setting and Definitions
In machine learning, the supervised learning problem is formally defined as follows.
We aim to predict a target variable y ∈ ℜ1 in regression tasks (or y categorical in
classification tasks) given a set of input features X ∈ ℜp. An example is one pair of
(X, y). For instance, X is a set of sensor readings of a chemical process at 2 p.m. on the
2nd of January and y = “good ” is the true quality of the produced product at that time.
In the training examples, which are used for model building, both X and y are known.
In the new examples, on which the predictive model is applied, X is known, but y is not
known at the time of prediction.

According to the Bayesian Decision Theory [Duda et al. 2001], a classification can
be described by the prior probabilities of the classes p(y) and the class conditional
probability density functions p(X|y) for all classes y = 1, . . . , c, where c is the number
of classes. The classification decision is made according to the posterior probabilities of
the classes, which for class y can be represented as

p(y|X) = p(y)p(X|y)
p(X)

, (1)

where p(X) =
∑c

y=1 p(y)p(X|y). Here equal costs of misclassification are assumed.
The type of the target variable space depends on the task. In classification, the target

variable takes categorical values (class labels), while in regression, the target variable
takes continuous values.

We can distinguish two learning modes: offline learning and online learning. In offline
learning, the whole training data must be available at the time of model training. Only
when training is completed can the model be used for predicting. In contrast, online
algorithms process data sequentially. They produce a model and put it in operation
without having the complete training dataset available at the beginning. The model is
continuously updated during operation as more training data arrives.

Less restrictive than online algorithms are incremental algorithms that process input
examples one by one (or batch by batch) and update the decision model after receiving
each example. Incremental algorithms may have random access to previous examples
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or representative/selected examples. In such a case, these algorithms are called in-
cremental algorithms with partial memory [Maloof and Michalski 2004]. Typically, in
incremental algorithms, for any new presentation of data, the update operation of the
model is based on the previous one. Streaming algorithms are online algorithms for
processing high-speed continuous flows of data. In streaming, examples are processed
sequentially as well and can be examined in only a few passes (typically just one).
These algorithms use limited memory and limited processing time per item.

In the setting that we are considering, data arrives online, often in real time, forming
a stream that is potentially infinite. The machinery is given input data that has just ar-
rived with the goal of predicting the value of its target variable(s). The machinery must
construct a predictive model that is a mapping function between the input (feature)
space to its corresponding output (target) space. For instance, given sensor readings in
a chemical production process, the task is to predict the quality of the product (output).

Because data is expected to evolve over time, especially in dynamically changing
environments, where nonstationarity is typical, its underlying distribution can change
dynamically over time. The general assumption in the concept drift setting is that
the change happens unexpectedly and is unpredictable, although in some particular
real-world situations, the change can be known ahead of time in correlation with the
occurrence of particular environmental events. But solutions for the general case of drift
entail the solutions for the particular cases. Moreover, the change may take different
forms (i.e., the input data characteristics or the relation between the input data and
the target variable may change).

Formally, concept drift between time point t0 and time point t1 can be defined as

∃X : pt0 (X, y) ̸= pt1 (X, y), (2)

where pt0 denotes the joint distribution at time t0 between the set of input variables
X and the target variable y. Changes in data can be characterized as changes in the
components of this relation [Kelly et al. 1999; Gao et al. 2007]. In other terms:

—the prior probabilities of classes p(y) may change,
—the class conditional probabilities p(X|y) may change, and
—as a result, the posterior probabilities of classes p(y|X) may change, affecting the

prediction.

We are interested to know two implications of these changes: (i) whether the data
distribution p(y|X) changes and affects the predictive decision and (ii) whether the
changes are visible from the data distribution without knowing the true labels (i.e.,
p(X) changes). From a predictive perspective, only the changes that affect the prediction
decision require adaptation.

We can distinguish two types of drifts:

(1) Real concept drift refers to changes in p(y|X ). Such changes can happen either with
or without change in p(X ). Real concept drift has been referred to as concept shift
in Salganicoff [1997] and conditional change in Gao et al. [2007].

(2) Virtual drift happens if the distribution of the incoming data changes (i.e., p(X )
changes) without affecting p(y|X ) [Delany et al. 2005; Tsymbal 2004; Widmer
and Kubat 1993]. However, virtual drift has had different interpretations in the
literature:
—Originally, a virtual drift was defined [Widmer and Kubat 1993] to occur due to

incomplete data representation rather than change in concepts in reality.
—Virtual drift corresponds to change in data distribution that leads to changes in

the decision boundary [Tsymbal 2004].
—Virtual drift is a drift that does not affect the target concept [Delany et al. 2005].
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Fig. 1. Types of drifts: circles represent instances; different colors represent different classes.

—Virtual drift has been also referred to as temporary drift [Lazarescu et al. 2004],
sampling shift [Salganicoff 1997], and feature change [Gao et al. 2007].

In this article, virtual drift refers to change in the data distribution p(X ).2

Example: Consider an online news stream of articles on real estate. The task for a
given user is to classify the incoming news into relevant and not relevant. Suppose that
the user is searching for a new apartment; then news on dwelling houses is relevant,
whereas holiday homes are not relevant. If the editor of the news portal changes, the
writing style changes as well, but the dwelling houses remain relevant for the user.
This scenario corresponds to virtual drift. If, due to a crisis, more articles on dwelling
houses come out and fewer articles on holiday homes do but the editor, the writing
style, and the interests of the user remain the same, this situation corresponds to drift
in prior probabilities of the classes. If, on the other hand, the user has bought a house
and starts looking for a holiday destination, dwelling houses become not relevant and
holiday homes become relevant. This scenario corresponds to the real concept drift. In
this case, the writing style and the prior probabilities stay the same. It may happen
that all types of drifts may take place at the same time.

Figure 1 illustrates the types of drifts. The plot shows that only the real concept drift
changes the class boundary and the previous decision model becomes obsolete. In prac-
tice, virtual drift changing prior probabilities or novelties may appear in combination
with the real drift. In these cases, the class boundary is also affected.

This survey primarily focuses on handling the real concept drift, which is not visible
from the input data distribution. In many cases, the techniques that handle the real
concept drift can also handle drifts that manifest in the input data distributions, but
not the other way around. Techniques for handling the real concept drift typically rely
on feedback about the predictive performance, while techniques for tracking changing
prior probabilities and techniques for handling virtual drift or novelty detection typi-
cally can operate without such feedback. This article does not cover such drifts that can
be detected from the incoming data distribution (P(X )). Readers interested in tracking
drifting prior probabilities are referred to Zhang and Zhou [2010], in novelty detection
are referred to Markou and Singh [2003] and Masud et al. [2011], and in handling
virtual drifts by semisupervised learning techniques using on clustering are referred
to Aggarwal [2005], Bouchachia et al. [2010], and Bouchachia and Vanaret [2013].

2.2. Changes in Data Over Time
Changes in data distribution over time may manifest in different forms, as illustrated
in Figure 2 on a toy one-dimensional data. In this data, changes happen in the data
mean. A drift may happen suddenly/abruptly, by switching from one concept to another
(e.g., replacement of a sensor with another sensor that has a different calibration in a
chemical plant), or incrementally, consisting of many intermediate concepts in between

2The term population drift is sometimes also used, which refers to changes in the population from which
future samples will be drawn as compared to the population from which the design/training sample was
drawn [Kelly et al. 1999]. It is a general term covering any type of drift.
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Fig. 2. Patterns of changes over time (outlier is not concept drift).

(e.g., a sensor slowly wears off and becomes less accurate). Drift may happen suddenly
(e.g., the topics of interest that one is surveying as a credit analyst may suddenly switch
from, for instance, meat prices to public transportation) or gradually (e.g., relevant
news topics change from dwelling to holiday homes, while the user does not switch
abruptly, but rather keeps going back to the previous interest for some time). One
of the challenges for concept drift handling algorithms is not to mix the true drift
with an outlier or noise, which refers to a once-off random deviation or anomaly (see
Chandola et al. [2009] for outlier detection). No adaptivity is needed in the latter case.
Finally, drifts may introduce new concepts that were not seen before, or previously
seen concepts may reoccur after some time (e.g., in fashion). Changes can be further
characterized by severity, predictability, and frequency [Minku et al. 2010; Kosina et al.
2010].

Most of the adaptive learning techniques implicitly or explicitly assume and spe-
cialize in some subset of concept drifts. Many of them assume sudden nonreoccurring
drifts. But in reality, often mixtures of many types can be observed.

2.3. Requirements for Predictive Models in Changing Environments
Predictive models that operate in these settings need to have mechanisms to detect
and adapt to evolving data over time; otherwise, their accuracy will degrade. As time
passes, the decision model may need to be updated taking into account the new data or
be completely replaced to meet the changed situation. Predictive models are required
to:

(1) detect concept drift (and adapt if needed) as soon as possible;
(2) distinguish drifts from noise and be adaptive to changes, but robust to noise; and
(3) operate in less than example arrival time and use not more than a fixed amount of

memory for any storage.

2.4. Online Adaptive Learning Procedure
The online adaptive learning is formally defined as follows. A decision model is a
function L that maps the input variables to the target: y = L(X ). A learning algorithm
specifies how to build a model from a set of data instances.

The online adaptive learning procedure is the following:

(1) Predict. When new example Xt arrives, a prediction ŷt is made using the current
model Lt.

(2) Diagnose. After some time, we receive the true label yt and can estimate the loss
as f (ŷt, yt).

(3) Update. We can use the example (Xt, yt) for the model update to obtain Lt+1.

Depending on the computational resources, the data may need to be discarded once
processed using the latest version of the model Lt+1 = train((Xt, yt),Lt). Alternatively,
some of the past data may remain accessible Lt+1 = train((Xi, yi), . . . , (Xt, yt),Lt).
There are different ways of handling data online (e.g., partial memory: some of the
examples are stored and used regularly in the training; window based: data is presented
as chunks; instance based: an example is processed upon its arrival). More details on
various schemes related to data presentation will follow in Section 3.
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Fig. 3. A generic schema for an online adaptive learning algorithm.

After updating the model, new example Xt+1 arrives and the loop of receiving-
predicting-feedback-model update continues infinitely. At some time steps, one may
choose to preserve the current model Lt+1 = Lt.

Figure 3 depicts a generic schema for an online adaptive learning algorithm. In a
nutshell, the memory module defines how and which data is presented to the learning
algorithm (learning module). The loss estimation module tracks the performance of the
learning algorithm and sends information to the change detection module to update
the model if necessary. Section 3 will discuss the four modules of the system (memory,
learning, change detection, loss estimation) in detail.

This setting has variations where, for instance, the true values for the target vari-
able (feedback) come with a delay or are not available at all. Moreover, new examples
for prediction may arrive before we get feedback for the data that has already been
processed. In such a case, model update would be delayed, but the principles of oper-
ation remain the same. Finally, in some settings, we may need to process examples in
batches rather than one by one.

2.5. Illustrative Applications
The problem of concept drift has been recognized and addressed in multiple domains
and application areas, including medicine [Kukar 2003; Tsymbal et al. 2006], industry
[Pechenizkiy et al. 2009], education [Castillo et al. 2003], and business [Klinkenberg
2003]. Applications requiring adaptation can be grouped into four categories:

Monitoring and control. This category includes detection of anomalous behavior and
adversary activities on the web, computer networks, telecommunications, financial
transactions, and other application areas where an abnormal behavior needs to be
signaled, and it is often formulated as a detection task.

Management and strategic planning. This category includes predictive analytics tasks,
such as evaluation of creditworthiness, demand prediction, food sales, bus travel
time prediction, and crime prediction by region.

Personal assistance and information. This category includes recommender systems,
categorization and organization of textual information, customer profiling for mar-
keting, personal mail categorization, and spam filtering.

Ubiquitous environment applications. This category includes a wide spectrum of mov-
ing and stationary systems, which interact with changing environments, for instance,
moving robots, mobile vehicles, and smart household appliances.

Next we discuss motivating application cases within each category to illustrate the
demand of adaptive learning systems that can handle concept drift.
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2.5.1. Monitoring and Control. In monitoring and control applications, data is often pre-
sented in a form of time series. The two most typical learning tasks are time-series
forecasting (regression task) or anomaly detection (classification task).

Online mass flow prediction in an industrial boiler [Pechenizkiy et al. 2009] is an
example application in the monitoring and control category. Mass flow prediction would
help to improve operation and control of the boiler. In steady operation, combustion is
affected by the disturbances in the feed rate of the fuel and by the incomplete mixing of
the fuel in the bed. Knowing the mass flow is important for boiler control. The system
takes fuel that is continuously mixed inside and transferred from a container to the
boiler. Scaling sensors located under the container provide streaming data. The task is
to predict (estimate) the mass flow in real time.

Concept drift happens due to the following reasons. Fuel feeding is a manual and
nonstandardized process, which is not necessarily smooth and can have short interrup-
tions. Each operator can have different habits. The process characteristics may depend
on the type and the quality of fuel used. The main focus for an adaptive learning
algorithm is to handle two types of changes: an abrupt change to feeding and slower
but still abrupt switch to burning. One challenge for learning is that the feedback (the
ground truth of mass flow) is not available at all; it can only be approximately esti-
mated by retrospectively inspecting the historical data. An additional challenge is to
deal with specific one-sided outliers that can be easily mistaken for changes.

Traditional approaches (such as ADWIN; see Section 3.2.3) for explicit change de-
tection based on the monitoring of the raw sensor signal or streaming error of the
regressors give reasonable results. They can be improved by considering the peculiari-
ties of the application.

2.5.2. Management and Strategic Planning. The Smart Grid (SG) is an electric system that
uses two-way digital information, cyber-secure communication technologies, and com-
putational intelligence in an integrated fashion across heterogeneous and distributed
electricity generation, transmission, distribution, and consumption to achieve energy
efficiency. A key and novel characteristic of SGs is the intelligent layer that analyzes
the data produced by smart meters, allowing companies to develop powerful new ca-
pabilities in terms of grid management, planning, and customer services for energy
efficiency. The advent of SGs has changed the way energy is produced, priced, and
billed. The key aspect of SGs is distributed energy production, namely, renewable en-
ergies. The penetration of renewable energies (solar, wind, etc.) is increasing quickly
and power forecasting becomes an important factor in defining the operation planning
policies to be adopted by a transmission system operator.

When observing the literature in wind power prediction [Monteiro et al. 2009], one
realizes that most proposals are based on an of-line training mode, building a static
model that is then used to produce predictions. This option relies on assumptions
of stationarity of the wind electric power model, which must be strongly questioned
[Bremnes 2004; Bessa et al. 2009]. Using real data from three distinct wind parks,
Bessa et al. [2009] present the merits of online training against offline training of
neural networks. The authors point out the evolving nature of data and the presence
of concept drift in wind pattern behavior.

2.5.3. Personal Assistance and Information. Text classification has been a popular topic in
machine learning for decades. However, interesting applications related to the prob-
lem of concept drift appeared relatively recently. Examples of text stream applica-
tions include e-mail classification [Carmona-Cejudo et al. 2010], e-mail spam detection
[Lindstrom et al. 2010], and sentiment classification [Bifet and Frank 2010]. Sentiment
classification is a popular task in social media monitoring, customer feedback analysis,
and other applications.
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The main source of concept drift in email classification and spam filtering are due to
changing email content and presentation (virtual drift), as well as adaptive behavior
of spammers trying to overcome spam filters (may be virtual or real). Besides, users
may change their attitude toward particular categories of emails, starting or stopping
to consider them spam (real drift). In sentiment classification, the vocabulary used to
express positive and negative sentiments may change over time. Since the collection
of documents is not static (virtual drift, novelties), the feature space representing the
current collection is dynamic, which may require specific updates of the models.

Various adaptive learning strategies have been used in this domain, including indi-
vidual methods, like case-based reasoning, and ensembles, either evolving or with an
explicit detection of changes by means of change detectors (Section 3.2).

Availability of feedback is a serious challenge in personal assistance and information.
The dilemma is that if feedback is easily available, that implies no need for automated
predictions. In email classification, we can hope that from time to time we will receive
feedback from the user in case of misclassifications or can design an active learning
system (e.g., [Zliobaite et al. 2014]), which from time to time asks the user to provide
labels on demand. However, when possible, we need to aim at automatic ways for
obtaining the true labels.

Suppose for monitoring the attitude of people toward a political party we want to
classify the polarity or sentiment of tweets from Twitter. Labeling tweets manually
as positive or negative is a laborious and expensive task. However, tweets may have
author-provided sentiment indicators: changing sentiment is implicit in the use of var-
ious types of emoticons. Hence, we may use these to label the training data. Smileys
or emoticons are visual cues that are associated with emotional states. They are con-
structed using the characters available on a standard keyboard, representing a facial
expression of emotion. By using emoticons, authors of tweets annotate their own text
with an emotional state. Annotated tweets can be used to train a sentiment classifier.

Building a content-based filter for adaptive news access presents a rather different
perspective on text classification in streaming settings. The goal is to learn incre-
mentally and keep up-to-date a user model for news story classification. A simple yet
effective approach has been proposed in Billsus and Pazzani [2000]. For each user,
an adaptive learning system is built, consisting of a simple ensemble with separate
models for short-term and long-term interests of users. A stable naive Bayes classifier
is used for modeling the long-term interests of a user and the nearest neighbor classi-
fier captures the short-term interests of the user. For the short-term interests model,
a fixed-size window over the liked news stories is maintained and/or instances are
weighed with respect to their age. No explicit change detection is used for monitoring
either of the short-term or long-term interests. The true labels of some of the instances
come naturally due to a positive relevance feedback (i.e., a user accessing a particular
news item provides the signal that the item is relevant to his or her interests).

On the other hand, recommender systems are a broad application in the personal
assistance and information category [Bobadilla et al. 2013; Adomavicius and Tuzhilin
2005]. Interests of the data mining community in the recommender systems domain
have been boosted by the NetFlix competition.3 One of the lessons learned by the win-
ning teams was that taking temporal dynamics into account substantially contributes
toward building accurate models. Modeling user interests and handling concept drift
were the other interesting aspects. In collaborative filtering, modeling of user interests
relies primarily on the availability of other ratings already provided by the users. In a
realistic application case, the data is highly imbalanced. Some movies are very popular,
while most of the movies are not; some users rate many movies, but many others rate

3www.netflixprize.com.
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only a few. The rating matrix is high dimensional and extremely sparse, containing
only about 1% of nonzero elements. Such properties make the application of most su-
pervised learning techniques inapplicable and motivate the development of advanced
collaborative filtering approaches. The sources and the nature of change can be diverse.
Both items and users are changing over time. The item-side effects include, first of all,
changing product perception and popularity. Popularity of some movies is expected to
follow seasonal patterns. The user-side effects include changing tastes and preferences
of users, some of which may be short term or contextual and therefore likely reoccur-
ring (mood, activity, company), changing perception of rating scale, possible change of
rater within household, and similar problems. The winning team developed an ensem-
ble approach including multiple models for handling these various kinds of changes.
As suggested in Koren [2010], popular windowing and instance weighing approaches
for handling concept drift are not the best choice for each kind of changing behavior,
simply because in collaborative filtering, for example, the relations between ratings is
of the main importance for predictive modeling.

2.5.4. Ubiquitous Environment Applications. Autonomous vehicle control is an application
case in the ubiquitous environment category. DARPA Grand Challenge was a prize
competition open for teams developing fully autonomous driverless vehicles. Stanley,
the car of the winning team of the second long-distance competition4 organized in 2005,
had a highly reliable system on board that allowed the car to drive through different
off-road environments at relatively high speeds. Among other intelligent components
of the systems, Stanley had to perform identification and avoidance of obstacles and
road finding [Thrun et al. 2006].

The Stanley team combined several ideas for automated terrain labeling using
streaming laser sensor data for short- and medium-range obstacle avoidance and
streaming data from the color camera to learn the concept of the drivable surface and
use it for velocity control (if the surface further ahead is nondrivable the car should
slow down). That is, the vision module had to maintain an accurate classifier for iden-
tifying drivable and nondrivable regions in the image stream. An adaptive learning
approach was necessary for performing this task reliably because of many changing
and not easily measurable factors such as surface material, lighting conditions, or dust
or dirt on the camera itself that affect the target concept.

The classification task was to model the color of the drivable terrain. The Stanley
team used an adaptive mixture of Gaussians. The model had to adapt to slowly changing
lighting conditions and to abruptly changing surface colors (e.g., moving from a paved
to an unpaved road). For gradual adaptation, the internal Gaussian was adjusted; for
the rapid adaptation, the Gaussians were replaced with new ones. The required speed
of adaptation depended on the road conditions.

These real-world application cases present evidence that adaptive learning makes
it possible to address complex learning problems that would not be feasible to tackle
in the stationary settings. These examples also illustrate that it is important first to
understand the nature and source of drift and only then engineer an effective adaptive
learning strategy.

3. TAXONOMY OF METHODS FOR CONCEPT DRIFT ADAPTATION
In this section, we propose a new taxonomy for adaptive algorithms that learn a predic-
tive model from evolving data with unknown dynamics. The two main abstract concepts
are memory and forgetting data and/or models. We discuss a set of representative and
popular algorithms that implement adaptation strategies. The discussion is organized

4http://archive.darpa.mil/grandchallenge05/.
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Fig. 4. Four modules of adaptive learning systems with a taxonomy of methods.

Fig. 5. Taxonomy of memory properties of methods.

around four modules of adaptive learning algorithms that were identified in Figure 3:
memory, change detection, learning, and loss estimation. The main idea behind pre-
senting the taxonomy in four separate modules rather than a tree of methods is to
see adaptive learning systems as consisting of modular components, which can be per-
muted and combined with each other. An overview of the taxonomy is presented in
Figure 4, and the methods within each module are further detailed in Figures 5, 6, 7,
and 8.

3.1. Memory
Learning under concept drift requires not only updating the predictive model with
new information but also forgetting the old information. We consider two types of
memory: short-term memory represented as data and long-term memory represented
as generalization of data models. In this subsection, we analyze the short-term memory
under two dimensions as illustrated in Figure 5: (i) data management specifies which
data is used for learning, and (ii) forgetting mechanism specifies in which way old data
is discarded. The issues of long-term memory will be discussed in Section 3.3.

3.1.1. Data Management. The assumption behind the most of adaptive learning
algorithms is that the most recent data is the most informative for the current predic-
tion. Hence, data management typically aims at learning from the most recent data:
either a single example or multiple examples.

Single Example. Storing only a single example in memory has roots in online
learning algorithms that learn from one example at a time and do not have access
to the previous examples later. An online algorithm can process its input example
by example in the order of arrival without keeping the entire training dataset in

ACM Computing Surveys, Vol. 46, No. 4, Article 44, Publication date: March 2014.



44:12 J. Gama et al.

memory. Most online learners maintain a single hypothesis (which can originate from
a complex predictive model) and model updates are error driven. When a new example
Xt arrives, a prediction ŷt is made by the current hypothesis. When the true target value
yt is received, loss is computed and the current hypothesis is updated if necessary. An
example of such algorithms is WINNOW [Littlestone 1987], which is a linear classifier
system that uses a multiplicative weight-update scheme. The key characteristic of
WINNOW is its robustness to irrelevant features.

Online learning algorithms can be seen as naturally adaptive to evolving distribu-
tions, mainly due to their learning mechanisms that continuously update the model
with the most recent examples. However, online learning systems do not have explicit
forgetting mechanisms. Adaptation happens only as the old concepts are diluted due to
the new incoming data. Systems like WINNOW [Littlestone 1987] and VFDT [Domingos and
Hulten 2000] can adapt to slow changes over time. The main limitation is their slow
adaptation to abrupt changes, which depends on how sensible the model update with a
new example is set to be. Setting these parameters requires a tradeoff between stability
and sensitivity [Carpenter et al. 1991b]. Representative single instance memory sys-
tems that explicitly deal with concept drift include STAGGER [Schlimmer and Granger
1986], DWM [Kolter and Maloof 2003, 2007], SVM [Syed et al. 1999], IFCS [Bouchachia
2011a], and GT2FC [Bouchachia and Vanaret 2013].

Multiple Examples. Another approach to data management is to maintain a pre-
dictive model consistent with a set of recent examples. The algorithm family FLORA
[Widmer and Kubat 1996] is one of the first supervised incremental learning systems
for evolving data. The original FLORA algorithm uses a sliding window of a fixed length,
which stores the most recent examples in the first-in-first-out (FIFO) data structure.
At each time step, the learning algorithm builds a new model using the examples from
the training window. The model is updated following two processes: a learning process
(update the model based on the new data) and a forgetting process (discard data that
is moving out of the window). The key challenge is to select an appropriate window
size. A short window reflects the current distribution more accurately; thus, it can
ensure fast adaptation in times with concept changes, but during stable periods, a too
short window worsens the performance of the system. A large window gives a better
performance in stable periods, but it reacts to concept changes more slowly.

In general, the training window size can be fixed or variable over time.

Sliding windows of a fixed size. Store in memory a fixed number of the most recent
examples. Whenever a new example arrives, it is saved to memory and the oldest
one is discarded. This simple adaptive learning method is often used as a baseline
in evaluation of new algorithms.

Sliding windows of variable size. Vary the number of examples in a window over
time, typically depending on the indications of a change detector. A straightforward
approach is to shrink the window whenever a change is singled such that the training
data reflects the most recent concept and grow the window otherwise.

One of the first algorithms using an adaptive window size was the FLORA2 [Widmer
and Kubat 1996]. Incoming examples are added to the window and the oldest ones
are deleted. Addition and deletion keep the window (and the predictive model) consis-
tent with the current concept. Further versions of the algorithm deal with recurring
concepts (FLORA3) and noisy data (FLORA4). A later study [Klinkenberg and Joachims
2000] presents a theoretically supported method for recognizing and handling con-
cept changes with support vector machines (SVMs). This method maintains a window
over the training examples with an appropriate size. The key idea is to adjust the
window size based on the estimate of the generalization error. At each time step, the
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algorithm builds a number of SVM models using various window sizes and selects
the the window size that minimizes the leave-one-out error estimate as the training
window.

Learning windows of variable length appear in Maloof and Michalski [1995],
Klinkenberg [2004], Gama et al. [2004], and Kuncheva and Zliobaite [2009]. The as-
sumption behind relying on windowing is that the recency of the data is associated with
relevance and importance. Unfortunately, this assumption may not be true in every
circumstance. For instance, when the data is noisy or concepts reoccur, recency of data
does not mean relevance. Moreover, if slow change lasts longer than the window size,
windowing may fail as well.

3.1.2. Forgetting Mechanism. The most common approach to deal with evolving data
generated from processes with unknown dynamics is forgetting the outdated obser-
vations. The choice of a forgetting mechanism depends on the expectations that we
have regarding changes in data distribution and what tradeoff between reactivity and
robustness to noise of the system is required. The more abrupt forgetting is, the faster
the reactivity, but also the higher the risk is of capturing noise.

Abrupt Forgetting. At each time, a set of observations defines a window of the
information considered for learning. Abrupt forgetting, or partial memory, refers to the
mechanisms where a given observation is either inside or outside the training window.
Several window models have been presented in the literature. Two basic types of sliding
windows are [Babcock et al. 2002] (i) sequence based, where the size of a window is
characterized by the number of observations, and (ii) timestamp based, where the size
of a window is defined by duration time.

There are two models for sequence-based windows: sliding windows of size j and
landmark windows. A sliding window stores only the most recent examples in the first-
in-first-out (FIFO) data structure, while a landmark window stores all the examples
after a given timsetamp, which is called a landmark. A landmark window is a window
of variable size. A timestamp-based window of size t includes all the elements that
arrived within the time from t units of time back until now. Learning systems that use
abrupt forgetting were discussed in the previous section.

One of the alternatives to overcome windowing, especially fixed windowing, is sam-
pling. The goal is to summarize the underlying characteristics of a data stream over
long periods of time such that every included sample is drawn uniformly from the
stream. One well-known algorithm is the reservoir sampling [Vitter 1985]. The goal of
the reservoir sampling is to obtain a representative sample for the observed stream.
It operates as follows. When the ith item arrives, it is stored in the reservoir with
the probability p = k/i, where k is the size of the reservoir, and discarded with the
probability 1 − p. If positive, then a randomly chosen sample is discarded from the
reservoir to free space for the new sample. A number of sampling techniques have been
investigated, like in Al-Kateb et al. [2007], Efraimidis and Spirakis [2006], Aggarwal
[2006], and Rusu and Dobra [2009]. Reservoir sampling has been discussed in some
studies related to drift and change detection and as an alternative to windowing in Ng
and Dash [2008], Yao et al. [2012], and Zhao et al. [2011].

Gradual Forgetting. Gradual forgetting is a full memory approach, which means
that no examples are completely discarded from the memory. Examples in memory are
associated with weights that reflect their age. Example weighting is based on a simple
intuition that the importance of an example in the training set should decrease with
its age. Suppose that at time i, the stored sufficient statistics is Si−1 and we observe
an example Xi. Assuming an aggregation function G(X, S), the new sufficient statistics
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Table I. Categorization of Memory Techniques

Data Management
Single Example [Schlimmer and Granger 1986], [Littlestone 1987]

[Domingos and Hulten 2000],
[Kuncheva and Plumpton 2008], [Kelly et al. 1999]
[Bouchachia 2011a], [Ikonomovska et al. 2011]
[Salganicoff 1997], [Widmer and Kubat 1996],

Fixed Size [Syed et al. 1999], [Hulten et al. 2001], [Lazarescu
et al. 2004],

Multiple Examples [Bifet and Gavalda 2006, 2007], [Gomes et al. 2011]
[Maloof and Michalski 1995], [Klinkenberg 2004],

Variable Size [Gama et al. 2004],
[Zhang et al. 2008], [Kuncheva and Zliobaite 2009]

Forgetting Mechanisms

Temporal
Sequences

[Salganicoff 1997], [Widmer and Kubat 1996],
Abrupt Forgetting [Forman 2006], [Klinkenberg 2004], [Pechenizkiy

et al. 2009]
Sampling [Ng and Dash 2008], [Yao et al. 2012], [Delany et al.

2005]
[Zliobaite 2011a], [Zhao et al. 2011], [Salganicoff
1993]

Gradual Forgetting [Koychev 2000, 2002], [Helmbold and Long 1994],
[Klinkenberg 2004], [Koren 2010]

Fig. 6. Taxonomy of control properties of methods.

are computed as Si = G(Xi,αSi−1), where α ∈ (0, 1) is the fading factor; this way the
oldest information becomes the least important.

Linear decay techniques can be found in Koychev [2000, 2002], and a technique
for exponential decay is presented in Klinkenberg [2004]. The latter technique weights
examples according to their age using an exponential aging function wλ(X ) = exp(−λj),
where the example X appeared j time steps ago. The parameter λ controls how fast the
weights decrease. For larger values of λ, a lower weight is assigned to old examples,
as they are deemed to be less informative for the current prediction. If λ = 0, all the
examples have the same weight.

The memory methods are summarized in Table I.

3.2. Change Detection
The change detection component refers to the techniques and mechanisms for explicit
drift and change detection. It characterizes and quantifies concept drift by identifying
change points or small time intervals during which changes occur [Basseville and
Nikiforov 1993]. We consider the following dimensions as illustrated in Figure 6:
(i) methods based on sequential analysis, (ii) methods based on control charts, (iii)
methods based on differences between two distributions, and (iv) heuristic methods.

We already pointed out that online learning systems, without any explicit change
detection mechanism, can adapt to evolving data. The advantage of explicit change
detection is providing information about the dynamics of the process generating data.
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A typical section strategy monitors the evolution of the performance indicators
[Widmer and Kubat 1996; Zeira et al. 2004] or raw data and statistically compares
them to a fixed baseline. A seminal work in adaptive learning with monitoring per-
formance indicators is the FLORA family of algorithms. The FLORA2 algorithm [Widmer
and Kubat 1996] includes a window adjustment heuristic for a rule-based classifier.
To detect concept changes, the accuracy and the coverage of the current model are
monitored and the window size is adapted accordingly. In the context of information
filtering, monitoring the values of three performance indicators—accuracy, recall, and
precision—has been proposed [Klinkenberg and Renz 1998]. The posterior of each in-
dicator is compared to the standard sample errors of a moving average value.

3.2.1. Detectors Based on Sequential Analysis. The Sequential Probability Ratio Test
(SPRT) [Wald 1947] is the basis for several change detection algorithms. Let Xn

1 be
a sequence of examples, where the subset of examples Xw

1 , 1 < w < n is generated from
an unknown distribution P0, and the subset Xn

w is generated from another unknown
distribution P1. When the underlying distribution changes from P0 to P1 at point w, the
probability of observing certain subsequences under P1 is expected to be significantly
higher than that under P0. Significance means that the ratio of the two probabilities
is not smaller than a threshold. Assuming that observations Xi are independent, the
statistic for testing the hypothesis that a change point occurred at time w against the
null hypothesis that there was no change at time w is given by

T n
w = log

P(xw . . . xn|P1)
P(xw . . . xn|P0)

=
n∑

i=w

log
P1[xi]
P0[xi]

= T n−1
w + log

P1[xn]
P0[xn]

, (3)

and a change is signaled if T n
w > L, where L is a user-defined threshold.

The cumulative sum (CUSUM) is a sequential analysis technique due to Page [1954]
that uses principles of SPRT. It is often used for change detection. The test outputs an
alarm when the mean of the incoming data significantly deviates from zero. The input
for the test is a residual from any predictor, for instance, the prediction error from a
Kalman filter. The CUSUM test is given by gt = max(0, gt−1 + (xt − δ)) (g0 = 0), and
the decision rule is if gt > λ then signal an alarm followed by setting gt = 0. Here xt
stands for the current observed value, δ corresponds to the magnitude of changes that
are allowed, t is the current time, and λ is a user-defined threshold. Since this rule only
detects changes in the positive direction, when negative changes need to be found, min
should be used instead of max. In this case, a change is signaled when gt is less than a
(negative) threshold λ. The CUSUM test is memoryless, and its accuracy depends on
the choice of parameters δ and λ. Both parameters control the tradeoff between earlier
detecting the true changes and allowing more false alarms. Low values of δ allow faster
detection, at a cost of increased number of false alarms. CUSUM has been applied in
stream mining, for example, by Muthukrishnan et al. [2007].

The Page-Hinkley [Page 1954] test (PH) is a variant of CUSUM. It is a sequential
analysis technique typically used for change detection in signal processing. It allows
efficient detection of changes in the normal behavior of a process established by a
model. The PH test is a sequential adaptation of the detection of an abrupt change in
the average of a Gaussian signal [Mouss et al. 2004]. The test variable mT is defined
as the cumulative difference between the observed values and their mean up until the
current time: mT =

∑T
t=1(xt − x̄T −δ), where x̄T = 1

T
∑T

t=1 xt and δ specifies the tolerable
magnitude of changes. The minimum mT is defined as MT = min(mt, t = 1 . . . T ). PH
tests for the difference between MT and mT : PHT = mT − MT . When this difference
is greater than a threshold (λ) (user defined), a change is flagged. Larger λ will entail
fewer false alarms but might miss some changes.
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Similar to the online versions of CUSUM and PH tests, Shiryae’s Bayesian test
[Shiryaev 2009; Tartakovsky and Moustakides 2010] rely on online thresholding, that
is, as soon as the computed statistic exceeds a preset threshold ε, the change is diag-
nosed. The accuracy of such detection methods often depends on the false alarm rate
and the misdetection rate. Some of these methods are further explained in the following
subsections.

3.2.2. Detectors Based on Statistical Process Control. Control charts, or statistical process
control (SPC), are standard statistical techniques to monitor and control the quality of
a product during a continuous manufacturing. SPC considers learning as a process and
monitors the evolution of this process. Drift detection methods based on SPC appear
in Klinkenberg and Renz [1998], Lanquillon [2002], Gama et al. [2004], Gomes et al.
[2011], and Bouchachia [2011a].

Let pairs (Xi, yi) form a sequence of examples. For each example, the model predicts
ŷi, which can be either true (ŷi = yi) or false (ŷi ̸= yi). For a set of examples, the error
is a random variable from Bernoulli trials. The binomial distribution gives a general
form of the probability for the random variable that represents the number of errors in
a set of n examples. For each point i in the sequence, the error rate is the probability pi

of observing false with the standard deviation σi =
√

pi(1 − pi)/i. The drift detector
manages two registers during the model operation, pmin and σmin. At time i, after casting
the prediction for the current example and verifying the prediction error, if pi + σi is
lower than pmin + σmin, then pmin = pi and σmin = σi.

For a sufficiently large number of observations, the binomial distribution is closely
approximated by the normal distribution with the same mean and variance. Consider-
ing that the probability distribution should not change unless a concept drift happens,
the 1− δ/2 confidence interval for pi with n > 30 examples is approximately pi ±α ×σi.
The parameter α depends on the desired confidence level. A commonly used confi-
dence level for Warning is 95% with the threshold pi + σi ≥ pmin + 2 ∗ σmin, and for
Out-of-Control is 99% with the threshold pi + σi ≥ pmin + 3 ∗ σmin.

Suppose at time j an example (Xj, yj) arrives and the model prediction leads to pj
and σ j . The system is defined to be in one of the following three states:

(1) In-Control while pj + σ j < pmin + 2 × σmin. The error of the system is stable. The
example Xj is deemed to come from the same distribution as the previous examples.

(2) Out-of-Control whenever pj + σ j ≥ pmin + 3 × σmin. The error has increased sig-
nificantly as compared to the recent past examples. With a probability of 99%, the
recent examples come from a different distribution than the previous examples.

(3) Warning state is in between the two previous states. The error is increasing
but has not reached Out-of-Control yet. This is a not a decisive state. The er-
ror may be increasing due to noise, drift, or a small deficiency of the predic-
tive model. This state signals that more examples are required for confirming a
drift.

SPC can be used to measure the rate of change as the time between Warning and
Out-of-Control. Short times indicate fast changes; longer distances indicate slower
changes. The rate of change can also be measured as the rate errors to the number of
examples during Warning. SPC relies on the estimates of the error variance to define
the action bounds, which shrink as the confidence of the error estimates increases. SPC
can be implemented inside incremental learning algorithms or as a wrapper to batch
algorithms (see Algorithm 3 in online Appendix A).

The exponentially weighted moving average (EWMA) algorithm [Ross et al. 2012]
advances on similar ideas. The EWMA computes a recent estimate of the error rate, µt,
by progressively down-weighting older data: Z0 = µ0 and Zt = (1 − λ)Zt−1 + λet, t > 0,
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where et is the error at the current example. It can be shown that, independently
of the distribution of Xt, the mean and standard deviation of Zt are µZt = µt and
σZt =

√
λ

2−λ
(1 − (1 − λ)2t)σx, where σx is the standard deviation of the stream. Assume

that before the change point µt = µ0. The EWMA estimator Zt fluctuates around this
value. When a change occurs, the value of µt changes to µc and Zt will react to this by
diverging from µ0 toward µc. A change is signaled when Zt > µ0 + LσZt . The parameter
L, the control limit, determines how far Zt must diverge from µ0 before a change alarm
is issued.

3.2.3. Monitoring Distributions on Two Different Time Windows. These methods typically use
a fixed reference window that summarizes the past information and a sliding detec-
tion window over the most recent examples. Distributions over these two windows are
compared using statistical tests with the null hypothesis stating that the distributions
are equal. If the null hypothesis is rejected, a change is declared at the start of the
detection window. The windows can monitor univariate or multivariate raw data (sep-
arately for each class), evolving model parameters of performance indicators [Dries
and Ruckert 2009]. The two windows can be of equal or progressive sizes and different
window positioning strategies may be employed [Adae and Berthold 2013].

Comparing distributions on two detection windows5 in the context of data streams
has been introduced in Kifer et al. [2004]. Examples from two windows are com-
pared with statistical tests based on the Chernoff bound to decide whether the
two distributions are different. In the same line, the technique VFDTc [Gama et al.
2006] has the ability to deal with concept drift, by continuously monitoring dif-
ferences between two distribution classes of examples: the distribution when a
node was a leaf and the weighted sum of the distributions in the children of that
node.

Vorburger and Bernstein [2006] present an entropy-based metric to measure the
distribution inequality between two sliding windows including respectively older and
more recent examples. If the distributions are equal, the entropy measure results in
a value of 1, and if they are absolutely different, the measure will result in a value of
0. The entropy measure is continuously monitored over time, and a drift is signaled
when the entropy measure falls below a user-defined threshold. Other change detection
methods in this category [Dasu et al. 2006; Sebastião and Gama 2007] use the Kullback-
Leibler (KL) divergence between the probability distributions of two different windows
(old and recent) for detecting possible changes.

An illustrative example is presented in Bach and Maloof [2008]. It uses two models:
stable and reactive. The stable model predicts based on a long history, whereas the
reactive model predicts based on a short recent time window. The technique uses the
reactive model as an indicator of concept drift, and it uses the stable model to make
predictions, since the stable model performs better than the reactive model when ac-
quiring a target concept. The drift detection method uses the differences in accuracy
between the two models to determine when to replace the current stable model, since
the stable model performs worse than the reactive model when the target concept
changes. Nishida and Yamauchi [2007] also consider two accuracies: the accuracy es-
timated over all the stream and the accuracy estimated over a sliding window of the
most recent examples. A concept drift is signaled whenever a significant decrease in
the recent accuracy is observed.

5Note that the detection windows are conceptually different from training windows. They may coincide in
size. The detection windows are used for estimating data distribution and are typically paired. The training
windows determine the training dataset for the learning algorithm when producing a model.
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The ADaptive sliding WINdow or ADWIN [Bifet and Gavalda 2006, 2007] is another
change detector using a detection window. Let x1, x2, x3, . . . , xt be a sequence of real
valued data. ADWIN requires the input sequence to be bounded xt ∈ [0, 1], which can be
achieved by rescaling of the original data as long as the lower and the upper bound of the
values are fixed. Denote as µt the expected value of xt when it is drawn according to Dt;
ADWIN does not assume any particular data distribution. ADWIN slides a fixed detection
window W on the most recently read xi. Let µ̂W denote the (known) average of the
examples within W , and µW the (unknown) average of µt for t ∈ W . ADWIN is summarized
in Algorithm 2 in the online Appendix, it operates as follows. Whenever two large
enough (sub)windows of W exhibit distinct enough means, the algorithm concludes that
the expected values within those windows are different, and the older (sub)window
is dropped. Large enough and distinct enough are defined by the Hoeffding bound,
testing whether the average of the two (sub)windows is larger than ϵcut computed as
ϵcut :=

√
1

2m · ln 4|W |
δ

, where |W | denotes the length of a (sub)window; m is the harmonic
mean of |W0| and |W1|, that is, m = 2

1/|W0|+1/|W1| ; and δ ∈ (0, 1) is a user-defined confidence
parameter, the recommended value for which is 0.2.

The main limitation of the detection methods based on monitoring two distributions
as compared to sequential detectors discussed before is the memory requirements.
While sequential detectors do not need to store the incoming data, the distribution-
based detectors need to store data within the two windows. The main advantage is
more precise localization of the change point (although with a delay of at least W
samples). ADWIN can be equipped with compression using a variant of the exponential
histogram [Datar et al. 2002]. Therefore, it does not need to store all the examples from
the detection window W ; it stores this data in only O(log W) memory and O(log W)
processing time per item, rather than the O(W).

The adaptation techniques discussed next have originally been coupled with spe-
cific change detectors. In general, a strategy can deploy any detector, since the main
information that is needed from a detector is whether a change has occurred or not.

3.2.4. Contextual Approaches. Splice system [Harries et al. 1998] presents a meta-
learning technique that implements a context-sensitive batch-learning approach.
Splice is designed to identify intervals with stable hidden context and to induce and
refine local concepts associated with these contexts. The idea is to use a timestamp of
the examples as an input feature to a batch classifier. In the first stage, examples are
augmented with a timestamp feature, and a decision tree is learned. If the decision
tree finds splits on the timestamp feature, the partitions on that feature suggest differ-
ent contexts. In the second phase, C4.5 is applied to each partition to find the interim
(temporal) concepts.

Independently of whether a time windowing is used, robust approaches that yield a
balance between incremental learning and forgetting are needed to deal with changing
environments. This idea was applied in the incremental fuzzy classification system
(IFCS) algorithm [Bouchachia 2011a], which maintains a set of prototypes. That is,
each class is represented/covered by many clusters. Three mechanisms, called staleness,
penalization, and overall accuracy, are used. The first two measures tackle the problem
of model complexity as well as gradual drift. If one of the two measure values falls below
a very small threshold, called removal threshold, the prototype is removed. The last one
is intended for handling gradual and abrupt drift. Staleness tracks the activity of the
prototype in making decisions about the new input, and such an activity indicates that
the recent incoming new input emanates from the input space covered by the prototype.
Stale prototypes tend to cover obsolete regions. To express the staleness mechanism,
the following formula is used: w(i) = ζ t−at , where t and at indicate, respectively, the
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Table II. Complexity of Change Detection Algorithms, W Is the Size of the Detection Window

Approach Memory at t Processing at t Example algorithms
sequential analysis O(1) O(1) CUSUM, PH
statistical process control O(1) O(1) SPC
monitoring two distributions O(log W ) − O(W ) O(log W ) − O(W ) ADWIN

Fig. 7. Taxonomy of learning properties of methods.

current time index and the last time the prototype i was a winner. Small values of the
forgetting factor ζ accelerate the reduction in the weight. The weights are associated
with the prototypes. Their value for stale prototypes decays and for active prototypes
it reinforces. Clearly, if the staleness is long (i.e., t − at is large enough), wi diminishes
and then the prototype vanishes.

The second mechanism focuses on tracking the accuracy of the decisions made and
thus observing the evolution of the model in terms of consistency with the recent
input patterns. The aim is to ensure that the accuracy does not deteriorate (at least
significantly). The following formula has been used: zi = λsi , where si is number of errors
made by the prototype since it has been created. The weight decreases exponentially
as the number of errors increases. The smaller the value of λ, the more quickly are the
forgetting speed and the model update. The third mechanism is the statistical process
control (SPC) criterion, which is explained in Section 3.2.2 and which aims at handling
gradual and abrupt changes based on the number of errors produced by the learning
model during prediction.

Table II summarizes properties of the presented change detection algorithms. Over-
all, comparing two distributions for change detection requires more computational
resources than detecting based on the evolution of indicators, but potentially may give
more precise information about the location of change. Table III summarizes the main
change detection techniques.

3.3. Learning
The learning component refers to the techniques and mechanisms for generalizing
from examples and updating the predictive models from evolving data. This section is
organized as follows: (i) learning mode refers to model updating when new data points
are available; (ii) model adaptation analyzes the behavior of predictive models on time-
evolving data; (iii) model management refers to the techniques for maintaining active
predictive models.
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Table III. Categorization of Change Detection Techniques

Detection Methods
Sequential analysis [Wald 1947], [Page 1954], [Mouss et al. 2004]

[Muthukrishnan et al. 2007], [Ikonomovska et al. 2011]
Control charts [Lanquillon 2002], [Gama et al. 2004]

[Kuncheva 2009], [Gomes et al. 2011], [Ross et al. 2012]
[Kifer et al. 2004], [Bifet and Gavalda 2006, 2007]

Monitoring two distributions [Vorburger and Bernstein 2006], [Leeuwen and Siebes 2008]
[Gama et al. 2006], [Nishida and Yamauchi 2007], [Bach and Maloof 2008],
[Dries and Ruckert 2009], [Kuncheva 2013]

Contextual [Harries et al. 1998], [Klinkenberg 2004]

3.3.1. Learning Mode. Whenever new labeled examples are available, the learning sys-
tem might update the model. We consider two different learning modes: retraining
that discards the current model and builds a new model from scratch using buffered
data, and incremental adaptation updates of the model.

Retraining approaches need some data buffer to be stored in memory. Retraining
has been used to emulate incremental learning with batch-learning algorithms [Gama
et al. 2004]. At the beginning, a model is trained with all the available data. Next,
whenever new data arrives, the previous model is discarded, the new data is merged
with the previous data, and a new model is learned on this data [Street and Kim 2001;
Zeira et al. 2004; Klinkenberg and Joachims 2000].

Incremental approaches update the current model using the most recent data. In-
cremental algorithms process input examples one by one and update the sufficient
statistics stored in the model after receiving each example. They might have access to
previous examples or summaries of examples. This is the case of CVFDT [Hulten et al.
2001] described in the next section. The online learning mode updates the current
model with the most recent example. They are error driven, updating the current model
depending on whether it misclassifies the current example. Examples include WINNOW
[Littlestone 1987] and MBW [Carvalho and Cohen 2006]. MBW [Carvalho and Cohen 2006]
refers to well-known algorithms, including perceptron and multilayer perceptrons, that
have been traditionally trained using several passes through the training data; when
restricted to a single training pass over the data they are particularly relevant for
massive and streaming data [Carvalho and Cohen 2006]. The origins of online learn-
ing go back to the late 1960s, with Perceptron [Rosenblatt 1958], and the early 2000s,
with the advent of the paradigm of “prediction with expert advice” [Cesa-Bianchi and
Lugosi 2006]. The early work appeared in a number of seminal papers [Littlestone 1987;
Littlestone and Warmuth 1994; Herbster and Warmuth 1998; Vovk 1998]. The model
is updated with the current example. As time goes on, the newly arrived data tend to
erase away the prior patterns. In models, such as artificial neural networks, learning
is inevitably connected with forgetting. The ability to continuously learn from a stream
of examples while preserving previously learned knowledge is known as the stability-
plasticity dilemma [Carpenter et al. 1991a]. It is a dilemma because there needs to be
a balance between being stable to handle noise and being able to learn new patterns.
Some artificial neural networks completely forget the past patterns when exposed to a
new set of patterns; this phenomenon is known as [French 1994; Polikar et al. 2001].

Streaming algorithms are online algorithms for processing high-speed continuous
flow of data. Examples are processed sequentially and can be examined in only a
few passes (typically just one). These algorithms use limited memory and control the
available memory. For example, Hoeffding trees [Domingos and Hulten 2000] and
variants VFDTc [Gama et al. 2006] or FIMT-DD [Ikonomovska et al. 2011] are able to
freeze leaves when memory becomes scarce.
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3.3.2. Adaptation Methods. The adaptation strategies manage adaptation of the predic-
tive model. They fall into two major types: blind and informed.

The blind adaptation strategies adapt the model without any explicit detection of
changes. Blind adaptation typically uses techniques as fixed-size sliding windows that
take a window size w as a parameter and periodically retrain the model with the
latest w examples, and example weighting that considers the importance of training
examples [Widmer and Kubat 1996; Klinkenberg and Renz 1998; Klinkenberg and
Joachims 2000; Lanquillon 2002].

A special case of blind adaptation is incremental and online learning where the
model evolves with data. Without any strategy to explicitly detect concept drift, the
model adapts to the most recent data. A paradigmatic example is VFDT [Domin-
gos and Hulten 2000]. In VFDT, new examples update statistics in the leaves of the
current model. As the tree grows and new leaves are generated, the label in these
leaves reflects the most recent concepts. The blind strategies are proactive; they
update the model based on the loss function. The main limitation of the blind ap-
proaches is slow reaction to concept drift in data. The blind approaches forget old
concepts at a constant speed independently of whether changes are happening or not.
When changes are happening, it may be more beneficial to discard old data faster,
and to discard old data slower or not discard at all at times when changes are not
happening.

The informed strategies are reactive; their actions depend on whether a trigger has
been flagged [Bifet and Gavalda 2006; Hulten et al. 2001]. Triggers can be either change
detectors (examples described in Section 3.2) or specific data descriptors that we will see
in the reoccurring concept management techniques [Widmer and Kubat 1996]. Change
detectors can be independent from the adaptation strategy (e.g., the adaptive training
window technique) or they can be closely integrated with the adaptation strategy
[Gama et al. 2006; Ikonomovska et al. 2011], which we refer to as model-integrated
detectors [Gama et al. 2006].

The reaction to a drift signal might apply to the model as a whole or might explore
characteristics of the language used to represent generalization of examples.

Global Replacement. Informed adaptation in global models (such as linear regres-
sion, discriminant classifiers, naive Bayes) requires full reconstruction of the model.
This is the most radical reaction to a drift. The full model is deleted and a new model
is started from scratch. This strategy has been widely used (e.g., [Gama et al. 2004;
Street and Kim 2001; Zeira et al. 2004; Klinkenberg and Joachims 2000].

Local Replacement. In many cases, changes occur only in some regions of the data
space. For example, in spam filtering, the spammers may start using combinations
of words such as “Facebook support” that were previously associated with legitimate
emails. This change in the concept of spam will affect only a small subset of all the
incoming emails [Carmona-Cejudo et al. 2010].

Granular models, such as decision rules or decision trees, can adapt parts of the
model. In a decision tree (or decision rules), each node (or rule) covers a hyperrectangle
in the data space. Thus, such decomposable models only need to adapt those nodes that
cover the region of the data space affected by concept drift. CVFDT [Hulten et al. 2001]
continuously monitors the quality of previous decisions (split features) in a sliding
window of a fixed size over the most recent data. CVFDT maintains a window of training
examples; whenever a new example is read, it is added to the statistics at all the nodes
in the tree that it passes through, the last example in the window is forgotten from
every node where it had previously had an effect, and the validity of all statistical tests
is checked. If CVFDT detects a change, it starts growing an alternate tree in parallel,
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which is rooted at the newly invalidated node. When the alternate is more accurate on
new data than the original, the original is replaced by the alternate and freed.

Each node in a Hoeffding tree captures statistics from a time window over the stream.
The root node receives the oldest examples; the leaf nodes receive the most recent ex-
amples. Nodes near the root were generated using examples older than those that
generated nodes near the leaves. This observation is on the basis of sequential regu-
larization [Gama et al. 2006; Ikonomovska et al. 2011]. The technique compares the
distribution of the errors at leaves to the distribution of the errors at upper nodes in the
tree. Recall that the leaves contain the most recent information and the upper nodes
contain older information. Thus, if the two error distributions are significantly differ-
ent, that is interpreted as a concept drift. In Gama et al. [2006], when a concept change
is detected, the system adapts the model, assuming that the most recent information
contains the useful information about the current concept. The statistics of the most
recent examples incorporated in the tree are stored in the leaves. Therefore, supposing
that the change of concept was detected in the node i, the reaction method pushes
up all the information of the descending leaves to the node i, namely, the sufficient
statistics and the class distributions. The decision node becomes a leaf and the subtree
rooted at the decision tree is pruned. This forgetting mechanism removes the outdated
information.

3.3.3. Model Management. Ensemble learning maintains in memory an ensemble of
multiple models that make a combined prediction. Adaptive ensembles are often mo-
tivated by the assumption that during a change, data is generated from a mixture
distribution, which can be seen as a weighted combination of distributions character-
izing the target concepts, and each individual model models a distribution [Scholz and
Klinkenberg 2007]. The final prediction is typically a weighted average of the individ-
ual predictions, where the weight reflects the performance of the individual models on
the most recent data. The weights change over time.

Ensemble methods for dynamically changing data can be categorized [Kuncheva
2004] into three types: (i) dynamic combination, where base learners are trained in
advance and dynamically combined to respond to changes in the environment by modi-
fying the combination rule (WINNOW or weighted majority [Littlestone 1987; Blum 1997;
Tsymbal et al. 2006; Widmer and Kubat 1996]); (ii) continuous update of the learners
such that the learners are either retrained in a batch mode or updated online using new
data [Breiman 1999; Fern and Givan 2003; Oza 2001] (the combination rule may or may
not change in the process); (iii) structural update, where new learners are added (or ex-
isting ones are activated if they have been deactivated before) and inefficient ones are
removed (or deactivated) [Kolter and Maloof 2003; Street and Kim 2001; Bouchachia
2011b]. These three categories do not necessarily need to be mutually exclusive; it is
technically possible to combine two or all three of these strategies.

In connection to data drift and online learning, the application of ensemble learning
has been the subject of some investigations over recent years. For instance, in Elwell
and Polikar [2011], a batch-based ensemble of classifiers, called Learn++.NSE, is pro-
posed to deal with concept drift. The proposed algorithm aims at coping with drift
regardless of the rate and type of drift and the number of concept classes present at
any time. For each new batch of data, a new classifier is trained and combined using a
dynamically weighted majority voting strategy.

In Minku et al. [2010], diversity of the learning ensemble is investigated in the
presence of different types of drifts. The study shows that before the drift occurs,
ensembles with less diversity obtain lower test errors, but shortly after the drift occurs,
highly diverse ensembles are better regardless of the type of drift. Longer after the drift,
high diversity becomes less important.
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The SEA algorithm [Street and Kim 2001] is one of the first techniques to handle
concept drift with classifier ensembles learned from streaming data. It trains a separate
classifier on each sequential batch of training examples. A trained classifier is added
to a fixed-size ensemble, while the worst-performing classifier is discarded. The final
prediction is made using a simple majority voting.

A seminal work is the dynamic weighted majority algorithm (DWM) [Kolter and
Maloof 2003, 2007], which is an adaptive ensemble based on the weighted majority
algorithm [Littlestone 1987]. It can be used with any online learning algorithm in time-
changing problems with unknown dynamics. DWM maintains an ensemble of predictive
models, each with an associated weight. Models are generated by the same learning
algorithm on different batches of data. DWM dynamically creates and deletes experts in
response to changes in performance. DWM makes predictions using a weighted-majority
vote of these models, and the weights are dynamically changing. The weights of all
the models that misclassified the current example are decreased by a multiplicative
constant β. If the overall prediction is incorrect, a new expert is added to the ensemble
with weight equal to 1. Finally, all the models are incrementally updated with the
current example. To avoid creating an excessive number of models, DWM removes poorly
performing experts when their weight falls below a threshold. A variant of DWM called
AddExp [Kolter and Maloof 2005] is an extension for classification and regression that
intelligently prunes some of the previously generated models.

A similar approach, but using a weight schema similar to boosting and explicit
change detection, appears in Chu and Zaniolo [2004]. A boosting-like approach to
train a classifier ensemble from evolving data streams is also proposed in Scholz and
Klinkenberg [2007], where the dynamics of classifier weights are controlled by the lift
measure instead of accuracy, which measures the correlation between predictions and
their true label.

A general framework for mining concept-drifting data streams using weighted en-
semble classifiers has been proposed in Wang et al. [2003]. An ensemble of predic-
tive models (e.g., C4.5, RIPPER, naive Bayes) is trained on sequential batches of a
data stream. Weighted voting is used to make the final prediction, and the weights
follow the expected predictive accuracy of each model. Suppose we have a training
dataset D and a classifier Li. Let c be the true label of example X and Mc(X ) be
the probability that X belongs to class c output by Li. The mean square error of the
classifier is MSE = 1

|D|
∑

X∈D(1 − Mc(X ))2. The weight of the classifier L should be
reversely proportional to its MSE; the weight reflects the benefit of using this indi-
vidual model in comparison to a random classifier. The MSE of a random classifier is
MSEr =

∑
c p(c) × (1 − p(c))2, where p(c) is the probability of observing class c. Thus,

the weight wi of a classifier Li is wi = MSEr − MSEi.
A notable technique DDD [Minku and Yao 2011] equips a dynamic ensemble with a

diversity control mechanism and also uses an internal drift detection to speed up adap-
tation. Initially, the model is composed of two ensembles: a low-diversity ensemble and
a high-diversity ensemble. Both ensembles are trained with incoming examples, but
only the low-diversity ensemble is used for predicting. The weights of individual models
are proportional to the prequential accuracy (described in Section 4). DDD assumes that
if there is no convergence of the underlying distributions to a stable concept, there is a
drift. DDD then allows use of the high-diversity ensemble for predictions. Online bagging
(corresponding to sampling with replacement) is used to control diversity levels in the
two ensembles.

Reoccurring Concept Management. FLORA3 [Widmer and Kubat 1996] is the
first adaptive learning technique for the tasks where concepts may reoccur over time.
More recent works discussing reoccurring concepts appear in Widmer [1997], Yang
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Table IV. Categorization of Learning Techniques

Learning Mode
Retraining [Street and Kim 2001], [Zeira et al. 2004], [Klinkenberg and

Joachims 2000]
Incremental [Schlimmer and Granger 1986], [Littlestone 1987],

[Bifet et al. 2009], [Hulten et al. 2001], [Polikar et al. 2001]
Streaming [Gama et al. 2006], [Ikonomovska et al. 2011]
Adaptation Methods
Blind [Littlestone 1987], [Maloof and Michalski 2000], [Klinkenberg and

Renz 1998]
[Chu and Zaniolo 2004], [Bessa et al. 2009]

Informed [Hulten et al. 2001], [Gama et al. 2006], [Ikonomovska et al. 2011]
Model Adaptation
Model Specific [Hulten et al. 2001], [Gama et al. 2006], [Harries et al. 1998]
Model Independent [Wald 1947], [Gama et al. 2004], [Wang et al. 2003]

[Bifet and Gavalda 2006], [Kuncheva and Zliobaite 2009]
Model Management
Single Model [Hulten et al. 2001], [Gama et al. 2006], [Ikonomovska et al. 2011]

Recurrent [Widmer 1997], [Gama and Kosina 2011]
Ensemble [Polikar et al. 2001], [Street and Kim 2001], [Kolter and Maloof

2005],
[Gao et al. 2007], [Minku and Yao 2011], [Elwell and Polikar 2011]

Recurrent [Yang et al. 2006], [Katakis et al. 2010], [Gomes et al. 2011]

Fig. 8. Taxonomy of loss estimation properties of methods.

et al. [2006], Katakis et al. [2010], and Gama and Kosina [2011]. In such settings,
instead of discarding outdated models, it might be useful to store the learned models
in a sleeping mode. Following this idea, the work presented in Gama and Kosina
[2011] discusses a generic framework that identifies context using drift detection,
characterizes contexts using meta-learning, and selects the most appropriate predictive
model for the incoming data using unlabeled examples. The proposed framework is
based on a meta-learning schema that aims to recognize the area of applicability of the
individual model. Table IV summarizes the main adaptive learning techniques.

3.4. Loss Estimation
Supervised adaptive systems rely on loss estimation based on environment feedback.
The discussion in this section is closely related with the performance-related metrics
discussed in Section 4.2.

Model Dependent. As we previously noted, Klinkenberg and Joachims [2000] rec-
ognize and handle concept changes using properties of support vector machines. Their
method maintains a window over the training examples that minimizes the leave-one-
out error estimate. The key idea is to get an estimate of the generalization error using
the so-called ςα-estimates, an efficient method for estimating the leave-one-out error
of SVM. Leave-one-out estimators are accurate estimators but usually very expensive:
one must run the learner so many times as the number of training examples. For SVM,
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Table V. Categorization of Loss Estimation Techniques

Loss Estimation
Model Dependent [Klinkenberg and Joachims 2000], [Zliobaite and Kuncheva 2009]
Model Independent Sliding Window [Maloof and Michalski 1995], [Klinkenberg 2004], [Bach and

Maloof 2008],
[Nishida and Yamauchi 2007], [Gama et al. 2013]

Fading Factors [Koychev 2000], [Koychev 2002], [Gama et al. 2013]

ςα-estimate can be computed for free once an SVM has been trained. It is computed
as the percentage of training points that are between the margins. The theoretical
properties of this estimator are discussed in Joachims [2000]. Analytical loss estima-
tion for the linear discriminant classifiers can be found in Zliobaite and Kuncheva
[2009]. Table V summarizes loss estimation techniques.

Model Independent. As already noted, several works [Bach and Maloof 2008;
Nishida and Yamauchi 2007; Gama et al. 2013] propose to detect changes using two
sliding windows: a short window containing the most recent information and a large
window, used as reference, containing a larger set of recent data including the data
in the short window. The rationale behind this approach is that the short window is
more reactive, while the large window is more conservative. When a change occurs,
statistics computed in the short window will capture the event faster than using the
statistics in the larger window. Similarly, using fading factors, a smooth forgetting
mechanism and a smaller fading factor will detect drifts earlier than larger ones.
Based on this assumption, Gama et al. [2013] propose to perform the PH test with the
ratio between two error estimates: a long-term error estimate (using a large window
or a fading factor close to one) and a short-term error estimate (using a short window
or a fading factor smaller than the first one). A drift is signaled when the short-term
error estimator is significantly greater than the long-term error estimator. The PH
test monitors the evolution of the ratio of both estimators and signals a drift when a
significant increase of this variable is observed. The authors note that the choice of
α in fading factors and the window size is critical. Their experiments show that drift
detection based on the ratio of fading estimates is somewhat faster than with sliding
windows.

3.5. Discussion
Supervised adaptive learning algorithms rely on immediate arrival of feedback (true
labels). In reality, labels may become known immediately in the next time step after
casting the prediction (e.g., food sales prediction). However, feedback can come with an
uncontrollable delay or be unreliable, biased, or costly. Labels may arrive within a fixed
or variable time lag (in credit scoring, typically the horizon of bankruptcy prediction
is fixed, for instance, to 1 year; thus the true labels become known after 1 year has
passed). Alternatively, the setting may allow to obtain labels on demand (e.g., in email
spam categorization, we can ask the user the true status of a given message).

4. EVALUATION
In order to perform an experimental evaluation of any machine-learning technique, we
need to consider first of all (i) performance evaluation metrics chosen according to the
goal of a learning task and the operational settings, and (ii) a methodology allowing to
compute the corresponding estimates in the streaming settings. Besides, we may need
to find whether one model (or technique) is superior to the other or not.

In this section, we consider typical choices peculiar for evaluating an adaptive learn-
ing technique capable of handling concept drift. First, we discuss the performance
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evaluation metrics, then present possible experimental designs, and conclude with
pointers to the performance benchmarking.

4.1. Performance Evaluation Metrics
Performance evaluation metrics may be selected from the traditional accuracy mea-
sures, such as precision and recall or their weighted average in retrieval tasks, sensi-
tivity and specificity or their weighted average in medical diagnostics, mean absolute
scaled errors in regression or time-series prediction tasks, and root mean square error
in recommender systems.

It is important to consider appropriate reference points or baseline approaches in
particular settings. For example, one common baseline in time-series prediction is a
moving average prediction, in its simplest form known as tomorrow will look the same
as today prediction. Such a baseline gives reference points, allowing one to judge how
much improvement a supposedly intelligent adaptive technique can achieve over a
naive approach.

In addition, taking into account practical considerations of the streaming settings,
we may consider the following measures:

A measure for the computational cost of the mining process. RAM-hours [Bifet et al.
2010] is a one-dimensional measure of the computational resources used by stream-
ing algorithms, based on rental cost options of cloud computing services. Every
gigabyte of RAM deployed for 1 hour equals one RAM-hour.

A statistic for class taking into account class imbalance. The kappa-statistic is com-
puted as a−ar

1−ar
, where a is the accuracy rate of an intelligent classifier and ar is the

accuracy rate of a random classifier, which randomly permutes the predictions of
the intelligent classifier. The kappa-statistic takes values between 0 and 1, where
0 means that the achieved accuracy is random. The statistic is very convenient to
compute online in a stream, as compared, for instance, with an alternative of ROC.

Besides evaluating the performance of the learning strategy, we may like to assess
the accuracy of change detection separately for those strategies that employ explicit
drift detection as part of the concept drift handling strategy. The following criteria are
relevant for evaluating change detection methods.

Probability of true change detection. It characterizes the capacity of the learning system
to detect drifts when they occur. This measure can be computed on synthetic data
where drifts are known.

Probability of false alarms. It characterizes the resilience of the detection method.
Instead of reporting the commonly used false-positive rate for change detections,
in the streaming settings it is more convenient to use the inverse of the time to
detection or the average run length, which is the expected time between false-positive
detections. This measure can be computed either on synthetic data where the drifts
are known or on real data that has no drifts, in which case all the detections are
counted as false alarms.

Delay of detection. It gives an estimate of how many new instances are required to
detect a change after the actual occurrence of a change (or how much time would
elapse before the change is detected). Typically the average time to detection is used.
Drifts need to be known; synthetic data is suitable for assessing this aspect.

When we know how well the employed change detection methods perform, we can
also quantify the effect of a particular error (or delay) in change detection on the overall
performance of the adaptive model.
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4.2. Experimental Design
The testing procedure of a learning algorithm determines which instances are used for
training the algorithm and which are used to test the model output by the algorithm.
The most common procedure for estimating the performance of supervised learning
techniques in the traditional settings with static data is cross-validation. In traditional
batch learning, the problem of limited data is overcome by analyzing and averaging
multiple models produced with different random arrangements of training and test
data. However, cross-validation is not directly applicable to the streaming settings
with evolving data because it would mix the temporal order of data.

When considering what procedure to use in the data stream setting, one of the main
concerns is how to build a picture of accuracy over time: one classifier may do well on
the first half of the stream and badly on the second. In addition, streaming evaluation
measures themselves may be evolving over time. One solution is to take snapshots at
different times during the induction of a model to see how much the model improves.

4.2.1. Evaluation of Time-Ordered Data. We discuss two common procedures peculiar to
the evaluation of adaptive supervised learning techniques: holdout and prequential
evaluation, and point to a recent idea of the controlled permutations.

Holdout. When traditional batch learning reaches a scale where cross-validation is
too time consuming, it is often accepted to instead measure performance on a single
holdout set. This is most useful when the division between train and test sets has
been predefined, so that results from different studies can be directly compared. When
testing a model at time t, the holdout set represents exactly the same context at that
time t. The loss estimated in the holdout is an unbiased estimator. Unfortunately, it is
not always possible to use holdout because it is not always possible to know for sure
what examples belong to the concept that is active at time t.

Interleaved Test-Then-Train or Prequential. Each individual instance can be
used to test the model before it is used for training, and from this the accuracy can
be incrementally updated. When intentionally performed in this order, the model is
always being tested on instances it has not seen before. This scheme has the advantage
that no holdout set is needed for testing, making maximum use of the available data.
It also ensures a smooth plot of accuracy over time, as each individual instance will
become increasingly less significant to the overall average. The prequential error is
computed based on an accumulated sum of a loss function between the prediction and
observed values: S =

∑n
t=1 f (ŷt, yt).

There are three prequential evaluations: using a landmark window (Interleaved Test-
Then-Train), a sliding window, or a forgetting mechanism. The holdout evaluation gives
a good estimation of the accuracy of the model on recent data. However, it requires
recent test data that is difficult to obtain for real datasets. In such a case, a forgetting
mechanism for estimating holdout accuracy [Gama et al. 2013] can be used that is
based on the prequential accuracy over a sliding window of size w with the most recent
observations, or fading factors that weigh observations using a decay factor α. These
mechanisms give an estimation of the accuracy that is approximate to the accuracy
estimation obtained doing a holdout evaluation.

Controlled Permutations. Averaging the accuracy over time has a potential prob-
lem: it may mask the adaptation properties of adaptive learning algorithms. For ex-
ample, if one algorithm does very well on the first half of data and very badly on the
second, while another algorithm would show an average but consistent performance,
taking an average over accuracies would mask that. Even the prequential evaluation
may produce biased results toward the fixed order of data in a sequence, as it runs
only one test in a fixed order of data. To reduce this risk, controlled permutations
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Fig. 9. Estimating the generalization performance of the technique(s) across multiple individual (but re-
lated) data streams by cross-validating the data streams.

evaluation [Zliobaite 2011b] runs multiple tests with randomized copies of a data
stream, in a theoretical way restricted so that different distributions from the original
data are approximately preserved in permutations. Randomization aims at keeping the
instances that were originally nearby in time close together. The technique suits best
to data streams with sudden drifts but is also applicable to streams with other drifts.
Controlled permutations allow one to generate multiple test sets for testing adaptive
techniques that enable assessing volatility and robustness of models, optimize their pa-
rameters, and in this way reduce the risk of overfitting the order of data in a sequence.

4.2.2. Cross-Validation with Aligned Series of Data. In many cases, we use an adaptive
learning technique not to learn a single adaptive model for the data stream associated
with an individual object (e.g., predicting antibiotic resistance within a particular
hospital), but to learn multiple models, one adaptive model per object (e.g., we want
to predict food sales for each of the products in stock or the popularity of each movie
in a movie rental store). Each object corresponds to a data steam on which we apply
an adaptive model. Each data stream is an analog of a dataset (when we compare the
performance of different classification techniques over multiple datasets), but in this
setting, different data streams would be still alike (i.e., sharing the same feature space
or being of the same nature). In such cases, it is logical to estimate the performance of
the adaptive learning strategy across multiple objects.

This method is rather generic for many real problems when a need for a more exact
evaluation setting justifies the use of large computational resources (e.g., sales, rec-
ommendations, advertising, sentiment classification) across topics or sources. Figure 9
illustrates the estimation of the generalization performance of the technique(s) across
multiple individual (but related) data streams by cross-validating the data streams.
For every individual data stream, we can use one of the described (prequential, hold-
out, or controlled permutations) evaluation procedures. A subset of data streams can
be used to run the learning strategy with different parameterizations to identify the
most reasonable parameter settings for the particular domain and then verify them
on the remaining testing data streams. The values of the performance metrics can
be averaged over the data stream in the test basket (and averaged over the multiple
cross-validation runs).

4.2.3. Statistical Significance. When evaluating classifiers, we are often concerned with
the statistical significance of the results. For one classifier we may compute confidence
intervals on the error rate the same way as in stationary offline classification. However,
confidence intervals are particularly relevant when the training sample size is small,
while in data streams it is typically large. Therefore, estimation of confidence intervals
is not deemed to be of primary importance.

When comparing two classifiers, we may be interested in statistically validating the
differences in the achieved error rates. The McNemar test [McNemar 1947] is a non-
parametric test used in the stream mining for assessing the differences in performance
of two classifiers. This test needs to store and update two variables: the number of
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instances misclassified by the first classifier and correctly classified by the second one,
a, and the number of instances the other way around, b. The McNemar statistic (M) is
given as M = sign(a − b) × (a − b)2/(a + b). The test follows the χ2 distribution.

When comparing more than two classifiers, the Nemenyi test [Demsar 2006] is
used for computing significance: it is an appropriate test for comparing all classi-
fiers over multiple datasets, being based on the average ranks of the algorithms across
all datasets. The Nemenyi is recommended for use after a rejection of the null hy-
pothesis by Friedman. The Nemenyi test consists of the following: two classifiers are
performing differently if the corresponding average ranks differ by at least the critical
difference CD = qα

√
k(k + 1)/6N, where k is the number of learners, N is the number

of datasets, and critical values qα are based on the Studentized range statistic divided
by

√
2. Other tests can be recommended when all classifiers are compared to a control

classifier [Demsar 2006]. For example, the Dunnett test can be used [Dunnett 1955].

4.3. Performance Benchmarking
To perform a benchmarking comparing several methods, we need to use some large
datasets and software implementations of the algorithms. There are two types of
datasets: artificial and real datasets. Artificial datasets are useful because they give
the ground truth of the data, for example, all the points when the changes occur. How-
ever, real datasets are more interesting as they correspond to real-world applications
where the algorithms’ usability is tested. Some authors use the term real-world dataset
to refer to datasets using real-world data with forced drifts that cannot be consid-
ered as real examples of drifts and would rather be called real datasets with synthetic
drifts.

Online Appendix B presents popular artificial and real datasets that are publicly
available. Online Appendix C shows an example of evaluating classification under
concept drift using MOA. MOA is an open-source software to run data streaming
experiments. It is written in Java and is based on the experience of WEKA. It contains
methods for classification, regression, clustering, and frequent pattern mining.

5. CONCLUSIONS
We presented the conceptual categorization of many existing adaptive learning strate-
gies capable of handling concept drift, along with the concrete state-of-the-art tech-
niques. We highlighted the peculiarities of the evaluation methodology for experiment-
ing with adaptive learning techniques in the data stream settings.

The problem of concept drift has been recognized in different application domains.
Further interest to adaptive learning has been boosted by the outcomes of several re-
cently organized contests or challenges in AI (controlling driverless cars at the DARPA
challenge), data mining and knowledge discovery (credit risk assessment competition
at PAKDD’09), and recommender systems (Netflix movie recommendation) fields. Win-
ning teams in each of these competitions emphasize that one of the key factors in
their success was due to addressing temporal dynamics and various (hidden) contexts
affecting their concepts of interest. Therefore, we also referred to the conceptual cat-
egorization of typical application settings in which adaptive learning systems have to
operate and discussed the lessons learned from the real-world cases of handling con-
cept drift. We hope that besides serving as an introduction into the research area of
adaptive learning under concept drift, this article will help to position a new adaptive
learning technique and application settings to which they apply.

Most of the work on concept drift assumes that the changes happen in hidden context
that is not observable to the adaptive learning system. Hence, concept drift is consid-
ered to be unpredictable and its detection and handling are mostly reactive. However,
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there are various application settings in which concept drift is expected to reappear
along the timeline and across different objects in the modeled domain. Seasonal ef-
fects with vague periodicity for a certain subgroup of object would be common (e.g.,
in food demand prediction [Zliobaite et al. 2012a]). Availability of external contextual
information or extraction of hidden contexts from the predictive features may help to
better handle recurrent concept drift (e.g., with use of a meta-learning approach [Gama
and Kosina 2011]). Moreover, transfer learning between the different contexts seems a
potential research line.

Temporal relationships mining can be used to identify related drifts, for example, in
the distributed or peer-to-peer settings in which concept drift in one peer may precede
another drift in related peer(s) [Ang et al. 2013]. In all these settings, more accurate,
more proactive, and more transparent change detection may become possible.

The vast majority of the work on concept drift detection summarized in this survey
does not address the problem of representation bias that is common to most of the
adaptive systems that enforce or suggest a particular type of behavior. Whenever there
is a reinforcement feedback or a closed-loop control of the learning mechanism, we
cannot evaluate and compare the performance of concept drift handling techniques by
replaying historical data. Therefore, we can speculate that there will be more studies
that try to embed concept drift handling techniques in real operational settings for
proper validation. While the majority of the work on handling concept drift has focused
on supervised settings with immediate availability of labels, the actual problem space
is much wider. In unsupervised learning over evolving data, and in case of delayed
and on-demand labeling in supervised learning, validation of change detection and
adaptation mechanisms only start to be investigated.

Research on concept drift goes beyond the areas of machine learning, data mining,
and pattern recognition in which the term was originally coined and studied most.
Thus, in process mining6 [van der Aalst 2011, 2012], the area of research dealing
with the different kinds of analysis of (business) processes by extracting information
from event logs recorded by an information system, handling concept drift has been
recognized as an important problem [Carmona and Gavaldà 2012; Bose et al. 2014].

The next challenges for concept drift research include improving scalability, robust-
ness, and reliability; moving from so-called black-box adaptation to more interpretable
and explainable adaptation; reducing the dependence on timely and accurate feedback
(arrival of true labels); and moving from adaptive algorithms toward adaptive systems
that would automate the full knowledge discovery process in addition to automating
adaptation of the decision models. Some of these challenges have been discussed in
Zliobaite et al. [2012b].

Studying how to integrate expert knowledge in concept drift handling and how to in-
teract with domain experts brings new challenges as well. Relying on noninterpretable
black-box models is not popular among the domain experts. They may need to trust that
a control system, for example, is really going to react to changes when they happen and
to understand how these changes are detected and what adaptation would happen.
Furthermore, experts may have valuable knowledge on how to improve the concept
drift handling mechanism or to validate the system. The continuous or incremental
learning nature of adaptive systems makes it challenging to come up with a strategy to
incorporate expert knowledge into the adaptive learning process and to communicate
with experts as the process evolves. Studying how to perform localization and explana-
tion of changes (e.g. diagnosing chances) would be helpful in improving usability and
trust in adaptive learning systems.

6http://www.processmining.org.
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ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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