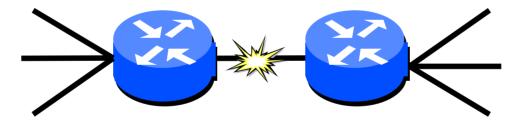
Troubleshooting Chronic Conditions in Large IP Networks

Ajay Mahimkar, Jennifer Yates, Yin Zhang, Aman Shaikh, Jia Wang, Zihui Ge, Cheng Tien Ee

> UT-Austin and AT&T Labs-Research mahimkar@cs.utexas.edu

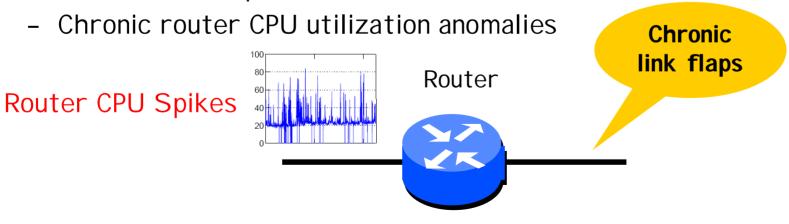
> > ACM CoNEXT 2008


Network Reliability

- Applications demand high reliability and performance
 - VoIP, IPTV, Gaming, ...
 - Best-effort service is no longer acceptable
- Accurate and timely troubleshooting of network outages required
 - Outages can occur due to mis-configurations, software bugs, malicious attacks
 - Can cause significant performance impact
 - Can incur huge losses

Hard Failures

- Traditionally, troubleshooting focused on hard failures
 - E.g., fiber cuts, line card failures, router failures
 - Relatively easy to detect
 - Quickly fix the problem and get resource up and running


Link failure

Lots of other network events flying under the radar, and potentially impacting performance

Chronic Conditions

- Individual events disappear before an operator can react to them
- Keep re-occurring
- Can cause significant performance degradation
 - Can turn into hard failure
- Examples
 - Chronic link flaps

Troubleshooting Chronic Conditions

- Detect and troubleshoot before customer complains
- State of art
 - Manual troubleshooting
- Network-wide Information Correlation and Exploration (NICE)
 - First infrastructure for automated, scalable and flexible troubleshooting of chronic conditions
 - Becoming a powerful tool inside AT&T
 - Used to troubleshoot production network issues
 - Discovered anomalous chronic network conditions

Outline

- Troubleshooting Challenges
- NICE Approach
- NICE Validation
- Deployment Experience
- Conclusion

Troubleshooting Chronic Conditions is hard

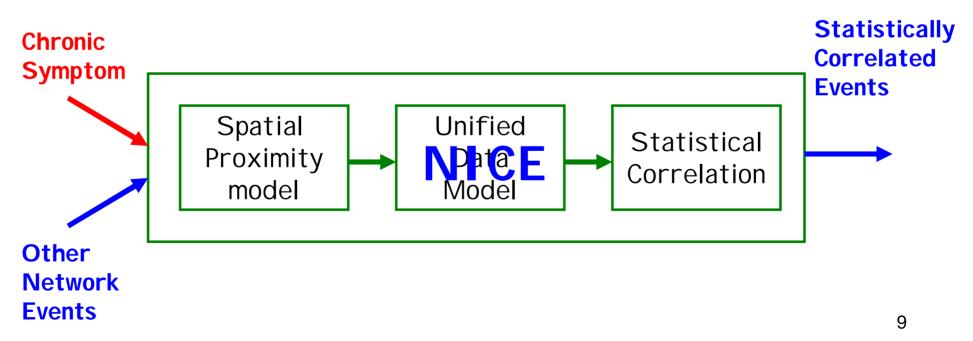
Effectively mining measurement data for troubleshooting is the contribution of this paper

2. Mine data to find chronic patterns

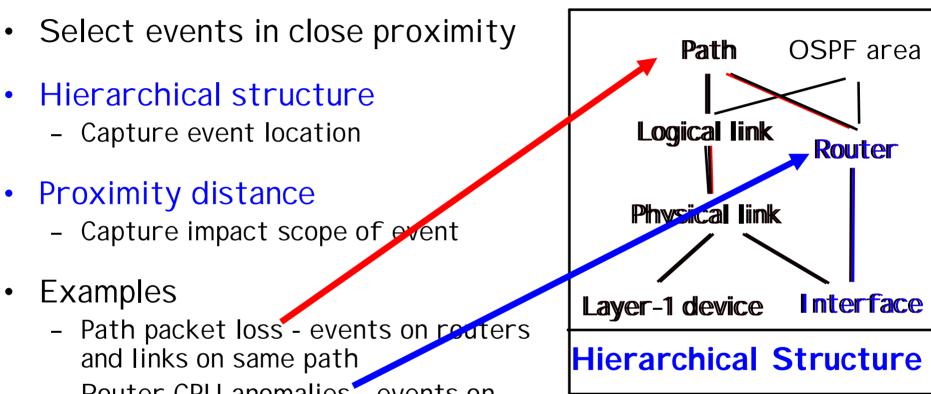
· · · · · ·

The form of the second second

3. Reproduce patterns in lab settings (if needed)


4. Perform software and hardware analysis (if needed)

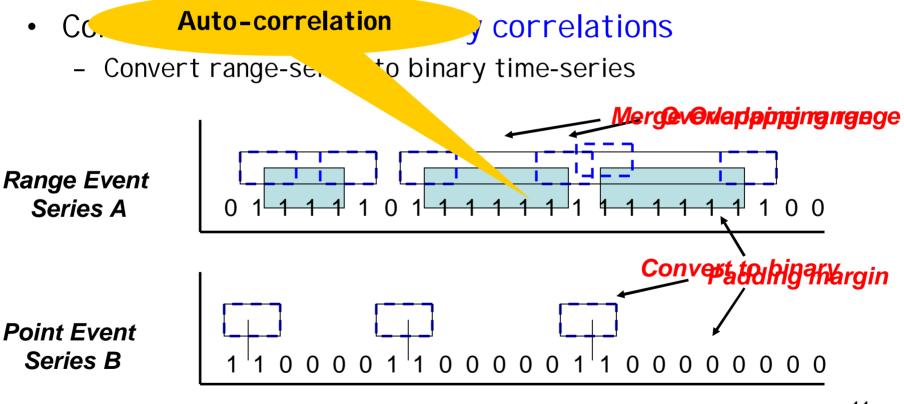
Troubleshooting Challenges


- Massive Scale
 - Potential root-causes hidden in thousands of event-series
 - E.g., root-causes for packet loss include link congestion (SNMP), protocol down (Route data), software errors (syslogs)
- Complex spatial and topology models
 - Cross-layer dependency
 - Causal impact scope
 - Local versus global (propagation through protocols)
- Imperfect timing information
 - Propagation (events take time to show impact timers)
 - Measurement granularity (point versus range events)

NICE

- Statistical correlation analysis across multiple data
 - Chronic condition manifests in many measurements
- Blind mining leads to information snow of results
 - NICE starts with symptom and identifies correlated events

Spatial Proximity Model



 Router CPU anomalies - events on same router and interfaces

> Network operators find it flexible and convenient to express the impact scope of network events

Unified Data Model

- Facilitate easy cross-event correlations
- Padding time-margins to handle diverse data
 - Convert any event-series to range series

Statistical Correlation Testing

- Co-occurrence is not sufficient
- Measure statistical time co-occurrence
 - Pair-wise Pearson's correlation coefficient
- Unfortunately, cannot apply the classic significance test
 - Due to auto-correlation
 - Samples within an event-series are not independent
 - Over-estimates the correlation confidence: high false alarms
- We propose a novel circular permutation test
 - Key I dea: Keep one series fixed and shift another
 - Preserve auto-correlation
 - Establishes baseline for null hypothesis that two series are independent

NICE Validation

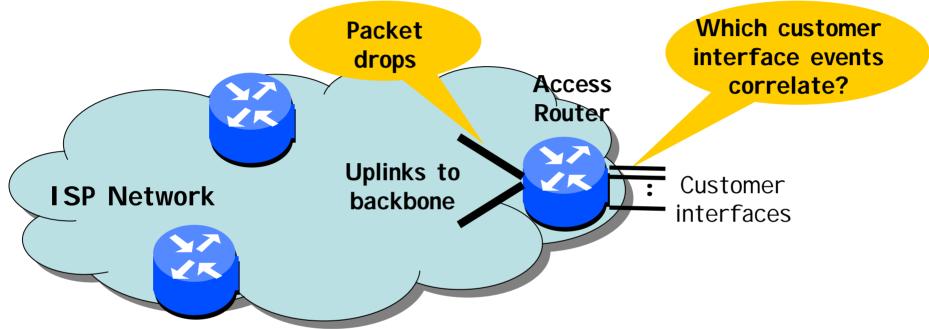
 Goal: Test if NICE correlation output matches 						
	king domain		Expected to correlate,			
 Validation using 6 months of <u>NICE marked uncorrelated</u> 						
Expected to not correlate, NICE marked correlated			NICE Correlat. Results			
Pairs for correlation testing	Expected not to correlate	Expected to correlate		Unexpected Correlations	Missed Correlations	
1785	1592	193	1732	24	29	

- For 97% pairs, NICE correlation output agreed with domain knowledge
- For remaining 3% mismatch, their causes fell into three categories
 - Imperfect domain knowledge
 - Measurement data artifacts
 - Anomalous network behavior

Anomalous Network Behavior

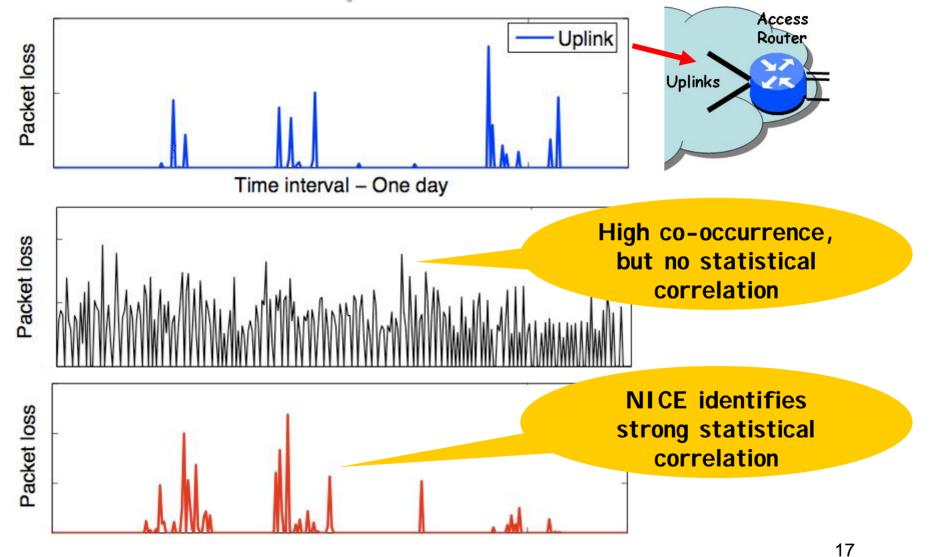
- Example Cross-layer Failure interactions
 - Modern I SPs use failure recovery at layer-1 to rapidly recover from faults without inducing re-convergence at layer-3
 - i.e., if layer-1 has protection mechanism invoked successfully, then layer-3 should not see a link failure
- Expectation: Layer-3 link down events should not correlate with layer-1 automated failure recovery
 - Spatial proximity model: SAME LINK
- **Result**: NICE identified strong statistical correlation
 - Router feature bugs identified as root cause
 - Problem has been mitigated

Troubleshooting Case Studies


AT&T Backbone Network

- Uplink packet loss on an access router
- Packet loss observed by active measurement between a router pair
- CPU anomalies on routers

Data Source	Number of Event types	
Layer-1 Alarms	130	
SNMP	4	
Router Syslogs	937	
Command Logs	839	
OSPF Events	25	
Total	1935	


All three case studies uncover interesting correlations with new insights

Chronic Uplink Packet loss

- Problem: I dentify strongly correlated event-series with chronic packet drops on router uplinks
 - Significantly impacting customers
- NICE Input: Customer interface packet drops (SNMP) and router syslogs

Chronic Uplink Packet loss

Chronic Uplink Packet loss

- NICE Findings: Strong Correlations with
 - Packet drops on four customer-facing interfaces (out of 150+ with packet drops)
 - All four interfaces from **SAME CUSTOMER**
 - Short-term traffic bursts appear to cause internal router limits to be reached
 - Impacts traffic flowing out of router
 - Impacting other customers
 - Mitigation Action: Re-home customer interface to another access router

Conclusions

- I mportant to detect and troubleshoot chronic network conditions before customer complains
- NICE First scalable, automated and flexible infrastructure for troubleshooting chronic network conditions
 - Statistical correlation testing
 - Incorporates topology and routing model
- Operational experience is very positive
 - Becoming a powerful tool inside AT&T
- Future Work
 - Network behavior change monitoring using correlations
 - Multi-way correlations

Thank You !

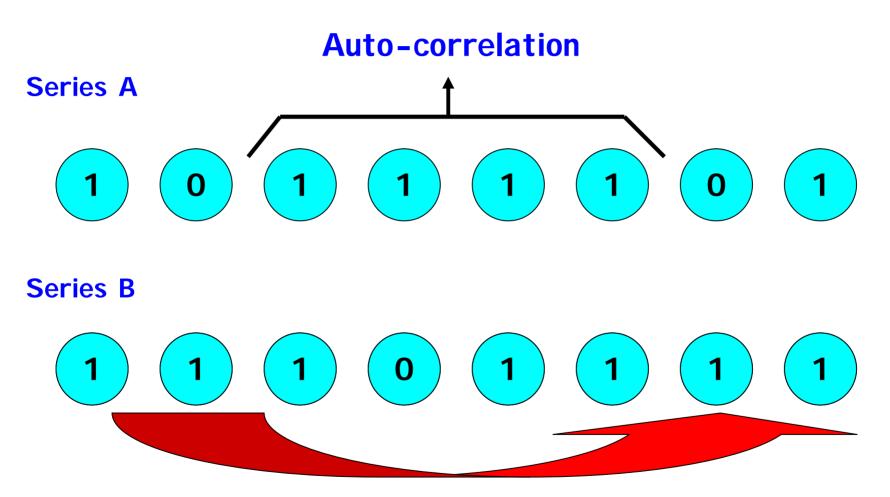
Backup Slides ...

Router CPU Utilization **Anomalies**


- **Problem:** I dentify strongly correlated event-series • with chronic CPU anomalies as input symptom
- NICE Input: Router syslogs, rous • logs and layer-1 alarms

operations findings

Consistent with earlier


- **NICE Findings:** Strong Correlations with •
 - Control-plane activities
 - Commands such as viewing routing protocol states
 - Customer-provisioning
 - ISNMP polling New Mitigation Action: Operators are working with router polling. systems to refine their polling mechanisms

Auto-correlation

About 30% of event-series have significant auto-correlation at lag 100 or higher

Circular Permutation Test

Permutation provides correlation baseline to test hypothesis of independence

Imperfect Domain Knowledge

- Example one of router commands used to view routing state is considered highly CPU intensive
- We did not find significant correlation between the command and CPU value as low as 50%
 - Correlation became significant only with CPU above 40%
 - Conclusion: The command does cause CPU spikes, but not as high as we had expected
 - Domain knowledge updated !