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ABSTRACT

Service quality in operational IP networks can be impacted
due to planned or unplannedmaintenance. During anymain-
tenance activity, the responsibility of the operations team is
to complete the work order and perform a check-up to ensure
there are no unexpected service disruptions. Once the main-
tenance is complete, it is crucial to continuously monitor the
network and look for any performance impacts. What oper-
ations lack today are effective tools to rapidly detect main-
tenance induced performance changes. The large scale and
heterogeneity of network elements and performance metrics
makes the problem extremely challenging.
In this paper, we present PRISM, a new tool for detect-
ing maintenance induced performance changes in a timely
fashion. PRISM uses association between maintenance and
the network elements to identify performance metrics for
time-series analysis. It uses a newMultiscale Robust Local
Subspace algorithm (MRLS) to accurately identify changes
in performance even when the baseline is contaminated. We
systematically evaluate PRISM using data collected at four
large operational networks: a tier-1 backbone, VoIP, IPTV
and 3G cellular and show that it achieves good accuracy. We
also demonstrate the effectiveness of PRISM in real opera-
tional environments through interesting case study findings.
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C.2.3 [Computer-CommunicationNetworks]: NetworkOp-
erations—Network management
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1. INTRODUCTION

Maintenance is one of the important tasks in network and
service management. New elements are introduced, old ones
removed, software is upgraded and configurations and tech-
nologies are changed to introduce new network and service
features. Even external activities such as highway roadworks
can result in network maintenance being necessary. Each
of these activities has the potential to introduce new per-
formance issues into the network and thus must be closely
monitored. Despite extensive testing of the new software
or equipment before deployment, intrinsic errors and feature
bugs might only manifest in operational settings because of
the large scale, device type, vendor heterogeneity and com-
plicated interactions across devices or software.
During a maintenance activity, the Operations team is re-
sponsible for completing the work order and performing check-
ups to ensure that there are no unexpected service disrup-
tions. Once the maintenance is complete, it is important to
carefully monitor the network and look for any performance
changes. The current operational practice in determining
the impact of maintenance is to monitor a pre-defined list
of performance metrics for unexpected degradations - met-
rics which have been identified as being potentially impacted
if things go awry. This process is generally executed man-
ually; which is cumbersome, error-prone and impossible to
scale.
Our goal is to replace today’s manual inspection of key
performance metrics with an automated approach that iden-
tifies any statistically significant change in a broad wealth
of service and network performance metrics. Our approach
is to avoid incorporating detailed domain knowledge as to
what may ormay not have been impacted by any givenmain-
tenance activity, and instead detect issues observed in any
of the vast wealth of service and network data, incorporat-
ing metrics ranging from user-perceived issues (e.g., blocked
voice calls), network performance (e.g., packet queue drops),
and network health (e.g., device CPU utilization). Through
this approach, we aim to rapidly detect issues which would
have traditionally “flown under the Operation’s radar”, en-
abling considerably faster mitigation to service and network
impacting issues, thereby improving overall customer ser-
vice quality.
In our previous work [21], we proposed MERCURY to
capture long term impact on performance likely induced by
the maintenance activities. MERCURY explicitly looked for



behavior changes that persisted over a long time (e.g., level-
shifts) as a result of maintenance activities and eliminated
transient changes like spikes. In this paper, we present an
alarming tool for quick detection of behavior changes im-
mediately after maintenance activities are conducted. The
types of behavior changes include a spike (e.g., sudden in-
crease in voice call drops), level-shift or even a slow ramp-
up (e.g., deteriorating condition). It is highly desirable to
detect these behavior changes on a shorter time-scale (i.e.,
on the order of minutes or hours) for timely mitigation. Fur-
thermore, operating on a short time-scale imposes new chal-
lenges on detecting behavior changes in terms of handling
diverse characteristics of different data sources (e.g., season-
ality, variability) because we lose the luxury of aggregating
and smoothing out the data as we can do in MERCURY to
pick up long-term persistent performance impact.

Challenges: There are several interesting challenges:

1. Baseline construction. Identifying the baseline to com-
pare the performance after the maintenance is not easy
- the baseline can either be a few minutes or hours be-
fore the maintenance, same time of day before the day of
maintenance, or same day of week as the day of main-
tenance. The time-of-day or day-of-week (weekend ver-
sus weekday) effect may lead to incorrect inferences of
changes in performance that in reality have no relation
to the maintenance. It is thus important to carefully con-
struct the baseline.

2. Data diversity and baseline contamination. The ser-
vice and network measurements are highly diverse in
nature and exhibit different characteristics such as sea-
sonality (e.g., server workloads), high variability (e.g.,
router CPU utilization), randomness in the time-series
(e.g., layer-1 failures) and stationarity (e.g., router mem-
ory utilization). Detecting real, significant changes in
measurements that are inherently noisy and highly vari-
able is extremely challenging. Using manual analysis,
this can be basically impossible; even with automated
techniques it can be challenging to detect the changes
when the baseline is contaminated with impacts due to
earlier maintenance and/or failures.

3. Large number of performance event-series. The per-
formance impacts can be observed in any of the vast
number of diverse network and service measurements
collected. If the network operators are not looking at
the right metric, then they may incorrectly declare no
impact; only later to realize the issue via customer com-
plaints, for example. There are on the order of thousands
of time-series metrics that one can create from the avail-
able network data. Manually analyzing such a massive
amount of data is simply infeasible.

4. Spatial scope of maintenance impact. Some mainte-
nance activities have a local impact (e.g., a line card up-
grade can impact either itself or other line-cards on the
same router), whereas others have a global impact (e.g.,
a configuration change at a cellular base station in a re-
gion can impact service quality for all the users within
the region). It is thus important to take into account the

spatial scope of impact of maintenance when identifying
the performance metrics of interest. A lack of consider-
ation of the right scope can lead to missed detections.

Our Approach and Contributions: We propose a new tool
PRISM1 for rapid detection of performance impacts induced
by the maintenance activities. For a given type of mainte-
nance activity, it automatically selects the right spatial scope
of impact and mines a wide range of performance metrics
to discover the network and service performance changes.
PRISM addresses the above challenges as follows:

1. PRISM addresses the time-of-day and day-of-week ef-
fects by accurately constructing the baseline using his-
torical data (30 days before the day of maintenance in
our prototype implementation). By comparing the per-
formance time-series on the day of maintenance with the
baseline, PRISM identifies statistically significant changes
in performance that are induced by the maintenance.

2. PRISM uses a new Multiscale Robust Local Subspace
(MRLS) algorithm for accurately detecting the perfor-
mance changes induced by themaintenance. MRLSworks
across a diverse set of data and implicitly accounts for
any seasonality, stationarity, or high variability. It con-
structs the baseline normal subspace usingmultiscale dif-
ferencing and robust l1 norm. This is effective even when
the data is contaminatedwith changes from previousmain-
tenance activities or failures.

3. PRISM uses automation to systematically mine a large
number of diverse performance measurements collected
at different layers, protocols and network devices. It
parses the measurements logs, identifies the appropriate
aggregation granularity depending on the spatial scope
of impact and detects changes in time-series for each
metric. Having such a capability enables analysis that
go beyond what can be achieved manually.

4. To identify the spatial impact scope of the maintenance
activity, PRISM uses the hierarchical structure of net-
work components and topological information to con-
struct an influence group (which are the network ele-
ments that can potentially be impacted). By monitoring
the performance metrics at network elements within the
influence group, PRISM increases the likelihood of cap-
turing the performance impacts of maintenance.

We conduct extensive evaluation (Section 3) using data
collected from four operational networks and services (tier-1
backbone, VoIP, IPTV, and 3G Cellular). Our results demon-
strate the superior performance of MRLS compared to other
subspace algorithms under varying degrees of baseline con-
tamination and diverse data characteristics. Encouraged by
the evaluation results, we have started applying PRISM to
the operational networks on a regular basis. We discuss in-
teresting case study findings in Section 4. PRISM has con-
firmed some of the earlier findings of operations and in some
cases, revealed previously unknown behaviors.

1Analogous to dispersing white light into a spectrum of colors,
PRISM takes a maintenance activity as input and identifies signifi-
cant increases, decreases or no changes in performance.
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Figure 1: PRISM Overview and design.

2. PRISM DESIGN

In this section, we present the design of PRISM. After
completing maintenance on a network device, the goal of the
operations team is to carefully monitor the network and ser-
vice to ensure there are no unexpected performance degrada-
tions. The impacts (if any) can typically be observed within
a few minutes or hours after the maintenance when the net-
work device is put back in service. PRISM serves as an au-
tomated tool to mine a wide variety of performance metrics
and rapidly identify changes in a scalable fashion. Fig. 1
shows the system architecture of PRISM. For each main-
tenance event, PRISM identifies a group of network devices
that could be impacted and then derives a list of performance
metrics for time-series analysis (Section 2.1). The data to be
fed into PRISM is ingested into a database with normaliza-
tion (e.g., all timestamps to GMT, and common router nam-
ing conventions) so as to facilitate easy analysis across dif-
ferent layers, devices and metrics. PRISM uses a novel mul-
tiscale robust local subspace algorithm (MRLS) to rapidly
detect changes in performance that are induced by the main-
tenance even when the baseline is contaminated by other
changes due to previously uncorrelated maintenance events
or even failures (Section 2.2). PRISM is flexible to operate
at multiple time scales to capture the impact.

2.1 Modeling Maintenance Impact

A maintenance activity is typically carried out during off-
peak times. Traffic is moved away from the network element
(NE) before starting the maintenance. Once the maintenance
is complete, the NE is put back into service. The time du-
ration between the start and end of a maintenance activity
is called a maintenance window. The sequence of instruc-
tions to be executed during the maintenance is provided in
a Method Of Procedure (MOP) document. The MOP also
provides information about the type of network element un-
dergoing maintenance (e.g., a line card, an interface, or a
router), the type of maintenance (e.g., a software upgrade,
configuration change, or a hardware replacement), which is
useful to identify the impact scope of the maintenance. The
impact scope is crucial to identify the NEs or services un-
der influence (called an influence group). The performance
metrics measured at the influence groups are monitored to
identify impacts.
A maintenance window typically has multiple scheduled
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Figure 2: Hierarchy for constructing influence group.

activities across different network components. PRISM cur-
rently does not take into account the dependencies across
multiple maintenance activities. It focuses on identifying the
performance impact of each maintenance activity. For two
or more correlated activities in quick succession, the Opera-
tions team can manually tie them to identify the performance
impact after the last activity.

2.1.1 Influence Group Identification

Different types of maintenance activities have different
impact scope. Some have a local impact (e.g., a line card up-
grade can impact performance of the same line card), whereas
others have a global impact (e.g., a BGP configuration change
on a router can impact performance on a remote router which
is the other end of the BGP session). Failure to capture the
right impact scope can either lead to delayed detection after
the damage has been done, or create a large number of false
alarms. In PRISM, we use the hierarchical structure of net-
work components and topological information to associate
the maintenance with the influence group. Fig. 2 shows the
hierarchy of network components: a physical link consists of
multiple layer-1 devices; a logical link contains one or more
physical links and connects two routers (or, servers); a line
card consists of multiple interfaces; a router (or, a server)
consists multiple line cards; a service path consists of mul-
tiple routers and logical links; and a session consists of two
routers that can be multiple hops away.
For a given network component under maintenance, we
identify the influence group as a collection of components
at the same level in the hierarchy and any level higher up in
the hierarchy. For example, if a line card is upgraded, the
influence group would contain the same line card, the router
to which it belongs, all other line cards on the same router,
any protocol sessions on the router, and all services that have
the router on the path. We however, do not include any net-
work components lower in the hierarchy because it is less
likely that any one of the lower level components would be
individually impacted, instead of impacts across all of them.
Intuitively, all lower level components are under the same
influence and hence incorporating them into the influence
group would add no more information than the component
under maintenance. For example, in case of a line card up-
grade, all interfaces on the line card can have similar im-
pact and performance changes at the interfaces should also
be observable in aggregate statistics at the line card. When-
ever PRISM has access to service-level performancemetrics



such as call failures in Voice over IP, or data accessibility
issues in the 3G cellular network, it incorporates end-to-end
paths within the influence groups. For example, the influ-
ence group for a VoIP server upgrade would include all the
trunk groups2 traversing the server. PRISM uses the asso-
ciation between the maintenance type and network elements
involved to identify the influence group. The hierarchy to
construct the influence group shown in Fig. 2 is generic and
can be easily applied or extended to different networks. The
next step is to select the performance time-series measured
at the network elements within the influence group.

2.1.2 Performance Time-series Creation

Depending on themaintenance, the operations teamsmon-
itor a pre-defined list of performance metrics ranging from
device CPU and memory utilization, link load, packet er-
rors and drops on the interfaces, end-to-end packet loss and
delay, software errors, hardware faults and routing protocol
flaps. The objective is to monitor the impact of maintenance
on these metrics. Any change in performance immediately
after the maintenance is a good indicator that it might be in-
duced by maintenance. If the impacts are captured rapidly,
then the damage can be prevented or minimized.
Instead of only looking at a pre-defined list of metrics,
PRISM automatically mines all the performance metrics at
the influence groups because sometimes the impacts might
be hidden in previously unknown metrics. In this paper, we
use measurements from SNMP MIBs, device syslogs, and
service-level statistics. SNMP MIBs are recorded at regu-
lar intervals (e.g., 5 minutes) and capture average statistics
such as CPU and memory utilizations, packet counts, packet
losses and errors. Device syslogs provide a rich source of in-
formation about the protocol and link state changes, software
error conditions, hardware faults and environmental condi-
tions. Service-level metrics provide information on the call
failure percentages in VoIP, voice and data quality feedback
from users in the 3G cellular network.
We construct a time-series for each performance metric
by dividing the original series into n equal time-bins. Since
our goal is to rapidly detect the changes in performance, we
use small time-bins such as 5-minutes. For metrics like sys-
log messages, each time-bin contains the frequency of the
message. Furthermore, depending on the granularity of the
influence group member, we aggregate measurements from
members lower in the hierarchy. For example, in order to
detect the impacts of operating system upgrades, we would
aggregate performance metrics from all line cards and inter-
faces on the upgraded router by computing the average per
time-bin. Thus, we will have multiple performance time-
series and our goal is to detect changes in these time-series
that are induced by the maintenance activities.

2.2 Detecting Performance Changes

For each performance time-series, our goal is to determine
if there are significant changes induced by the maintenance.
The changes can either be spikes, level-shifts or slow ramp-

2A trunk group is a collection of network elements and servers on
which a call is routed.

ups. One approach is to compare time-series statistics like
means, medians or entire distributions before and after the
maintenance. Since we operate on finer time scales, we
would like to eliminate changes caused by time-of-day ef-
fects. For example, link load has a high degree of season-
ality and a CUSUM approach (used by MERCURY [21])
at 5-minute granularity would pick up change-points during
the beginning and end of the peak times, resulting in a false
correlation with the maintenance activity.
We approach the change detection problem by compar-
ing the time-series within the segment of interest around
the maintenance time with previous days before the main-
tenance. For example, compare time-series values between
8 AM and 4 PM with that of previous days. This approach is
different from time-series analysis techniques like CUSUM,
EWMA, ARIMA, and Holt-Winters where changes are de-
tected over continuous time-series. Subspace algorithms are
better suited and are shown to be more accurate [10, 23].
Subspace algorithms are based on Singular Value Decompo-
sition (SVD) or Principal Component Analysis (PCA) of the
time-series data. They construct the baseline by projecting
the training data into a normal subspace and then looking
for differences between the test data and the normal sub-
space. Krylov subspace learning [12] speeds up SVD by
matrix compression and implicit inner product calculation.
It is well-known that SVD/PCA suffers from contamina-
tion of the normal subspace due to large outliers [27]. Such
contamination is common in practice because the training
data can contain big changes or outliers because of previ-
ously performed maintenance or failures. To address this
shortcoming, we propose a new Multiscale Robust Local
Subspace algorithm (MRLS) that can detect changes even
when the baseline is contaminated with large outliers. Be-
fore we describe MRLS, we provide an overview of how
subspace algorithms operate to discover the change-points.

2.2.1 Subspace Algorithms using SVD

For each performance metric, the goal is to test if time-
series values before the maintenance are significantly differ-
ent after the maintenance. We construct a matrix X for each
performance time-series with N columns (each column cor-
responds to a day, andNth column is the day of maintenance)
andM rows (each row is a time-bin, e.g.. 5-minutes). X(i, j)
is the value of the performance metric on day j and time-
bin i on day j. We need to identify changes on the Nth day,
which is the day of maintenance.

Singular Value Decomposition (SVD). SVD can decom-
pose any real-valued matrix X into three matrices such that

X = UΣV T (1)

where the columns of U are the eigenvectors of XXT , the
columns of V are the eigenvectors of XT X and the diagonal
values in Σ are the singular values si. The singular values
capture the energy of the time-series X and are typically ar-
ranged in decreasing order of energy (si ≥ si+1).
The intuition behind applying SVD for change detection
is that the normal subspace is captured by the first r sin-
gular values (r ≤ N) with the most energy and the residual



subspace contains the outliers or changes. The residual sig-
nal is computed using XR = UΣRV T , where ΣR contains the
remaining N − r singular values. XR(:,N) contains the resid-
uals for the day of maintenance and follows a Gaussian dis-
tribution under the central limit theorem. The change-points
during the day are those time-bins whose values are greater
than µ + τσ . µ and σ are the mean and standard deviation
of the residual signal and τ is a threshold to test for signifi-
cance. For standard Gaussian distribution, using value of τ
as 2.33 achieves an accuracy of 99%.

Global versus local subspace. When we use all the time-
bins within a day to construct the matrix X , we refer to the
method as global subspace (GS). If instead, we focus on
a few time-bins around the maintenance time, we call the
method a local subspace (LS). In our implementation, we
use a few hours before and after the maintenance time to
construct the matrix for local subspace method. The matrix
contains fewer rows than the one used for global subspace.
The advantage of using a local subspace versus a global ap-
proach is we can filter any changes outside the time segment
of interest, which otherwise would contaminate the global
normal subspace. This makes sense in practice, because
changes due to failures or erroneous conditions can occur at
a different time than the maintenance. However, local sub-
space using the regular SVD cannot still mitigate the prob-
lems due to contamination within the local time segment.

2.2.2 MRLS: Multiscale Robust Local Subspace

Since the original SVD uses l2-norm to compute the low-
rank normal subspace, it suffers from inaccurate detection
and high false positives when there are large outliers. Re-
cently, there have been proposals to use the l1-norm instead
of l2 because it is more robust to outliers.

Robust subspace computation using l1-norm. [19, 34]
show that for sparse residual matrix XR and low-rank matrix
XN capturing the normal subspace, one can solve the follow-
ing constrained minimization problem to exactly recover the
normal subspace:

min
XN ,XR

‖XN‖∗+ λ‖XR‖1, subject to X = XN + XR (2)

where ‖ · ‖∗ denotes the nuclear norm of a matrix (i.e., the
sum of its singular values), ‖ ·‖1 denotes the sum or l1-norm
of the absolute values of matrix entries, and λ is a regulariza-
tion parameter. The optimization (2), referred to as Robust
SVD, can be treated as a general convex optimization prob-
lem and can be solved using any off-the-shelf interior point
solvers after being re-formulated as a semi-definite program.
We choose λ = 1√

max(M,N)
, as described in [4]. M is the

number of rows or time-bins andN is the number of columns
or days for matrix X . Thus, the regularization parameter λ
can be fixed and requires no training or tuning.
We develop an Alternating Direction Method (ADM) mo-
tivated by [19] to scale for large matrices. The key idea is to
use augmented Lagrange multipliers for solving constrained
optimization problems of the kind:

min f (Y ), subject to h(Y ) = 0 (3)

where f : ℜn → ℜ and h : ℜn → ℜm. The augmented La-
grangian function is

L(Y,Z,µ) = f (Y )+ 〈Z,h(Y )〉+ µ

2
‖h(Y )‖2F (4)

where µ is a positive scalar, Z is the Lagrangian multipliers,
〈A,B〉 is the trace norm of AT B and ‖ · ‖F is the Frobenius
norm.
For the optimization problem ( 2), we apply the augmented
Lagrange multiplier method using

Y = (XN ,XR), f (Y ) = ‖XN‖∗ +λ‖XR‖1, h(Y ) = X −XN −XR (5)

Then, the Lagrangian function is:

L(XN ,XR,Z,µ) = ‖XN‖∗ +λ‖XR‖1+ 〈Z,X −XN −XR〉+
µ

2
‖X −XN −XR‖2F

(6)

Our alternating direction method then progresses in an it-
erative fashion. During each iteration, we alternate among
the optimization of each one of XN , XR and Z while fixing
the other variables. The procedure is guaranteed to converge
quickly if we increase µ by a constant factor ρ ≥ 1 during
each iteration. We can further improve efficiency by replac-
ing exact optimization with approximate optimization dur-
ing each iteration.

Robust thresholding for detecting change-points. Once
the residual signal XR is obtained via robust computation us-
ing l1-norm, the next step is to analyze the residues on the
day of the maintenance i.e., XR(:,N). The mean and stan-
dard deviation tests for Gaussian distribution are sensitive
to outliers and we might miss some of the genuine signifi-
cant changes. To overcome that, we propose to use a robust
thresholding method by replacing the mean with median and
standard deviation with median absolute deviation (MAD).
This method is called theHampel identifier [8] and is known
to be effective even during the presence of outliers.
MAD for the residual signal on the day of maintenance
is defined as the median of the absolute deviations from the
maintenance day residual median:

MAD=mediani(|XR(i,N)−median j(XR( j,N)|) (7)

A time-bin in the residual signal for the day of maintenance
is considered to have a significant change if its value is greater
than (median+τ MAD). For accuracy of 99% and distribu-
tion tail corresponding to 1%, τ = 2.33 ∗ 1.4826. We have a
multiplicative factor of 1.4826 because σ ≈ 1.4826 MAD.
Limitations of l1-norm based robust subspace method.
The robust method described above can deal well with spikes,
however its fails to accurately construct the low-rank normal
subspace in presence of high energy outliers like level-shifts
or ramp-ups. We confirm this using experiments described
in Section 3. The high-energy changes can occur either due
to process changes, software and hardware upgrades. Thus,
it is important to improve the robustness of the change de-
tection algorithms to all sorts of high energy outliers.

Multiscale differencing. We apply multiscale differencing
on the performance time-series and then compute the low-
rank normal subspace using l1-norm. Differencing has a nice
property of converting big level-shifts or ramp-ups to spikes.



We use multiscale Haar wavelet transformation to achieve
differencing at multiple time scales. The wavelet transform
is applied to each column of the performance time-series X ,
thereby producing two matrices XW

a and XW
d consisting of

the approximation (or, averaging) and detail (or, differenc-
ing) coefficients. The difference coefficients XW

d are then
input to the low-rank subspace computation using l1-norm
that can then handle the spikes in coefficients (if any) and
accurately construct the normal subspace. The intuition be-
hind applying the wavelet analysis is not de-noising, but
de-correlating the data and turning high energy outliers like
level-shifts, ramp-ups into spikes in wavelet coefficients. We
perform a local subspace analysis by explicitly focusing on
time-bins around the maintenance time. We call this ap-
proachMultiscale Robust Local Subspace (MRLS).

Filtering operationally insignificant changes. PRISM cor-
relates the change-points on the day of the maintenance with
the actual time of maintenance to ensure that there is at-
least one change after the maintenance time. Through in-
teractions with operations teams and case study analysis, we
have found that if there is any change within the start and
end of maintenance window, then in a majority of cases, it
is an expected change. This is because of the nature of the
maintenance activity (e.g., router CPU often spikes within
the maintenance window). Thus it is important to filter out
these expected changes within the maintenance start and end
times and only focus on changes after the completion of the
maintenance.

3. MRLS EVALUATION

In this section, we present evaluation of MRLS using data
collected from four large operational networks: tier-1 back-
bone, VoIP, IPTV and 3G cellular. First, using synthetic in-
jection of changes into operational data, we compare MRLS
with other subspace methods and show that it can accurately
identify changes with a low false alarm ratio. Second, we
demonstrate that MRLS is robust to contamination of the
baseline with changes either due to other maintenance activ-
ities or failures. Third, we analyze the sensitivity to the num-
ber of eigenvectors selected for computing the normal sub-
space. Finally, we show that MRLS can scale to a large num-
ber of time-series data and rapidly detect changes, thereby
demonstrating its feasibility in an online setting.

3.1 Data Sets

The service provider collects a plethora of data related
to configuration, maintenance, workflow, faults and perfor-
mance. In this section, we provide a brief overview of the
network and data sets that are relevant to the rest of the pa-
per. Fig.3 shows the architecture for the four networks.

Tier-1 Backbone Network. The tier-1 backbone network
consists of devices from multiple vendors, and with differ-
ent roles. We focus on six categories: access routers (AR),
core routers (CR), aggregate routers (AGG), route reflectors
(RR), edge routers (ER), and layer-2 aggregation devices
(L2). We conduct our analysis using device syslogs, SNMP
MIBs (device CPU andmemory utilization levels, link loads,
packet errors and losses), workflow logs (history of com-
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Figure 3: Architecture of four operational networks
(tier-1 backbone, VoIP, IPTV and 3G cellular).

mands executed on the devices) and maintenance events.

Voice over IP (VoIP) Service. We focus on four roles of
VoIP servers: (i) gateway switches (GSX), (ii) policy servers
(PSX) that handle call routing, (iii) session directors (SDA),
and (iv) database servers (DB) that store call information.
We analyze measurements collected at VoIP servers, which
include CPU, memory utilizations, call failures and main-
tenance events. The call statistics are summarized for each
trunk group traversing the server.

IPTV Service. In an IPTV system, IP packets are used to
deliver live TV streams from the video servers to residential
homes. The IPTV provider network consists of SHO (Super
Head-end Office) which is the primary source of TV content,
VHO (Video Hub Office) responsible for each metropoli-
tan area, intermediate switches, and DSLAM (Digital Sub-
scriber Line Access Multiplexer) that multiplexes signals to
multiple homes. The home network consists of an RG (Resi-
dential Gateway), and a Set Top Box (STB) that serves as an
encoder and decoder for TV signals. We focus on software
crashes and upgrades on the STB, and syslogs collected at
devices in the provider network.

3G Cellular Service. The 3G cellular system provides
voice and data services and consists of a radio access net-
work (RAN) that handles all radio-related capabilities, and
a core network (CN) that is responsible for switching and
routing of calls and data connections to external networks.
The user equipment (UE) interfaces with the RAN. The key
components of a RAN are a Node B that communicates with
the UE and a Radio Network Controller (RNC) that controls
radio resources within a domain, and manages the connec-
tions to the UE. The core network consists of SGSN (Serving
GPRS 3 Support Node) for data routing, GGSN (gateway
to external packet switched networks), MSC (Mobile Ser-
vices Switching Center) to switch voice calls, GMSC (gate-
way to external circuit switched networks), HLR (home lo-

3GPRS stands for General Packet Radio Service.



cation register) which is a database of subscriber informa-
tion and VLR (visitor location register) to support seamless
roaming. In the paper, we focus on NetCool [25] alarms
collected at the Node B and RNC within the RAN, and user
feedback regarding service quality using a recently deployed
capability called Mark the Spot (MTS) [24]. User feedback
is extremely invaluable to the service provider to track user
quality of experience [26, 33]. NetCool data provides infor-
mation about faults, connectivity issues, protocol state con-
ditions, resource availability, voice and data quality issues.

3.2 Comparison of Subspace Methods

We now compare different subspacemethods using opera-
tional network data that exhibit different characteristics such
as variability, seasonality, random with no structure and sta-
tionarity. The goal is quantify the performance across differ-
ent types of changes (such as spikes, level-shifts, ramp-ups)
and under varying degrees of baseline contamination. We
consider the following subspace methods for comparison.

1. Global Subspace (GS): It applies regular SVD on a ma-
trix with all time-bins on a day.

2. Local Subspace (LS): It applies regular SVD on a matrix
with a few time-bins around the maintenance time.

3. Multiscale Global Subspace (MGS): It applies regular
SVD on wavelet coefficients generated using a matrix
with all time-bins on a day.

4. Multiscale Local Subspace (MLS): It applies regular SVD
on wavelet coefficients generated using a matrix with a
few time-bins around the maintenance time.

5. Robust Global Subspace (RGS): It applies robust SVD
using l1 norm on a matrix with all time-bins on a day.

6. Robust Local Subspace (RLS): It applies robust SVD us-
ing l1 norm on a matrix with a few time-bins around the
maintenance time.

7. Multiscale Robust Global Subspace (MRGS): It applies
robust SVD using l1 norm on wavelet coefficients gener-
ated using a matrix with all time-bins on a day.

8. Multiscale Robust Local Subspace (MRLS): It applies
robust SVD using l1 norm on wavelet coefficients gen-
erated using a matrix with a few time-bins around the
maintenance time.

3.2.1 Methodology

Evaluating the accuracy of change detectors using real-
world operational data is extremely challenging because of
the lack of ground truth information about the changes. In
our evaluation, we synthetically inject known change sig-
natures into the time-series data and compute the accuracy
for different detectors. We also test the sensitivity of the
detectors to the change characteristics such as its duration,
magnitude and degree of baseline contamination.

Time-series construction. For our synthetic injection ex-
periments, we use operational data collected over 30 days.
We categorize the data using four characteristics: variabil-

ity, seasonality, random (no structure) and stationarity. We
summarize the data we use in Table 1. For each data source,

Type Performance Metric Count Operational
Network

Variability Router CPU utilization 7 Tier-1 backbone
Seasonality Link load 4 Tier-1 backbone

Server CPU utilization 3 VoIP
Random Packet errors 1 Tier-1 backbone

Call failures 1 VoIP
BGP hold timer expiration 1 Tier-1 backbone
Multicast flaps 1 IPTV
Hardware faults 1 IPTV
STB software crash 1 IPTV
Coverage issues (MTS) 1 3G cellular

Stationarity Router memory utilization 7 Tier-1 backbone

Table 1: Performance data collected over 30 days for
comparison of subspace methods. We group them by

their characteristics.

we construct a time-series containing events divided into 5-
minute bins. For example, CPU utilization for a device over
30 days would be mapped to 288*30 sample points in the
time-series (each day contains 288 5-minute bins).

Injection of changes on day of maintenance. For 30-days
worth of data for each time-series, we assume that the last
day is the day on which maintenance is being performed.
We inject a change on the day of maintenance with the start
time of the change being the time at which maintenance is
complete. The change can either be a spike, a temporary
level-shift (TL-shift) that lasts a few 5-minute bins, a tem-
porary ramp-up (T-rampup) that ramps up and last for a few
bins, a level-shift (L-shift) that lasts for the entire day and a
ramp-up that last till the end of the day.

Injection of baseline contamination. We inject changes
with different signatures on the days before the maintenance
(i.e., any day between day 1& 29). This will contaminate the
baseline and make it harder to accurately compute the nor-
mal subspace. This process will test the robustness of differ-
ent subspace methods. The contamination change signatures
can be spikes, temp level shifts, temp ramp-up, level-shifts
for the entire day, or ramp-up till the end of the day.

Computing false positives and true positives. If for a
change injected on the day of maintenance, if the subspace
method correctly identifies the change, then we label it as a
true positive of the method. False negatives are those changes
that are missed by the subspacemethods. If the method iden-
tifies the change, when the change was not injected, it is
labeled as a false positive. True negatives capture instances
that were not identified as changes when none were injected.
For the rest of the paper, we only show true positives and
false positives, because the other two can be inferred. We
use a time margin of 25 minutes before and after the mainte-
nance time within which if there exists a change-point, then
it will be labeled as a change detected by the method. We
construct samples by first randomly picking a maintenance
time on the last day and then injecting a specific type of
change with a specific magnitude. We repeat this procedure
for each type of performance data as outlined in Table 1. For
experiments with baseline contamination, we control three
parameters: (i) number of changes injected on days before
the maintenance (days are picked randomly), (ii) magnitude
of the contamination, and (iii) signature of the change. We
use the variance threshold of 0.9 to select the eigenvectors
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Figure 4: True positives across different data character-
istics (X-axis) and changes injected on the day of mainte-
nance.
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Figure 5: False positives across different data charac-
teristics (X-axis) and no changes injected on the day of
maintenance.

to construct the normal subspace. We later analyze the sen-
sitivity of the subspace methods to the number of eigenvec-
tors selected, which is captured by the variance threshold. A
higher threshold means more eigenvectors are selected and
this will account for higher variance in the normal subspace.

3.2.2 Comparison across Change Signatures

Fig. 4 shows the true positive ratio (TPR) for different
data characteristics (X-axis) and different changes. We make
the following observations: (i) Multiscale robust subspace
methods (MRGS and MRLS) perform better than regular
subspace and robust subspace using l1 norm. (ii) Regular
subspace methods perform badly in several cases because of
their inability to accurately identify changes with small mag-
nitude. (iii) Wavelet transformation helps improve the TPR
for regular subspace methods as well; MGS/MLS perform
better than their corresponding GS/LS. (iv) For all types of
changes except ramp-up, the true positive ratio for MRGS
and MRLS is similar. For ramp-up type of changes, the
ramping up sometimes is slower and thus are missed byMRLS
within a local time-window.
It may appear that MRGS is better compared to all meth-
ods, but along with a high true positive ratio, it also has a
high false positive ratio (Fig. 5). MRLS achieves a high true
positive and a low false positive, demonstrating its superior
performance to other detectors. The local methods achieve a
better FPR compared to the global methods.
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Figure 6: True positives and false positives for detectors
applied to data with high variability and baseline con-
tamination on the days before maintenance.
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Figure 7: True positives and false positives for detectors
applied to data with high seasonality and baseline con-
tamination on the days before maintenance.

3.2.3 Comparison under Baseline Contamination

We now examine the impact of baseline contamination on
the true positives and false positives for the detectors. Fig-
ures 6 and 7 show the TPR and FPR for data characteristics
of variability, seasonality. Due to space restrictions, we do
not show results for random and stationarity data character-
istics. For both figures, X-axis represents the different signa-
tures of the changes used to contaminate the baseline (days
before maintenance). For each contaminated change signa-
ture, we vary the type of change on the day of maintenance
and identify an aggregate true/false positive ratios.
Fig. 6 shows the true positive ratio (TPR) and false posi-
tive ratio (FPR) for the detectors when applied to data with
high variability and varying degrees of baseline contamina-
tion. The TPR decreases as the contamination degree in-
creases in terms of its energy from spike to level-shift to
ramp-up. MRGS and MRLS achieve a much better TPR
than other subspace methods indicating their robustness to
baseline contamination. MRLS further achieves a low FPR
indicating that performing multiscale robust subspace com-
putation using a local time window around the maintenance
time can eliminate other unrelated changes. For data with
high seasonality, it becomes difficult for regular subspace
methods to accurately identify the subspace as compared to
data with high variability because of the underlying structure
of the time-series. This is evident from the low TPR shown
in Fig.7 as compared to Fig. 6. This problem exacerbates for
data with no inherent structure or those have events recorded
at random time intervals. For stationary data with almost
negligible fluctuations, contaminated changes get amplified
when transformed using wavelets and thus MGS has a very
high false positive ratio.
In summary, our experiments across a wide variety of data,
different change signatures and varying degrees of baseline
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Figure 8: True positives and false positives when the vari-
ance threshold to select eigenvectors is varied.

contamination have shown that MRLS is not sensitive to un-
derlying data properties as compared to others and achieves
a high TPR at the same time maintaining low false alarms.

3.2.4 Sensitivity to Selection of Eigenvectors

In our sensitivity experiments, we vary the variance thresh-
old to select the number of principal components or eigen-
vectors. Fig. 8 shows that regular subspace methods GS and
LS are very sensitive to the selection of eigenvectors for con-
structing the normal subspace. This is consistent with the
finding in [27]. A low variance threshold allows a small
number of eigenvectors to construct the normal subspace
and very small deviations in the time-series which are more
likely to be false alarms propagate into the residual signal
and get classified as changes. Under contamination, genuine
changes might spill over to the normal subspace leading to
missed detections for higher variance threshold. Our MRLS
algorithm is robust to the variance thresholds. For the proto-
type system, we use variance threshold of 0.9.

3.2.5 Computation Time

We compare the computation time for different subspace
methods for a single time-series containing 30 days worth
of data with 5-minute time bins. As the variance threshold
for selecting eigenvectors to construct the normal subspace
increases, there is a small increase in computation time for
robust methods. Global subspace methods take more time to
complete than local because of the size of the input data. l1-
norm is known to be computationally expensive than regular
l2-norm and thus the robust methods take longer than reg-
ular subspace methods. Even though our MRLS algorithm
takes longer than LS or MLS, it completes in less than 0.15
seconds for each time-series. With parallel processing, we
can easily scale MRLS for rapid detection of maintenance
induced changes to a large number of performance metrics.

4. OPERATIONAL EXPERIENCES

We now describe our case study experiences in applying
PRISM on four large operational networks: tier-1 backbone,
Voice over IP (VoIP), Internet Television (IPTV) and 3G cel-
lular network. To evaluate PRISM before deploying at scale,
we ran PRISM across historical data for these networks and
services. The case studies discussed here demonstrate the
effectiveness of PRISM in capturing the performance im-
pacts of maintenance. In all the case study findings, PRISM
was able to rapidly identify performance impacts after the
maintenance - in some cases validating incidents that had

been historically detected, while in other cases revealing is-
sues that had flown under the operations radar (and in some
cases, the issues were still ongoing).
We consider different types of maintenance activities rang-
ing from operating system (OS) upgrades, software patches,
configuration changes and circuit rolls. We construct the
performance time-series using SNMP measurements (router
CPU, memory utilization, link loads and packet loss) and
router syslogs in tier-1 backbone, trunk group call statis-
tics and server CPU/memory utilizations in VoIP, software
crashes on STB in IPTV and NetCool alarms, performance
counters andMark The Spot (MTS) user feedback in 3G cel-
lular network. Router syslogs and NetCool data contribute
to a large number of performance time-series data. The large
count for Set-Top-Box (STB) OS upgrades is due to the large
number of STBs. We group the software crashes at the STBs
by regions to give us one time-series per region.
For eachmaintenance activity, we collect thirty days worth
of performance time-series data and for each time-series, use
MRLS to identify if there are statistically significant changes
on the day of the maintenance. Table 2 shows the summary
of PRISM results. After sharing the results with the op-
erations teams and conducting further investigations (time-
series visualizations, browsing through workflow and con-
figuration logs), we summarize our results into three cate-
gories as follows: (i) We confirmed some of the previously
known impacts of maintenance. This boosted ours as well as
operations confidence in PRISM’s functionality. (ii) In a few
cases, PRISM also revealed previously unknown impacts
demonstrating its potential to be used in online settings. (iii)
For some performance changes that correlate with the main-
tenance, we haven’t yet been able to confirm a causal rela-
tion. Investigations are underway.

4.1 Impact of Circuit-roll in Tier-1 Backbone

In our first case study, we focus on identifying the perfor-
mance impacts of circuit rolls in tier-1 backbone networks.
A circuit roll is a process of moving a physical circuit (IP
link) from one router port to another router port (potentially
on a different router). These circuit rolls are typically exe-
cuted before and after line card maintenance or for router re-
placement. One important goal is obviously to minimize the
impact on traffic. To achieve this, the traffic is first moved
away from the device to be replaced so that maintenance can
be carried out with minimal performance impact. This can
be achieved with minimal service impacts in the core by us-
ing the redundant paths in the network. However, the same
cannot be achieved on customer-facing interfaces on access
routers (AR). Typically, customers connect to an ISP via a
single AR to the tier-1 network. Thus, while performing
maintenance on the ARs, the circuit between the customer
and AR must be seamlessly migrated with negligible impact.
We applied PRISM for circuit rolls across multiple de-
vices in the backbone network using a wide array of per-
formance measurements ranging from router CPU, mem-
ory utilization, packet errors and losses, and router syslogs.
PRISM captured interesting changes in behavior that were
previously not known to the network operators.



Network Type of Type of Count Influence Group Performance Impact Known/Unknown
Type Maintenance Network element to Operations

Tier-1 OS upgrade Peering gateway 12 Same router Upward level-shift in CPU Known
Backbone OS upgrade Aggregate router 9 Same router Upward level-shift in memory Unknown

OS upgrade Edge router 6 Same router Upward level-shift in CPU Unknown
Circuit roll Access router 15 Same router Upward level-shift in CPU Unknown
Circuit roll Core router 1 All interfaces on router Upward level-shift in packet errors & losses Unknown

IPTV OS upgrade Set-Top-Box 556194 Region Upward level-shift in software crash rates Known

VoIP Config. change Application server 1 Trunk group Upward spike in blocked calls Known
OS upgrade Application server 7 Trunk group Upward spike in blocked calls Known

3G Cellular Software patch RNC 5 Same RNC Upward level-shift in call drops Known
Software patch RNC 10 Same RNC Downward level-shift in call drops Known
OS upgrade Switch 1 Neighboring RNC Spike in blocked calls Known
OS upgrade Edge router 7 Same router Upward level-shift in CPU Known
Software patch RNC 11 Same RNC Upward level-shift in RAB failures Known

Table 2: Maintenance induced performance impacts identified by PRISM.

1. Circuit roll on AR induces significant changes in CPU
utilizations. We applied PRISM to monitor circuit rolls
executed during the retirement of old access routers (ARs).
Thousands of customers were being migrated from old
routers onto new routers. PRISM revealed that on some
small percentage of routers, immediately after some cir-
cuit rolls were completed, the old routers saw an increase
in the router CPU values being reported. At first we
thought that this might be due to de-aggregation of the
static routes and announcements into iBGP. However, af-
ter careful examination of the router configuration snap-
shots on the days of the circuit rolls, we found diverging
cases across routers. For some of the cases, we found
that there was IP address duplication causing some of the
packets to be sent to the old AR and thus causing CPU
increases. However, there are still some cases for which
we don’t have an explanation. We are currently investi-
gating this with the operations team and domain experts.
However, the critical point here is that this increase in
CPU load for certain migrations had not been detected
until PRISM was introduced because it is simply impos-
sible to manually monitor all time series as thousands
of customers are migrated over an extended period of
time. CPU increases were not expected, and thus no
one was watching each and every customer migration for
their CPU impact (instead relying on spot checks). For-
tunately, the impact was minimal as these were occurring
on routers from which the customers had been removed.
However, it is still unexpected behavior that places some
risk to the network and is indicative of routers behaving
suspiciously, and must be explained and managed. This
clearly demonstrates the value of PRISM and its ability
to pick up unexpected changes in device performance.

2. Circuit roll on a core router increases packet error
rates. In another case example, PRISM revealed that a
circuit roll on a core router interface was time-correlated
with an increase in packet errors and losses on a small
set of other interfaces on the same router. The most
likely explanation for this occurrence is that the fibers or
line cards in question were likely impacted through ac-
cidental human involvement (probably bumped) during
the maintenance. However, operations personnel mon-
itoring the circuit roll would have missed this negative
side effect as they would have been focused on monitor-
ing the circuit being moved and could not scale to manu-

ally monitoring all other circuits on the router. Clearly, if
the issues were significant enough an alarm would have
been automatically raised; however, even a small but sig-
nificant increase in errors during maintenance could be
readily repaired if rapidly detected while the technician
was still on site.

4.2 Impact of Server Software Changes in VoIP

In our second case study, we used PRISM to detect the
performance impact of software changes on Voice over IP
(VoIP) servers. The VoIP servers are responsible for man-
aging the phone calls over the IP network. The correct de-
sign and implementation of the server software is essential
for maintaining high quality of service. However, the server
software is continually evolving either via new application
installations to support new features, patches to fix bugs, or
upgrades to improve performance. Extensive lab testing is
performed on each change before it is deployed. However,
unpredicted impacts might be observed in operational envi-
ronments because of the large scale, complex interactions
across protocols, and vendors, and overload conditions. Un-
expected behaviors in the server software can lead to high
call failures, causing significant customer distress. Thus, it
is important to carefully monitor the server software behav-
iors and rapidly detect any performance impacts of changes.
We applied PRISM to track the impacts of server software
upgrades on server CPU and memory utilization, and trunk
group call statistics. Recall that a trunk group is used to route
calls across different servers. PRISM identified the influence
group for a software change on a server as a collection of all
the trunk groups traversing the server.

1. Increase in call failures due to a configuration change.
A configuration change had previously been applied to
alter the flow of certain VoIP calls to bypass call control
elements. Using PRISM, we detected that immediately
after the configuration change, there was a significant
increase in the fraction of call failures across multiple
trunk groups. We verified through event logs that this
was indeed a real, significant issue that was thoroughly
investigated by Operations personnel at the time. The
issue had arisen due to an unexpected timing issue that
created a build up of stale sessions on application servers
causing overload conditions and eventually resulting in
call failures. To resolve the overload condition, a man-
ual failover of the application servers was performed and
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Figure 9: Time-series showing the increase in the RAB
establishment failures induced by software patch on a

RNC. The time-series has a high degree of seasonality
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the configuration change was restored to route via the
call control elements.

4.3 Impact of STB Software Upgrades in IPTV

Set-Top-Boxes (STBs) connect to TVs and are responsi-
ble for encoding and decoding TV signals. Their health is
vital to guarantee good service to IPTV customers and their
performance is continuously tracked to avoid service degra-
dations. When the STB software is upgraded, the operations
team carefully monitors for behaviors that may be indica-
tive of new software bugs. Such conditions need to be de-
tected rapidly to minimize customer impact. However, given
the vast number of STBs deployed (in the case studied here,
we had seven million being analyzed), it becomes incredi-
bly challenging to monitor the impacts of upgrades. We thus
applied PRISM to the STB logs to monitor the impact of an
earlier software upgrade.

1. OS upgrades on STB increases software crash rates.
The deployment of the new OS version was scheduled
across a large number of STBs. PRISM automatically
discovered that the OS upgrades had induced a signifi-
cant increase in the software crash rates. This behavior
was observed across multiple locations. We confirmed
that Operations had previously been aware of this issue,
and were actively engaged in resolving it. However, this
confirmed that PRISM is effectively able to mine data as-
sociated with vast numbers of devices (in this case STBs)
to identify patterns associated with software upgrades.

4.4 Impact of Software Changes in 3G

In our final case study, we report PRISM’s findings associ-
ated with software changes to the Radio Network Controllers
(RNCs) and switches in a 3G cellular network. The opera-
tions teams and radio engineers carefully monitor changes in
data and voice service quality that may be induced by new
software releases or patches. The large number of network
elements and performance metrics makes it challenging to
rapidly capture the impacts. The metrics we used in PRISM
were NetCool alarms [25], performance measurements and
Mark the Spot (MTS) logs [24].

1. Changes in the call drop rate with the RNC software

patches. PRISM discovered using NetCool alarms that
there was an increase in the call drops after the soft-
ware patches were applied to the RNC. The change was
also captured by PRISM in MTS feedback from users.
We confirmed this finding with the operations team. Al-
though Operations was made aware of the issue through
traditional alarms, PRISM provides the added insight of
rapidly associating the alarms with the maintenance ac-
tivities. The Operations team had worked with the ven-
dors and installed a new software patch to fix the prob-
lem. PRISM confirmed the decrease in the number of
call drops with the new patch.

2. Software installation on a switch impacts 3G voice
calls. Again validating a historical issue, PRISM re-
vealed that a certain software upgrade on a switch unex-
pectedly resulted in an increase in blocked voice calls as
observed via performance metrics reported on a neigh-
boring RNC. However, the impact was not immediate -
it was only observed as load increased later in the day. It
was thus challenging for the Operations team at the time
to relate the increased call blocked rate with the (much
earlier) maintenance activities. However, PRISM imme-
diately made the association and thus, if it had been de-
ployed at the time, would have significantly reduced the
incident duration and hence customer impact.

3. RNC software patches increase the number of RAB
establishment failures. PRISM revealed that software
patches on RNCs were time-correlated with significant
increases in the number of RAB (Radio Access Bearer)
establishment failures resulting in an impact on the data
service quality. Fig. 9 shows the time-series plot of the
impact. It illustrates that even when the time-series had
high seasonality and few spikes on days before the patch
was applied, PRISM could successfully detect the per-
formance change (level-shift) on the day when the patch
was applied. PRISM also identified that the behaviorwas
observed only on a small fraction of the total number of
RNCs in the cellular network. The Operations team put
the software deployment on hold at other locations while
investigating the issue with the RNC vendor.

We have thus demonstrated the effectiveness of PRISM
across four different operational networks and services. Given
this application of PRISM, the operations teams are plan-
ning on incorporating PRISM on an ongoing basis to rapidly
capture the performance impacts of maintenance. PRISM
is continuously run after the maintenance activity is com-
plete and automatically picks up the service performance
impact whenever it becomes evident as a statistically sig-
nificant change in behavior.

5. RELATED WORK

There is a huge body of literature on network anomaly de-
tection and diagnosis. Most prior work regarding in-network
anomaly detection has focused on traffic or routing data.
Principal Component Analysis (PCA) is one of the popu-
lar network-wide anomaly detectors [11, 16, 17]. Zhang et

al. [35] proposed a single framework to capture a wide vari-



ety of detectors. Barford et al. [2] used wavelets to decom-
pose the original signal into low-, mid-, and high-frequency
components and then detect anomalies by close investigation
of the high-frequency components. Zhang et al. [36] used
compressive sensing to discover anomalies in traffic matri-
ces. Ringberg et al. [27] showed that the performance of
PCA is highly sensitive to the number of principal compo-
nents chosen. Brauckhoff et al. [3] further showed that the
sensitivities come from the lack of capturing temporal cor-
relations and proposed to use Karhunen-Loeve Transform to
improve robustness of PCA. PCA-GRID [6, 7] uses Projec-
tion Pursuit and Median Absolute Deviation (MAD) instead
of standard deviation as a robust way to deal with outliers.
Rubinstein et al. [28] showed that data poisoning (or base-
line contamination) can dramatically reduce the accuracy of
PCA and they combat poisoning by using a robust Laplace
cut-off threshold called ANTIDOTE. ASTUTE [30] uses the
equilibrium property and correlation across flows to discover
a new class of anomalies. BasisDetect [9] uses basis pur-
suit instead of PCA to decompose the signal into normal
subspace and residual. Soule et al. [31] used Kalman filter-
ing and multiscale analysis to improve false positives. Note
that the use of multiscale analysis in [31] is different from
ours; they use it to reduce false positives by ensuring that an
anomaly is captured at all timescales. Whereas, our goal of
multiscale transformation is de-correlation of data to convert
high-energy anomalies likes level-shifts into spikes.
Troubleshooting using statistical correlation across multi-
ple data sources is complementary to PRISM. SCORE [15],
Shrink [13], Sherlock [1] and Orion [5] focus on discov-
ering service-level dependencies. NICE [22], WISE [32],
Giza [20], NetMedic [14], URCA [29] and Minerals [18]
use statistical mining to identify time-series dependencies.

6. CONCLUSION

We presented the design and implementation of PRISM,
a new tool for detecting changes in performance that are in-
duced by maintenance. PRISM incorporates the operational
knowledge of the impact of maintenance using an influence
group and uses it to drive the time-series analysis. It uses a
novel multiscale robust local subspace algorithm (MRLS) to
accurately identify changes in performance even when the
baseline is severely contaminated. We validate MRLS using
data collected from four operational networks (tier-1 back-
bone, VoIP, IPTV, 3G cellular) and show that it outperforms
other subspace algorithms and accurately identifies changes
across a diverse set of data sources. PRISM has confirmed
some of the earlier findings of operations and in some cases
also discovered previously unknown issues.
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