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ABSTRACT
Over the past few years, Internet Service Providers (ISPs)
have been rolling out a wide range of value added services
beyond basic connectivity, such as web hosting, content dis-
tribution network (CDN) service, database, gaming, cloud
computing and e-commerce server hosting. In this paper,
we focus on the detection and isolation of performance is-
sues in such ISP-hosted wide-area services. In contrast with
widely-used service performance monitoring approaches in
which active probing devices need to be strategically placed
in wide-area networks, our technique utilizes passively mon-
itored traffic data at the server access routers, the ISP net-
work topology, and BGP routing information to detect and
isolate service impacting events. We first present an in-depth
analysis and characterization of the TCP round trip latency
dynamics observed from the client requests in a CDN service
managed by a tier-1 ISP. Based on our observations, we de-
sign a passive hierarchical anomaly detection and isolation
system (PHADIS) for service management operators and de-
ploy it in the ISP. Our results demonstrate that PHADIS is
very effective in accurately and quickly pinpointing impor-
tant service problems, which could be easily missed by ac-
tive probing approaches.

1. INTRODUCTION
Over the past few years, Internet Service Providers (ISPs)

have been rolling out a wide range of value added services
beyond basic connectivity, such as web hosting, content dis-
tribution network (CDN) service, database, gaming, cloud
computing and e-commerce server hosting. These services
have vast numbers of customers from throughout the Inter-
net. They are typically hosted in geographically distributed
data-centers that are often collocated with ISPs’ Point of
Presence (PoPs) and managed by the same ISPs. Detecting
and localizing end-to-end performance issue in these wide-
area services is critical for ISP operators to improve the ser-
vice quality perceived at wide-area end users , for example,
through fast service impairment detection and flexible miti-
gation control.

First, the services we are interested in studying cover a
vast number of users from diverse locations. Without active
probes from a vast number of network locations throughout

the Internet, the monitoring coverage is limited and some
performance issues will not be detected. Second, even when
performance issues are identified, the of the performance is-
sues is limited by the number, source location and frequency
of the probes. Finally, a significant number of probe packets
place additional overhead on the network infrastructure and
may be treated differently than normal packets.

In this paper, we argue that the most effective way to de-
tect and localize end-to-end performance issues in an ISP
hosted wide-area service is to passively monitor the client
IPs from inside the ISP network. As service and network-
ing are seamlessly integrated together, it is advantageous to
make use of the information available from inside the ISP
network. Specifically, we propose a novel approach that
utilizes passively monitored traffic data at the server access
routers, the ISP network topology, geo-location information
and the BGP routing information to detect and localize end-
to-end performance impacting events. In order to design a
practical passive monitoring approach for detecting and lo-
calizing end-to-end performance issues, there several open
questions that must be answered:

• How many client IPs do we need to keep track of in a
typical wide-area service? Will this pose a scalability
issue? How diverse are the locations of these IPs?

• How frequently can we collect passive performance
measurements from client IPs? This determines the
timeliness of detecting performance issues.

• How accurately can we detect performance issues for
individual client IPs given their passive performance
measurements?

• How do we localize and prioritize service anomaly events?

Our main contributions can be summarized as follows.

1. To answer the above open questions, we conduct an in-
depth analysis and characterization of the TCP round
trip time (RTT) passively measured from a CDN ser-
vice hosted and managed by a tier-1 ISP. 1

1The passive measured data is anonymous and this study complies
with the ISP’s privacy policy.
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2. Based on the observations from the above analysis, we
identify a few fundamental challenges in client IP level
anomaly detection and localization.

3. To address the challenges identified above, we propose
a novel approach to aggregate client IP level measure-
ments along a topological hierarchy built by using ISP
internal information such as the ISP network topology,
and the BGP routing information.

4. Based on the novel approach, we design and imple-
ment a passive hierarchical anomaly detection and lo-
calization system (SONAR) for detecting and localiz-
ing end-to-end performance in real-time.

5. SONAR has been successfully deployed in a tier-1 ISP
to monitor millions of client IPs of its CDN service
and helps operators to detect and localize performance
issues.

This paper focuses on the RTT performance metric and a
CDN service, but the data analysis and the SONAR system
that we will present can be easily extended to other wide-
area services and performance metrics.

The organization of the rest of the paper is as follows.
Section 2 presents results from client IP level passive RTT
measurements and introduces a few main challenges in client
IP level anomaly detection and localization. Section 3 ad-
dresses these challenges by making use of the topological hi-
erarchy that is built from the ISP’s BGP routing information
and network topology. In Section 4, we present the design
of SONAR, which is a passive hierarchical anomaly detec-
tion and localization system In Section 5, we then present a
few representative case examples from our operational expe-
rience with running the SONAR system over several months
in a tier-1 ISP. Section 6 evaluates the accuracy of SONAR
by using a list of labeled evens from the CDN service team.
Finally we present the related work in Section 7 and con-
clude the paper in Section 8.

2. ANALYSIS OF PASSIVELY MEASURED
RTTS

We apply passive measurement techniques to a CDN ser-
vice operated by a tier-1 ISP. In particular, we monitor the
end-to-end TCP round trip time (RTT) between client hosts
and CDN servers as web service requests arrive. We focus
on the RTT since many applications are extremely sensitive
to network RTT (e.g., gaming). In the context of CDN ser-
vice, the TCP throughput of large objects, which are more
likely hosted by CDN, are expected to be inversely propor-
tional to RTT [16], making it an important factor for CDN
service providers.

A simple and common way to measure end-to-end RTT
is to compare the timestamps of IP packets during the TCP
handshake. In our case, one traffic monitor is installed for
each CDN node (data center). The monitor observe the ac-
cess links that connect the CDN node to the ISP backbone

and it is configured to capture TCP handshake packets. When
a request is observed, the traffic monitor calculates the time
difference between the first SYN (from client to CDN server)
and the corresponding ACK that completes the handshake
(also from client to CDN server). This becomes the esti-
mated RTT between the CDN node and the client. This RTT
includes network propagation delay, any queuing delay (e.g.,
due to congestion inside network), and server side as well as
client side processing delay.

Each TCP connection (e.g. successful handshake) made
by a client IP results in a single RTT measurement. This
paper simply refers to a series of passively measured RTTs
associated with a single client IP as the client RTT series.
These RTT series can be an important performance indicator
quantifying the service quality perceived by the CDN clients
over time.

We analyze the client RTT series from three CDN nodes
over a 10-day period (April 1st to April 10th, 2010). These
three CDN nodes are located in northeast, southeast and north-
west regions of USA respectively. The three datasets are
hence named Northeast, Southeast and Northwest. Table 1
summaries the details of the three datasets. To protect pro-
prietary information, we cannot list actual numbers of con-
nections, client IPs and egress routers here. For example, for
dataset Northeast, tens of millions of connections were ob-
served from several millions of client IPs, 202,252 subnets,
23,869 BGP prefixes, 5,116 different AS paths and several
hundred different egress routers. As we can see, the client
RTT series provides a wide coverage of client IPs, subnets,
BGP prefixes, AS paths and egress routers. We should note
that the differences in coverage among three datasets are not
caused by CDN assignment strategy. Instead, they are due
to the incomplete deployment of traffic monitoring devices
(for Southeast and Northwest) at the time of this study.

2.1 Variability in Client RTT Series

2.1.1 Variability across Client RTT Series
Figure 1 shows the cumulative distribution of RTTs from

all client RTT series in three different datasets. We normal-
ize each RTT by the maximum RTT of all three datasets to
protect proprietary information. We observe: (a) There is
a large disparity in RTT’s distribution for each dataset. All
three datasets show significant variation (4 orders of mag-
nitude) in per-connection RTT. (b) To a large extend the
three datasets show a similar RTT distribution. In particu-
lar, for every dataset, a large faction of all RTTs has small
or medium values while a small fraction of RTTs have large
values.

The above observations suggest that the variability of RTTs
across all client RTT series is large. On one hand, the large
variability may be due to path diversity – connections from
different client IPs traverse different paths and each path
may have different typical RTT. For example, a client IP in
South America assigned to the Southeast node would more
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Dataset # Connections # Client IPs) # Subnets # Prefixes # AS paths # Egress Routers
Northeast tens of millions several millions 202,252 23,869 5,116 several hundreds
Southeast tens of millions several millions 41,784 3,613 649 several tens
Northwest tens of millions several millions 66,464 14,269 2,583 several hundreds

Table 1: Network Coverage of Three Datasets
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Figure 1: Distribution of normalized RTT across client
RTT series

likely experience a greater RTT than a client IP in Florida
simply due to the longer distance. On the other hand, the
large variability may be due to time dynamics – RTT from
the same client IP varies over time. For example, differ-
ent connections from the same client IP may have differ-
ent RTTs because of routing change or queuing fluctuation
during a day. In our context of anomaly detection, we are
more interested in the latter case, where different connec-
tions from the same client IP have largely varying RTTs.
These variations may indicate some potential RTT anoma-
lies. But it is not clear from Figure 1 how largely RTTs of
different connections from the same client IP vary. To bet-
ter understand this issue, we next examine the variability in
RTTs within individual client RTT series.

2.1.2 Variability within Individual Client RTT Series
We use the coefficient of variation (CV) metric to quan-

tify the variability in RTTs within individual client RTT se-
ries. In other words, we are interested in the variability in
RTTs measured from different requests of the same client
IP address during the 10-day period. Figure 2 shows the
cumulative distribution of CV for all client RTT series in
each of the three datasets. Note that x axis is in log scale.
We can see from Figure 2 that all three datasets have simi-
lar patterns. Specifically, around 60% of client RTT series
have very small CV (less than 0.1), which implies good pre-
dictability when using average historical RTTs to forecast
future RTTs. Almost 35% of client RTT series show medium
CV (ranging from 0.1 to 1), which indicates reasonable pre-
dictability. However, we also noticed that 5% of client RTT
series exhibit large CV (ranging from 1 to 240). The large
variability observed in these client RTT series suggest that
RTT anomaly detection for the corresponding client IPs may
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Figure 2: Distribution of coefficient of variation for indi-
vidial client RTT series

be challenging.

2.1.3 Self-inflicted RTT Increase
To better understand these 5% client RTT series with huge

variability, we drill in on some examples. We discover an in-
teresting phenomena that contributes to the large variability
— consecutive requests within a very short time period (sec-
ond or sub second level) have almost monotonic increasing
RTT value. For example, in one case, we observe 32 re-
quests from the same client IP having subsequent RTT value
increased from 25.84 ms to 202.04 ms within one second.

Our conjecture to this behavior is that the RTT increase is
self-inflicted. As recommended by HTTP 1.1 standard [13],
modern browsers such as IE7, Firefox, Safari and Opera use
multiple TCP connections in parallel to fetch different ob-
jects on the same page. Although HTTP 1.1 recommend 2
parallel TCP sessions, most of the latest releases of these
browsers use much more concurrent connections: Firefox
3.5.9 and IE8 use 6 and Safari 4.0.5 uses 4 TCP sessions.
Thus TCP SYN-ACKs from the CDN server are likely queued
one after another at the client side access link or in proces-
sor buffer. Furthermore, data packets from different web
servers may also get into the queue – for example, adver-
tisement, javascripts, stylesheet file on the same webpage
may not be hosted on the CDN server. Since each 100-byte
packet queued over a 64 Kbps access link would increase the
RTT of subsequent TCP sessions by 12.5 ms, it can quickly
create a significant increase over several packets. Such self-
inflicted RTT increases do not reflect any real performance
problem for the CDN service, hence need to be carefully
handled when we use client RTT series for performance im-
pairment detection.
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Figure 3: Distribution of number of measurements in
client RTT series

2.2 Sparsity of Client RTT Series
RTT measurements are only collected when a client IP

contacts a CDN node. In order to have timely measurements
to detect network performance issues along the path between
client IPs and CDN nodes, client IPs need to communicate
with CDN nodes often enough. In order words, if a client IP
doesn’t contact a CDN node very often, its client RTT series
may be too sparse to reflect any problem along the path that
client IP travels. In order to understand how often a client
IP contacts a CDN node, we first plot the CDF of number of
connections for individual client IPs using the three datasets.

Figure 3 shows that most of client IPs have very few con-
nections over a 10-day period. This is true of all three data
sets. More specifically, in Northeast dataset, 80% client IPs
have less than 10 connections; in Southeast dataset, 70%
client IPs have less than 10 RTT measurements; in North-
west dataset, 65% client IPs have less than 10 connections.
In other words, 10 passive measurements from 10 connec-
tions are too few to reflect performance problems on the path
over a period of 10 days. The number of RTT measurements
alone may not be sufficient to determine the measurement
sparsity. For example, even though a client IP contacts a
CDN node many times within the same second (doesn’t con-
tact the CDN node at other times), its client RTT series is still
considered sparse as all these measurements only reflect the
path performance at that single second.

In order to better understand the sparsity of client RTT se-
ries, we further define a RTT measurement to be “valuable”
only if it is at least 600 seconds later than the previous RTT
measurement. As in general path RTT appears steady at least
for 600 seconds[22], passive measurements are within a pe-
riod of 600 seconds should be considered as a single sample
of end-to-end RTT. Ideally, we would like to have one pas-
sive measurement every 600 seconds in order to better mon-
itor the path RTT. Figure 4 shows most of client IPs have
even fewer “valuable” RTT measurements over a 10-day pe-
riod compared to Figure 3. For all three datasets, 90% client
IPs have less than 10 “valuable” passive RTT measurements.

As our approach purely depends on passive monitoring,
we cannot change how often client IPs contact CDN nodes to
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Figure 4: Distribution of number of “valuable” measure-
ments in client RTT series

solve the sparsity problem. All of these suggest client RTT
series are too sparse to detect network performance issues.

2.3 Summary
The naive approach of detecting end-to-end performance

issues would be applying anomaly detection algorithms di-
rectly on the client RTT series. In other words, for each
client IP, keep track of its client RTT series and detect ab-
normal RTTs deviated from its normal behavior that is built
based on the history. But the above analysis suggests there
are several limitations in this naive approach.

• First of all, It won’t scale with respect to the number of
client IPs. For example, in Northeast dataset, there are
several millions of client IPs during a 10-day period. It
is not trivial to keep track of several millions of client
IPs.

• Secondly, the larger RTT variability within some client
RTT series makes anomaly detection very challenging.

• Thirdly, client RTT series usually are too sparse to con-
duct a statistical anomaly detection.

3. AGGREGATION ALONG TOPOLOGICAL
HIERARCHY

As anomaly detection based on client RTT series is not
practical, we adopt a different approach by aggregating client
RTT series into higher level clusters according to the topo-
logical hierarchy. In order to illustrate the idea of aggrega-
tion, we use the hierarchy shown in Figure 5 as an example,
where the client RTT series are aggregated into subnet clus-
ters, BGP prefix clusters, AS path clusters and egress router
clusters. Here the AS path means the reverse AS path from
the CDN node to the client IP and the egress router means
the router at which data traffic from the CDN node to the
client IP exits the ISP network. In other words, for each
cluster in high levels, a aggregate RTT series is formed by
aggregating the client RTT series from all the client IPs that
are its children in the hierarchy. As a result, anomaly detec-
tion approach can be applied on the newly formed aggregate
RTT series instead of the client RTT series.
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Figure 5: Topological hierarchy

This approach immediately solves the first problem of anomaly
detection for individual client IPs. More specifically, scala-
bility is not a big issue here as there are much fewer higher
level clusters we need to keep track of compared to the num-
ber of individual client IPs. Let’s take Northeast dataset as
an example. After aggregating, instead of monitoring several
millions of client IPs, now we only keep track of 202,252
subnets, 23,869 BGP prefixes, 5,116 AS paths and several
hundred egress routers.

Moreover, individual client IP level anomalies are not mean-
ingful for isolating performance issues as operators are more
interested in the network event that effects the RTTs of a
large number of client IPs. For example, if most of client IPs
that traverse the same AS path experienced abnormal RTTs
during a time period, it is more meaningful to report a sin-
gle AS path anomaly to operators compared with reporting
many anomalies for individual client IPs. Due to aggrega-
tion, the anomalies are naturally reported for subnets, BGP
prefixes, AS paths and egress routers. They are more useful
to isolate performance issues compared to individual client
IP anomalies.

3.1 Spatial Locality among Client RTT Series
In this section, we try to test an important assumption

that is whether client IPs that are topologically close to each
other have similar client RTT series. Only if this assump-
tion holds, aggregating client RTT series that are topologi-
cally close to each other makes sense. Towards this end, we
cluster client RTT series at different aggregation levels and
examine whether client RTT series in the same cluster are
similar. Specifically, for each client RTT series, one key sta-
tistical indicators such as median and minimum is extracted.
Then the similarity test among client RTT series is done by
using this key statistical indicators.

Here we consider the four different aggregation schemes,
namely subnet aggregation, BGP prefix aggregation, AS path
aggregation and egress router aggregation. We also conduct
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ters (Minimum is used as the key statistical indicator for
each client RTT series.)

random aggregation for comparison. First client RTT series
are aggregated into clusters according to different aggrega-
tion schemes. We only consider client RTT series that have
at least 100 measurements to keep the computation mean-
ingful. Then for each cluster, we calculate the median(or
minimum) RTT for each client RTT series in it and the CV
of these median(or minimum) RTTs. In other words, the
smaller the CV is, the stronger spatial locality is.

Figure 7 and 6 plot CDF of CV for clusters using me-
dian and minimum as the statistical indicator respectively.
These plots are generated based on Northeast dataset. Over-
all we can find from both plots that aggregations on subnet
level, BGP prefix level, AS path level and egress router level
all exhibit significant stronger spatial locality than random
aggregation. Both plots also suggest that spatial locality is
strongest in subnet level aggregation; BGP prefix aggrega-
tion and AS path aggregation show similar degree of spatial
locality; egress router aggregation exhibits less significant
degree of spatial locality than others. Even thought all ag-
gregation levels in the topological hierarchy exhibit signifi-
cant degree of spatial locality, we do notice the percentage of
clusters that show no spatial locality or very limited degree
of spatial locality increases as the aggregation level moves
up in the hierarchy. For example, in Figure 7, the max coeffi-
cient of variation for random aggregation is 2.93 while there
are almost 0.4% clusters at prefix aggregation level have co-
efficient of variation larger than 0.4%. The number for AS
path and egress router aggregation levels are 0.4% and 2%.
We also conduct the same experiments using Northwest and
Southeast dataset and they show the similar results.

3.2 Sparsity of Aggregate RTT Series
Regarding the sparsity, we first check the distributions of

number of RTT measurements at different aggregation lev-
els. As one may expect, the number of RTT measurements at
aggregation levels increases significantly compared to indi-
vidual client IPs. Figure 8 shows that for Northeast dataset:
only 20% client IPs have more than 10 measurements while
65% subnets, 60% prefixes, 65% AS paths and 85% egress
routers have more than 10 measurements. The reason why
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more BGP prefixes have less than 10 measurements com-
pared to subnets is that there are many BGP prefixes have
length longer than 24 (subnet) in our BGP data.

Similar to section 2.2, we further define a RTT measure-
ment to be “valuable” only if it is at least 600 seconds later
than the previous RTT measurement. Figure 9 shows that
for Northeast dataset: most of clusters at all different aggre-
gation levels have much more“valuable” RTT measurements
compare to individual client IPs.

The above analysis suggests that sparsity is significantly
improved at aggregation levels. We also conduct the same
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experiments using Northwest and Southeast dataset and they
show the similar results.

3.3 Variability in Aggregate RTT Series
The above analysis suggests that anomaly detection based

on aggregated RTT series addresses the scalability and spar-
sity issues and make senses due to the existence of spatial
locality. However, aggregating multiple client RTT series
into a single aggregate RTT series will likely cause a larger
variability than the variability in client RTT series as shown
in Figure 2. Figure 10 shows the coefficient of variation at
different aggregation levels using dataset Northeast. As we
expect, as the aggregation level moves up in the hierarchy,
we see a greater likelihood of larger variability. We also no-
tice that the variability difference between AS path level and
egress router is not significant.

3.4 Summary
Aggregating client RTT series along the topological hier-

archy addresses the scalability issue and measurement spar-
sity issue It also naturally provides the ability of isolating
performance anomalies due to the topological significance
in the hierarchy. However, we also find aggregate RTT se-
ries have larger variabilities than client RTT series , which
makes anomaly detection very challenging. We will discuss
how to deal with the large variability in aggregate RTT series
for better anomaly detection in the next section.

4. SONAR SYSTEM DESIGN
In this section, we describe our design of SONAR, a pas-

sive hierarchical anomaly detection and localization system.
SONAR turns the individual client RTT series from an ISP’s
CDN service into prioritized and localized service anomaly
events. SONAR operates in streaming fashion – as client
RTT series stream arrives in real time, the severity and scope
of on-going service anomaly events are updated.

Our design of SONAR is based upon the observation and
insight we have acquired through data analyses in Section ??
and 3. Particularly, we have developed a five-stage approach
that is tailored for the variability and sparsity of client RTT
series.
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Figure 11: System architecture

• Spatial aggregation – group client RTT series accord-
ing to the requesting client IP address into aggregate
RTT series at various levels such as subnet, BGP pre-
fix, AS path, and ISP egress router level.

• Temporal aggregation – at all levels, organize the ag-
gregate RTT series into bins and compute a representa-
tive RTT from each bin to form a representative RTT
series.

• Anomaly detection – use online anomaly detection scheme
to extract service anomaly events from the representa-
tive RTT series.

• Event localization – localize the scope of service anomaly
events

• Event prioritization – prioritize localized service anomaly
events by factors such as severity, lasting duration, and
impact scope.

We now describe each stage in SONAR in detail.

4.1 Spatial Aggregation
To cope with the self-inflicted RTT increase phenomena

described in Section 2.1.3, we first perform an suppression
on client RTT series – if multiple RTT measurements from
the same client RTT series are observed within one second,
only the minimum RTT value is taken. We find one second
suppression window quite effective in removing the artifact
due to client-side queuing while keeping the chance of false
suppression (such as due to NAT) low.

We next group client RTT series according to the request-
ing client IP address into aggregate RTT series according
to the hierarchy in Figure 12. While the mapping from IP
address to city depends a static geo-location database, the
mapping to BGP prefix, next-hop AS, origin AS, AS path
and egress router requires dynamic correlation with BGP in-
formation. We do so by periodically collecting BGP dumps
from the route reflectors co-located with the CDN servers. In
our current system, the BGP dump is acquired on a hourly

Figure 12: Topological hierarchy used in SONAR

basis. This can be further improved using methods such as
described in [20, 2].

4.2 Temporal Aggregation
In this step, we organize aggregate RTT series into bins at

all levels of topological hierarchy. Binning is a classic data
processing technique for data smoothing, which is much needed
as demonstrated by the high variability of aggregate RTT
series in Section 3.3. We use two types of binning meth-
ods – fixed size bin and fixed time bin. For fixed size bin,
aggregate RTT series is divided into equal size (e.g., 100)
groups of (IP level) RTT measurements. For fixed time bin,
aggregate RTT series is divided into equal length (e.g., 10
minutes) groups. Comparing the two approaches, fixed time
bin is more intuitive, however it is more sensitive to data
sparsity – smoothing over one or a few data samples is in-
effective. Fixed size bin on the other hand is more sensitive
to variability due to changes in the composition of different
client IPs across the Internet. In our current implementation,
SONAR runs in either fixed time bin mode or fixed size bin
mode, while it remains as our future work to evaluate how
much benefit we can achieve to combine the two.

Once bins is formed, we compute a representative RTT
value for each bin to form a representative RTT series. Sev-
eral statistics can be used as the representative value – min-
imum, maximum, average, median or other percentile val-
ues. Different statistics may have advantage for tracking
certain type of issues. For example, the minimum RTT may
well capture baseline RTT due to network propagation de-
lay while being oblivious to varying queuing delay that may
be due to network congestion. The maximum or average
RTT can capture poor performing individual requests per-
formance. Since our goal is to detect general service per-
formance issues that impact a relatively large collection of
users, we pick median RTT as the representative for each
bin. We find median RTT quite effective in tracking service
side or network side issues while being robust to individual
RTT variability due to client side processing or local access
queuing delays.

4.3 Anomaly Detection
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To transform the representative RTT series into anomaly
events, it requires an online time series anomaly detection al-
gorithm. In SONAR, we adopt a new Shadow Holt-Winters
(SHW) algorithm . SHW algorithm is built based on the
classic additive Holt-Winters algorithm, a widely used one-
pass online anomaly detection method [9, 10, 8]. Holt-Winters
algorithm has found many applications in Internet traffic anal-
yses due to its simple yet effective model (as represented by
three exponential smoothing processes).

At a high level, SHW decomposes the time series into
three components: a baseline, a linear trend, and a seasonal
effect. As its name suggests, SHW keeps two copies (a
working copy and a shadow copy) of the three components
and update each copy in parallel using different parameters
(α, β and γ). Working copy gives more weight to the history
compared to the recent observations and also ignores anoma-
lies for updating itself, which are desirable for anomaly de-
tection when the underlying RTT distribution is stable. Shadow
copy gives more weight to the recent observations, so that
when the RTT distribution changes (due to routing changes
or some other events) it can quickly adapt to the new RTT
distribution.

Specifically, upon seeing a new observation, SHW com-
putes the deviation score of the observation from the time
series forecast that is calculated from the three components
in the working copy. If the observation is considered as nor-
mal, both working copy and shadow copy are updated in
the same way as the classic additive Holt-Winters algorithm
does. If the observation is considered as abnormal, only
the shadow copy is updated. Once the number of (almost)
consecutive abnormal observations exceeds some threshold
(suggests that the underlying RTT distribution has changed),
SHW copies the shadow copy over the working copy as shadow
copy should have adapted to the new underlying RTT distri-
bution.

As SHW has the same set of parameters as classic additive
Holt-Winters algorithm, we follow the guidelines in [10] for
the parameter selection and choose the ones corresponding
to a low adaptability level.

For each observation, the output of SHW algorithm is a
deviation score d that matches to that in a standard Guassian
distribution. We descretize it into six levels (in preparation
for a ranking algorithm in the next subsection). Abnormality
level A = 0, 1, 2, 3, 4, 5 when the absolute value of devia-
tion score |d| is in [0, 0.5), [0.5, 1), [1, 1.5), [1.5, 2), [2, 2.5)
and [2.5,∞) respectively. We consider A of 4 or above as
anomalous. This is a relatively aggressive setting (i.e., more
anomalies). However, it is an appropriate setting as our event
localization and prioritization (next two stages) is robust to
false positives.

We further combine consecutive anomalous bins into a
single anomaly event. SONAR then keeps track of all on-
going anomaly events, with the begin time of the event be-
ing the begin time of the first anomalous bin. The anomaly
events are detected and updated at all different levels of the

topological hierarchy (as shown in Figure 12).

4.4 Event Localization
In SONAR, a single underlying network event such as link

failure may manifest itself at different hierarchy levels. For
example, if an underlying network event causes all the users
from the same BGP prefix experience larger RTT, SONAR
will definitely report an anomaly event for that BGP prefix
and probably also report anomaly events for higher levels
such as the AS path that is associated with that BGP prefix -
if the users from that BGP prefix contribute a large fraction
of all measurements for its AS path. In this case, we want
SONAR to localize the anomaly event to the BGP prefix by
only reporting a single anomaly event for the BGP prefix.
Another example, if a network event has localized impact on
an AS path, all its child locations at a level below (e.g., BGP
prefixes) would observe the same anomalous pattern. In this
case, SONAR should only report the anomaly event at the
AS path. Given a set of anomalies reported at different levels
in the hierarchy, our goal is to find the smallest set of rep-
resentative anomaly events that can explain all the reported
anomaly events. In the remaining of this subsection, we first
formulate our event localization problem (ELP), then show
it is NP-hard and present a greedy solution.

4.4.1 Problem Formulation
We first introduce the notations used in the problem for-

mulation. In ELP, the topological hierarchy (e.g. Figure 12)
is a directed acyclic graph (DAG). Let N represent the set of
nodes in the topological hierarchy. ∀n ∈ N,D(n) denotes
the set of n’s descendants (i.e. nodes can be reached from
n by traversing edges). ∀n ∈ N,A(n) denotes the set of
n’s ancestors (i.e. nodes can reach n by traversing edges).
∀n ∈ N, d(n) denotes the set of n’s direct descendants (i.e.
nodes can be reached from n by traversing only one edge).
∀n ∈ N, a(n) denotes the set of n’s direct ancestors (i.e.
nodes can reach n by traversing only one edge). The topo-
logical hierarchy has the following two properties.

(P1) Each node is in one of the three status: abnormal,
normal or insufficient measurements.

∀n ∈ N : f(n) =

 1 if n is abnormal
0 if n is normal
−1 if insufficient measurements for n

(P2) Each abnormal node has at least one abnormal or
“insufficient measurements” descendant.

∀n ∈ N : f(n) = 1 ⇒ ∃x ∈ D(n) : f(x) = 1∨f(x) = −1

Objective Function:

arg min
A⊆N

|A|

The goal of ELP is to find a smallest subset A that subjects
to the following three constraints (C1-C3).
Constraints:
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(C1) Each node in A must be abnormal.

∀a ∈ A : f(a) = 1

(C2) Each abnormal node in N is either in A or is a de-
scendent of a node in A or a ancestor of a node in A. In other
words, all abnormal nodes are covered by the subset A.

∀n ∈ N : f(n) = 1 ⇒ ∃a ∈ A : n = a∨n ∈ D(a)∨n ∈ A(a)

(C3) For any node in A, the number of its direct abnormal
and “insufficient measurements” descendants is larger than
the number of it direct normal descendants.

∀a ∈ A : |{x ∈ d(a)|f(x) = 1 ∧ f(x) = −1}| >
|{x ∈ d(a)|f(x) = 0}|

4.4.2 Complexity Analysis

Theorem 1. Event localization problem is NP-hard.

PROOF. It is easy to show that ELP ∈ NP . Given a sub-
set A ⊆ N , validating that A satisfies the constraints (C1,
C2 and C3) can be done in polynomial time.

To show that ELP is NP-hard, we prove that set-overing
problem [14] is polynomially reducible to ELP. i.e. set-
covering ≤p ELP. Given an instance of set-overing problem
with the universe {u1, u2, ..., un} and a family of subsets
{s1, s2, ..., sm} of the universe, we can construct an instance
of ELP as follows:

- Create a two-level topological hierarchy with m abnor-
mal nodes at the bottom level (one for each subset) and n
abnormal nodes at the top level (one for each element in the
universe).

- Add a directed edge from one abnormal node ui at the
top level to one abnormal node sj at the bottom level if uj is
a member of Si.

- For each one abnormal node ui at the top level, add the
same number of normal nodes as the number of sets that ui

belongs to at bottom level.
- At the top level, add a common ancestor abnormal node

M that connects to all abnormal nodes {s1, s2, ..., sm} at
bottom level.

- At the bottom level, add one special abnormal node L
whose ancestor is M .

Figure 13 shows how the polynomial reduction is done
from a set-overing instance to an ELP instance.

We claim that our resulting construction of EPS instance
has a feasible solution A with size at most k+1 if and only if
the original set-covering instance is satisfiable with at most k
subsets. Indeed, if the set-cover is satisfiable with k subsets,
then all abnormal nodes (i.e., the universe {u1, u2, ..., un}
in the set-covering) at the top level can be covered by k ab-
normal nodes (i.e., k subsets in set-covering) at the bottom
level. The remaining abnormal nodes at the bottom, includ-
ing a special abnormal node L, can be covered by the com-
mon ancestor abnormal node M at the top level. Conversely,
suppose our ELP instance has a feasible solution A with size
k+1. Then, A must include i) the common ancestor node M

Figure 13: Polynomial Reduction Example

to cover all the abnormal nodes at the bottom level, and ii) k
abnormal nodes at the bottom to cover all the top level abnor-
mal nodes (note: those abnormal nodes cannot be included
in A, as each of them has normal children). By selecting
the subsets each of which corresponds an abnormal node at
the bottom in our EPS solution A, the set cover instance is
satisfiable with a collection of k subsets. Since this reduc-
tion is in polynomial time and the set-overing problem has
been shown to be NP-hard, the event localization problem is
NP-hard2. This completes the proof.

4.4.3 A Greedy Solution
Using the set-covering terminology, all the abnormal nodes

in the topological hierarchy form the universe. By picking
an abnormal node x that satisfies the constrains C1 and C3, a
subnet Sx (Sx = x∪D(x)∪A(x)) of the universe is formed.
For each event localization problem instance, there is a fam-
ily of n subsets (S1, S2, ..., Sn) that are corresponding to n
abnormal nodes that satisfy the constrains C1 and C3. The
goal of event localization problem is to find the smallest sub-
family from whose union is the universe. [14] presents a
simple greedy algorithm for it and proves the greedy algo-
rithm is a factor-dlnne approximation algorithm. Here we
discuss a similar greedy algorithm 1 to the event localization
problem, which keeps choosing the abnormal nodes (subsets
in set-covering problem) that covers most uncovered abnor-
mal nodes (elements in universe in set-covering problem)
until all abnormal nodes (the whole universe in set-covering
problem) are covered.

4.5 Event Prioritization
2If the topological hierarchy is a tree, then the event localization
problem is a P problem. In this special case, one can simple do
a breadth-fist search. Once a node that satisfy the constrains is
found, one can immediately select it into output subset A and stop
searching its descendants.
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Algorithm 1 : Greedy Algoritm for Event Localization
Problem

1: Let A denote the output subset
2: Initialize A = ∅, UNCOV = {x ∈ N |f(x) = 1}
3: for each u ∈ UNCOV do
4: SETu = u
5: for each v ∈ D(u) do
6: if f(v) = 1 then
7: SETu = SETu ∪ v
8: end if
9: end for

10: for each w ∈ A(u) do
11: if f(w) = 1 then
12: SETu = SETu ∪ w
13: end if
14: end for
15: end for
16: while UNCOV 6= ∅ do
17: Choose u ∈ UNCOV such that |SETu| is maximized
18: A = A ∪ u
19: UNCOV = UNCOV − SETu

20: for each i ∈ UNCOV do
21: SETi = SETi − SETu

22: end for
23: end while

After event localization stage, SONAR employes a rank-
ing function to prioritize the localized anomaly events. The
ranking function incorporates two factors – the significance
of the relative size of the anomaly and the breadth of its im-
pact scope. The former can be measured by the deviation
score |d| from Holt-Winters algorithm. The latter can be
measured by the the number of distinct client IP addresses
observed in the anomalous bin, which we denote as c. We
choose distinct client IP addresses (as opposed to total re-
quest counts) since it is robust against anomalies dominated
by a spike of requests from a few outlier clients. Since each
anomaly event may contain multiple anomalous bins, we use
the aggregate score of all bins for the score of the event.
Specifically, for anomaly event e, its baseline ranking score
re is defined as:

re =
∑

b∈ bins of e

|db| × cb

where db and cb is the deviation score and distinct IP count
for bin b. In this way, long lasting events are likely given
higher priority than short events.

4.6 Summary
Figure 11 summarizes the five stages involved in SONAR

pipeline. As client RTT series stream arrives in real time,
first they are grouped into many aggregate RTT series at dif-
ferent levels according to the topological hierarchy and each
of these aggregate RTT series is converted into a smooth
representative RTT series. Then service anomaly events are
detected at different levels by running shadow Holt-Winters
with the representative RTT series. Finally detected anomaly
events are localized using our greedy heuristic and priori-

tized based on their severity and impact scope. All these
stages operate in streaming fashion, which means events start
with some initial RTT measurements and evolve in terms of
priority and duration as more and more RTT measurements
arrive. SONAR presents all on-going anomaly events with
their priority and duration so that operators can keep track of
them.

5. EVALUATION
Evaluating the accuracy (e.g., false positive and false neg-

ative) of an anomaly detection system needs a list of ground-
truth anomaly events. However, ground truth is difficult to
find in our context, as is typically the case in anomaly detec-
tion studies. Instead we cross check the anomalies detected
by SONAR with two independent anomaly data sources for
the same network:

• anomaly events detected by using RTTs actively mea-
sured from Keynote[4] agents

• authoritative DNS server change events provided by
the CDN service team

Thus our evaluation can determine how many of the events
from these two data sources are reported by SONAR, how
many of them are missed by SONAR and investigate the rea-
sons for the differences. In the remainder of this section, for
each data source, we first describe the data source and then
outline the evaluation results by using it. All timestamps in
the section are in GMT.

5.1 Data Source 1: Keynote Anomaly Events
Each Keynote [4] agent machine has 3 unique IPs in the

same /24 subnet, and each IP periodically sends probe pack-
ets to CDN servers in order to measure end-to-end perfor-
mance. For the North-East CDN node, Keynote has six agents
from different geo-locations and ISPs as shown in Table 2.
While Keynote agent keeps track of many different metrics
such as DNS lookup time, first byte download time and base
page download time, we are only interested in the initial con-
nection time in order to make direct comparison with the
passively measured RTTs in SONAR. Initial connection time
in Keynote measures the RTT between the Keynote agent
and the server by calculating the time difference between
the first SYN (from Keynote agent to CDN server) and the
SYN+ACK (from CDN server back to Keynote agent) dur-
ing the TCP handshake.

Agent ID Country State City ISP
1 US MA Boston Sprint
2 US MA Boston Verizon
3 US CT Hartford Same ISP
4 CA QC Montreal Peer1
5 US NY New York Cogent
6 US NY New York Sprint

Table 2: Locations of six Keynote agents
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Note that Keynote does not directly provide the anomaly
data. Therefore, for each of the six Keynote agents (each
with 3 unique IP addresses in the same /24 subnet), we first
collect the initial connection time over a two-month period
(from 1st July 2010 to 31st August 2010), and group them
into 10-minute bins. Then we run the Shadow Holt-Winters
algorithm to detect anomaly events (called Keynote anomaly
events in the rest of the section) for comparison with the
anomalies detected by SONAR for the same time period and
with the same bin mode and size.

5.1.1 Results
There are totally 310 anomaly events from all six Keynote

agents during the two-month period. We compare Keynote
anomaly events with the results regarding their correspond-
ing /24 subnet reported by SONAR, and classify the results
as follows.

• Match: SONAR reported an event on the same sub-
net that is temporarily overlapped with the Keynote
anomaly event.

• Miss: SONAR didn’t report anything for the same sub-
net around the period of the Keynote anomaly event.

• More: SONAR reports anomalies about a Keynote agent’s
subnet, but there are no temporally overlapped Keynote
anomalies event

As shown in Table 3, SONAR in total successfully de-
tected 91% (281 events) out of 310 Keynote anomaly events,
missed 29 events (9%), and detected 51 more anomalies. As
also shown in the table, SONAR observes RTT for more IPs
in the subnet covering each Keynote agent subnet (each has
3 IPs). For example, in Keynote agent 2’s subnet, in addition
to the 3 IPs used by Keynote for probing, another 10 IPs also
visited the North-East CDN node during the two-month pe-
riod. As a result, even though an anomaly event is detected
using keynote measurements from the 3 IPs, it may not show
up in SONAR as a subnet anomaly by looking at the RTT
measurements from all 13 IPs. Also, SONAR detects 20
more anomalies for the agent 2 subnet. These are the ex-
pected difference between SONAR and active measurement-
based anomalies. Coverage of more IPs can detect anoma-
lies not directly experienced by the probing IPs, and also
anomalies experienced only by the probing IPs might not
contribute enough to the subnet to have subnet level anoma-
lies.

5.2 Comparison with Authoritative DNS Server
Change Events

We first describe how CDN node assignment works in the
tier-1 ISP and then how the authoritative DNS server change
helps with our evaluation.

The tier-1 ISP CDN’s authoritative DNS server, when re-
ceiving a DNS query from the client IP’s local DNS server,
responds with a CDN server address closet to the client’s lo-
cal DNS server, with the hope that this server address is also

Agent # IPs from its # Keynote # Match # Miss # More
subnet seen Anomaly
by SONAR Events

1 3 44 38 6 0
2 13 93 85 8 20
3 5 32 29 3 1
4 7 49 45 4 3
5 6 72 67 5 4
6 15 20 17 3 23

Table 3: Comparison with Keynote anomaly events

closet to the client IPs. As with most of DNS-based CDNs
[1, 5], this approach assumes that the network location of
a client IP can be approximated by that of its local DNS
server since the authoritative server can see the local DNS
server address, but not the client IP’s address. In the tier-1
ISP CDN, all these authoritative DNS servers, regardless its
location, assign the same CDN node for the same local DNS
server address. This global assignment table can be adjusted
over time.

The tier-1 ISP CDN uses anycast IP addresses for their
authoritative DNS servers (i.e.,they have the same IP ad-
dresses) located at many PoPs in the ISP network. There-
fore, a local DNS server’s DNS query is naturally routed to
the closed authoritative DNS server. The CDN service team
monitors the local DNS server addresses that queried each
authoritative DNS server in their daily operations. Since the
authoritative DNS servers are located near the edge of the
ISP network, a change in the authoritative DNS server ’hit’
by a local DNS server is indicative of the routing from the
local DNS server to the authoritative DNS server anycast ad-
dress has changed its ingress point to the tier-1 ISP. And be-
cause the tier-1 ISP announces the same BGP path attributes
for the anycast prefix and the CDN node prefix, the routing
path from local DNS server (and also the client IPs) to the
assigned CDN node might also (but not always) change its
ingress point to the tier-1 ISP.

For example, if a local DNS server that was ’hitting’ an
authoritative DNS server in Boston PoP starts hitting an au-
thoritative DNS server in Chicago PoP, it is likely the client
IPs that local DNS server serves now enter the ISP network
via Chicago PoP instead of Boston PoP, to reach the North-
East CDN node and result in a longer RTT. Note that the re-
turning path from the North-East node to the client IP might
or might not change since sometimes the routing is asym-
metric, but when the routing of this direction also changes,
e.g., going through Chicago POP as well, the RTT increase
will be even larger. In other words, a local DNS hit change
at the authoritative servers is a good (although not perfect)
indication of the RTT increase experienced by the client IPs,
and we obtained a list of such change events from 1st April
2010 to 15th April 2010 for all the local DNS IPs that should
be assigned to the North-East CDN node according to the
global assignment table. Note that this list was manually
compiled and may not be comprehensive.
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5.2.1 Results
Using these labeled DNS events as an independent data

source, we evaluate the accuracy of SONAR by running it
over the same period. Specifically SONAR runs in fixed time
bin mode with bin size as 10 minutes based on the RTT mea-
surements passively collected at the North-East CDN node.

In this evaluation, we first extract the AS path of the local
DNS server from each labeled event in the list and then clas-
sify each labeled event into three categories based the output
of SONAR.

• Match: SONAR reported an event on the same AS path
that is temporally overlapped with labeled event. The
top plot in Figure 14 shows an example of “Match” la-
beled event. There is a labeled event from 3:45am to
6:00am on 8th April 2010 to for a local DNS server that
uses AS path “3356 6079” to reach the ISP. The local
DNS server was routed to an authoritative DNS server
close to the North-East CDN node before 3:45am on
8th April 2010 and after that it was routed to another
authoritative DNS server several hundred miles away
from the North-East CDN node till 6:00am on 8th April
2010. It is a “match” as SONAR reported an event
around the same period of the labeled event.

• No Data: As there were no passive RTT measurements
on the AS path around the period of the labeled event,
SONAR didn’t report anything. The middle plot in
Figure 14 shows an example of “No Data” labeled event
as there is not measurement data around its period.
That means during the period of labeled event, no traf-
fic is seen on this AS path. We are still working with
CDN service team to figure out the reason of this while
it is not the focus of this paper. We don’t worry about
this case as SONAR didn’t report anything simply due
to lack of data.

• Miss: There were passive RTT measurements on the
AS path around the period of the labeled event but
SONAR didn’t report anything. The bottom plot in
Figure 14 shows an example of “Miss” labeled event.
One plausible explanation, as we discussed earlier, only
the local DNS server experienced a routing change to
the authoritative server, but the clients’ routing to the
CDN nodes were unaffected. In other words, this pro-
vides an upper bound of the “ground truth” anomalies
(related to these hit changes) missed by SONAR, and
the actual SONAR performance can be better.

The duration of the 68 labeled events in the list varies from
15 minutes to 5 hours. We show the evaluation results by
breaking down the 68 events into 3 classes according their
durations. As you can see from table 4, out of 68 labeled
events, SONAR successfully detected 72% (49 events) and
missed 13%. The rest 15 % is hard to decide due to lack of
data. In addition, SONAR tends to miss more short (15m 6
D 6 1h) labeled events.

Labeled	  event	  	  
ended	  

Labeled	  event	  	  
started	  

Reported	  event	  
started	  

Reported	  event	  
ended	  

Labeled	  event	  	  
ended	  

Labeled	  event	  	  
started	  

Labeled	  event	  ended	  Labeled	  event	  started	  

MATCH	  	  

No	  Data	  

Miss	  

Figure 14: Examples of three categories of labeled DNS
events

Duration (D) # Labeled Events # Match # No Data # Miss
15m 6 D 6 1h 24 16 2 6
1h < D 6 2h 32 25 5 2

D > 2h 12 8 3 1

Table 4: Evaluation results using authoritative DNS
server change events

6. OPERATIONAL EXPERIENCE
In this section, we first summarize the results of running

the SONAR system in a tier-1 ISP and then discuss two rep-
resentative case examples in detail. This ISP is referred to as
local ISP in the remaining of this section.

6.1 Overall Results
In order to have a basic understanding on how SONAR

works, we focus on the anomaly events detected by SONAR
from 20th July 2010 to 20th August 2010. Note these anomaly
events were detected by running SONAR in fixed time bin
mode with bin size as 3600 minutes based on the RTT mea-
surements passively collected at the North-East CDN node.

During this one-month period, SONAR detected 2,909
anomaly events across all the levels in the topological hi-
erarchy (Figure 12). Table 5 shows the anomaly event distri-
bution across all hierarchy levels. In general, the lower level
is responsible for more anomaly events as the lower level
tends to have more elements. In addition, at each level only
a small fraction (bad elements) of all elements are responsi-
ble for the anomaly events. As shown in Figure 15, generally
there is no heavy hitter among the bad elements.

After analyzing the anomaly events’ spatial characteris-
tics, now we try to understand the time durations of the 2,909
anomaly events. Figure 16 clearly shows that the short events
are common and long-lasting events are rare. Specifically,
the events with duration 3600 minutes are the most com-
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Hierarchy Level # Total Elements # Events # Bad Elements
CDN Node 1 0 0

Egress Router 185 66 36
Nexthop AS 125 54 25
Origin AS 820 172 97
AS path 1055 213 119

City 1758 593 289
BGP prefix 4646 600 425

City+BGP prefix 8784 1211 851

Table 5: Anomaly events breakdown by hierarchy level

Figure 15: Distribution of number of anomaly events per
element across all levels in the hierarchy

mon one and contribute 90% of all anomaly events. In addi-
tion, this statement holds true for every level in the hierarchy.
Due to space limitation, we don’t show the per-level distri-
bution here. Note 3600 minutes is the minimal duration of
an anomaly event as SONAR is running in fixed time bin
mode with bin size as 3600 minutes.

As the final step towards understanding overall results, we
dig into the detail of the top 100 anomaly events. Top 100
events were identified by SONAR using the ranking function
describe in Section 4.5. Specially, we try to find the root
cause of these events by spatially and temporally correlat-
ing them with the underlying network events inside the local
ISP. Figure 17 shows the root causes of the top 100 anomaly
events. 13 of them are confirmed to be caused by the events
inside the local ISP such as BGP routing change, link fail-
ure or link congestion. For the rest (majority) of them, we
couldn’t find any evidence inside the local ISP, which sug-

Figure 16: Distribution of anomaly event duration across
all levels in the hierarchy

Figure 17: Root causes of the top 100 anomaly events

AS	  path	  3561	  7922	  7015	  

BGP	  prefix	  24.2.128.0/17	  

BGP	  prefix	  67.189.128.0/17	  

BGP	  prefix	  71.234.0.0/15	  

iBGP	  next	  hop	  change	  

Event	  ended	  and	  
system	  adapted	  to	  the	  	  
new	  baseline	  

Event	  started	  

Figure 18: Aggregate RTT series, representative RTT se-
ries and the reported one-day event for AS path “3561
7922 7015” from 7th May 2010 to 9th May 2010.

gests that they may be caused by other ISPs.

6.2 Case Stuides
The following two case examples demonstrate the effec-

tiveness of SONAR for detecting and localizing performance
issues that effect the tier-1 ISP’s CDN service. Both case
examples are based on the RTT measurements passively col-
lected at the North-East CDN node and fixed time bin mode
is used with bin size as 10 minutes. All timestamps in the
section are in GMT.

Case Example 1: Permanent RTT Level Shift Caused by
iBGP Changes in the Local ISP.

SONAR reported an one-day event on AS path“3561 7922
7015” 3 from 11pm on 7th May 2010 to 11pm on 8th May
2010. We were interested in looking into this event as it
ranked first among all events from 1st May 2010 to 10th
May 2010. The AS path“3561 7922 7015” has 7 children
(BGP prefixes) in total. Each child is a BGP prefix that
3This is the reverse AS path that CDN nodes use to reach clients.
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can be reached via this AS path from the perspective of the
local ISP. It turned out that these 7 BGP prefixes were ex-
periencing the exact same event as the AS path around the
same time. The highest ranking score of this event comes
from three aspects. It spans 144 ten-minute intervals, each
of which has a high “confidence” (several hundred unique
clients) and a significant “severity”( 2 to 4 standard devia-
tions from predicted value). Moreover, because of the high
anomaly prevalence among all its 7 children around the pe-
riod of this event, the ranking score is not discounted at all.

The top plot in Figure 18 shows the AS path level ag-
gregate RTT series and representative RTT series. We can
see clearly that there was a RTT level shift started around
3:30am on 8th May 2010. It is a permanent RTT level shift
as it didn’t change back to the previous baseline. The period
of the event is aslo marked by two vertical dashed lines in
Figure 18. Note in SONAR one day is the maximum length
of an event and SONAR will adapt to the new baseline if
an event lasts longer than one day. The bottom three plots
of Figure 18 show three BGP prefixes under AS path “3561
7922 7015” in the hierarchy. Due to space limitations, we
omit the other 4 BGP prefixes that exhibited exact the same
behavior as the three shown in Figure 18.

According to the BGP updates from a route reflector that
is co-located with the North-East CDN node, we found iBGP
next hop to reach all the 7 BGP prefix changed at 3:28am on
8th May 2010 from the same city as the North-East CDN
node to another city 1000 miles away from it. Thus, iBGP
next hop change is very likely to be the reason of RTT level
shift in Figure 18 and the bump before the level shift may in-
dicate some network instabilities that caused the iBGP next
hop change.

Case Example 2: Temporary RTT Level Shift Related to
Remote ASes.

Among all events in 2010 March reported by SONAR, the
top first is an event on AS path “7922 7015” from 4:10am to
5:50pm on 21st May 2010. This event is so significant as
it effected all 65 BGP prefixes on the AS path “7922 7015”
for more than 10 hours. The top plot in Figure shows the
aggregate RTT series and representative RTT series for AS
path “7922 7015”. The event reported by SONAR is marked
by the two vertical dashed lines.

More interestingly, SONAR didn’t report anything for other
two AS paths “7922 33287” and “7922 33657” that share
the same next-hop AS and egress router with the problem-
atic AS path “7922 7015” from the view of North-East CDN
node. The two plot at the bottom in Figure show that the
corresponding aggregate RTT series and representative RTT
series for AS paths “7922 33287” and “7922 33657”. Even
though these two AS paths didn’t have as many RTT mea-
surements as the problematic AS path, we can still infer that
the RTT level shift might be caused by something in remote
ASes 7922 or 7015. The limitation of the above inference
is that SONAR doesnt incorporate forward AS path infor-

AS	  path	  7922	  7015	  

AS	  path	  7922	  33657	  

AS	  path	  7922	  33287	  

Event	  started	   Event	  ended	  

Figure 19: Aggregate RTT series and representative
RTT series for AS path “7922 7015” and other 2 AS paths
that share the same next-hop AS and egress router. The
period of this plot is the entire day of 21st May 2010.

mation that clients use to reach CDN nodes. For example,
suppose AS 7015 is multi-homed to AS 7922 and another
AS X. If AS X is used for clients in AS 7015 to reach the
North-East CDN node. Then the problem may be in AS X.
No information in SONAR is able to identify this possible
cause. Incorporating forward path information into SONAR
forms part of our future work.

7. RELATED WORK
There has been extensive prior work on characterizing,

detecting and isolating the end-to-end performance issues.
Broadly they can be classified into three categories: active,
passive and hybrid active/passive.

Active approach requires the injection of probe packets
into the network. The pioneering active approach[18] treats
the Internet as a complete black box and end- to-end tracer-
outes between 37 participating sites are collected and an-
alyzed to characterize the end-to-end performance issues.
Similar to [18], [12] detects path outage among hosts us-
ing pings and isolate the observed outage to a specific loca-
tion using traceroutes. [23] focuses on identifying routing
disruptions inside an ISP network use active probing (tracer-
outes) from end hosts and evaluating the impact of routing
disruptions on end-to-end path performance such as latency.
Commercial network monitoring service such as Keynote [4]
and Gomez [3] are also available to detect the end-to-end
performance from the end-users perspective in real time by
active probing.

Passive approach purely depends the existing traffic in
the network. Our approach belongs to the category. [11]
studied how network failures affect the availability of end-
to-end wide-area service using several large-scale traceroute
datasets [18, 19]. [7] analyzed the spatial and temporal sta-
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bility of end to end throughput using traceroute data from
the 1996 Olympic Games Web site. They are similar as
both of them inferred the end-to-end characteristics based
on static traceroute data. In contrast to them, we built an on-
line system that detects and isolates end-to-end RTT anoma-
lies for a wide-area service in real time based on the passive
measurement stream. A more recent work [6] proposed to
push end-to-end performance monitoring to the end systems
themselves and implemented such a prototype system based
on BitTorrent. Specifically, first each BitTorrent peer detects
its local events individually based on some passively mea-
sured performance metric and then local events from dif-
ferent peers are correlated spatially and temporally to de-
termine the scope of the problem. The effectiveness in [6]
actually depends the sparsity of passive measurements for
individual end systems. An end system with very few mea-
surements would be able to detect event effectively. The
deployment is another issue as there is no strong incentive
for end systems to corporate. Different from [6], our ap-
proach collects the end-to-end performance measurements
corresponding to individual end systems at server side, ag-
gregates them along the topological hierarchy, detects events
at different levels and finally isolate the performance issue to
the right level. Unlike [6], our approach is not limited by the
sparsity of measurements for individual end systems and by
the deployment issue.

Hybrid approach typically uses passive monitoring to de-
tect performance issue and employes active probing to help
isolate the issues. [15] first identifies the inflated prefixes by
passively measuring the RTT between clients and Google’s
CDN servers and then uses traceroutes to Identifying causes
of latency inflation. Our approach is similar to [15] as we
also passively measure the RTT between clients and CDN
servers. [15] focuses on detecting and diagnosing clients
which experience latencies much higher than other clients
in the same region. In contrast to [15], our approach mon-
itors the temporal change in RTT of individual clients and
detect anomalies according to the temporal changes. An-
other related work PlanetSeer [21] detects possible Internet
path failures by passive monitoring the clients of a CDN ser-
vice deployed on PlanetLab and relies on active probes to
narrow down the scope of path failure. Compared to [21],
our approach focuses on the temporal change of end-to-end
performance and doesn’t use active probing. [17] is a net-
work tomography approach that infers the internal network
characteristics based on end-to-end observations. [17] is
classified as a hybrid approach because observations are ob-
tained by passive monitoring the busy microsoft.com web
site and traceroute is used from server to clients to construct
the topology. [17] identifies the lossy links in the topology
constructed above while our approach aims to isolate prob-
lems to the right level in the hierarchy.

8. CONCLUSION AND FUTURE WORK
Detecting and isolating end-to-end performance issues in

wide-area services is critical for ISP operators. This pa-
per argues that the most effective way to detect and iso-
late end-to-end performance issues in a wide-area service
is to passively monitor the client IPs from inside the ISP
network. However, by analyzing RTTs passively measured
from a CDN service hosted and managed by a tier-1 ISP, we
found that client IP level passive detection and isolation is
not trivial. To address the challenges of client IP level detec-
tion and isolation, we developed PHADIS, a novel approach
that aggregates client RTT series along a topological hier-
archy. PHADIS has been successfully deployed in a tier-1
ISP and proved to be effective and accurate in detecting and
isolating end-to-end performance issues.

Our future work can be divided into two directions. First,
we plan to extend the hierarchical aggregation along more
axes. For example, now only the information (reverse AS
path and egress router) along the direction from the CDN
node to the client IP is used for aggregation. We plan to ag-
gregate the client RTT series using the information (forward
AS path and ingress router) along the another direction (from
the client IP to the CDN node) In addition, we also plan to
do aggregation by individual ASes in the AS path in order to
be able to detect performance issues localized to individual
ASes. Secondly, we plan to monitor and detect changes in
the topological hierarchy. For example, a client IP used to
be reached via “AS path 1” from a CDN node now is reach-
able via “AS path 2”. In the hierarchy, this client IP used
to be a child of “AS path 1” and now is a child of “As path
2”. If many client IPs change their parents in the hierarchy,
this may indicate some network event and the service may be
need to react to the event. Overall, we believe the PHADIS
passive monitoring approach can continue to be refined and
approved. This system continues to be in use and is being
expanded to cover other services as well.
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