
This paper is included in the Proceedings of the
11th USENIX Symposium on

Operating Systems Design and Implementation.
October 6–8, 2014 • Broomfield, CO

978-1-931971-16-4

Open access to the Proceedings of the
11th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

The Mystery Machine: End-to-end Performance
Analysis of Large-scale Internet Services

Michael Chow, University of Michigan; David Meisner, Facebook, Inc.;
Jason Flinn, University of Michigan; Daniel Peek, Facebook, Inc.;

Thomas F. Wenisch, University of Michigan

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chow

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 217

The Mystery Machine: End-to-end performance analysis
of large-scale Internet services

Michael Chow∗, David Meisner†, Jason Flinn∗, Daniel Peek†, Thomas F. Wenisch∗

University of Michigan∗ Facebook, Inc.†

Abstract
Current debugging and optimization methods scale

poorly to deal with the complexity of modern Internet
services, in which a single request triggers parallel exe-
cution of numerous heterogeneous software components
over a distributed set of computers. The Achilles’ heel
of current methods is the need for a complete and accu-
rate model of the system under observation: producing
such a model is challenging because it requires either as-
similating the collective knowledge of hundreds of pro-
grammers responsible for the individual components or
restricting the ways in which components interact.

Fortunately, the scale of modern Internet services of-
fers a compensating benefit: the sheer volume of re-
quests serviced means that, even at low sampling rates,
one can gather a tremendous amount of empirical perfor-
mance observations and apply “big data” techniques to
analyze those observations. In this paper, we show how
one can automatically construct a model of request exe-
cution from pre-existing component logs by generating a
large number of potential hypotheses about program be-
havior and rejecting hypotheses contradicted by the em-
pirical observations. We also show how one can validate
potential performance improvements without costly im-
plementation effort by leveraging the variation in compo-
nent behavior that arises naturally over large numbers of
requests to measure the impact of optimizing individual
components or changing scheduling behavior.

We validate our methodology by analyzing perfor-
mance traces of over 1.3 million requests to Facebook
servers. We present a detailed study of the factors that af-
fect the end-to-end latency of such requests. We also use
our methodology to suggest and validate a scheduling
optimization for improving Facebook request latency.

1 Introduction
There is a rich history of systems that understand,

optimize, and troubleshoot software performance, both
in practice and in the research literature. Yet, most of
these prior systems deal poorly with the complexities
that arise from modern Internet service infrastructure.
Complexity comes partially from scale; a single Web
request may trigger the execution of hundreds of exe-
cutable components running in parallel on many differ-
ent computers. Complexity also arises from heterogene-

ity; executable components are often written in differ-
ent languages, communicate through a wide variety of
channels, and run in execution environments that range
from third-party browsers to open-source middleware to
in-house, custom platforms.

In this paper, we develop performance analysis tools
for measuring and uncovering performance insights
about complex, heterogeneous distributed systems. We
apply these tools to the Facebook Web pipeline. Specif-
ically, we measure end-to-end performance from the
point when a user initiates a page load in a client Web
browser, through server-side processing, network trans-
mission, and JavaScript execution, to the point when the
client Web browser finishes rendering the page.

Fundamentally, analyzing the performance of concur-
rent systems requires a model of application behavior
that includes the causal relationships between compo-
nents; e.g., happens-before ordering and mutual exclu-
sion. While the techniques for performing such analy-
sis (e.g., critical path analysis) are well-understood, prior
systems make assumptions about the ease of generating
the causal model that simply do not hold in many large-
scale, heterogeneous distributed systems such as the one
we study in this paper.

Many prior systems assume that one can generate
such a model by comprehensively instrumenting all mid-
dleware for communication, scheduling, and/or synchro-
nization to record component interactions [1, 3, 13, 18,
22, 24, 28]. This is a reasonable assumption if the soft-
ware architecture is homogeneous; for instance, Dap-
per [28] instruments a small set of middleware compo-
nents that are widely used within Google.

However, many systems are like the Facebook sys-
tems we study; they grow organically over time in a
culture that favors innovation over standardization (e.g.,
“move fast and break things” is a well-known Facebook
slogan). There is broad diversity in programming lan-
guages, communication middleware, execution environ-
ments, and scheduling mechanisms. Adding instrumen-
tation retroactively to such an infrastructure is a Her-
culean task. Further, the end-to-end pipeline includes
client software such as Web browsers, and adding de-
tailed instrumentation to all such software is not feasible.

Other prior systems rely on a user-supplied schema
that expresses the causal model of application behav-

218 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

ior [6, 31]. This approach runs afoul of the scale of mod-
ern Internet services. To obtain a detailed model of end-
to-end request processing, one must assemble the col-
lective knowledge of hundreds of programmers respon-
sible for the individual components that are involved in
request processing. Further, any such model soon grows
stale due to the constant evolution of the system under
observation, and so constant updating is required.

Consequently, we develop a technique that generates a
causal model of system behavior without the need to add
substantial new instrumentation or manually generate a
schema of application behavior. Instead, we generate the
model via large-scale reasoning over individual software
component logs. Our key observation is that the sheer
volume of requests handled by modern services allows us
to gather observations of the order in which messages are
logged over a tremendous number of requests. We can
then hypothesize and confirm relationships among those
messages. We demonstrate the efficacy of this technique
with an implementation that analyzes over 1.3 million
Facebook requests to generate a comprehensive model
of end-to-end request processing.

Logging is an almost-universally deployed tool for
analysis of production software. Indeed, although there
was no comprehensive tracing infrastructure at Facebook
prior to our work, almost all software components had
some individual tracing mechanism. By relying on only a
minimum common content for component log messages
(a request identifier, a host identifier, a host-local times-
tamp, and a unique event label), we unified the output
from diverse component logs into a unified tracing sys-
tem called ÜberTrace.

ÜberTrace’s objective is to monitor end-to-end re-
quest latency, which we define to be the time that elapses
from the moment the user initiates a Facebook Web re-
quest to the moment when the resulting page finishes ren-
dering. ÜberTrace monitors a diverse set of activities
that occur on the client, in the network and proxy layers,
and on servers in Facebook data centers. These activities
exhibit a high degree of concurrency.

To understand concurrent component interactions, we
construct a causality model from a large corpus of
ÜberTrace traces. We generate a cross-product of pos-
sible hypotheses for relationships among the individual
component events according to standard patterns (cur-
rently, happens-before, mutual exclusive, and first-in-
first-out relationships). We assume that a relationship
holds until we observe an explicit contradiction. Our re-
sults show that this process requires traces of hundreds
of thousands of requests to converge on a model. How-
ever, for a service such as Facebook, it is trivial to gather
traces at this scale even at extremely low sampling fre-
quencies. Further, the analysis scales well and runs as a
parallel Hadoop job.

Thus, our analysis framework, The Mystery Machine
derives its causal model solely from empirical observa-
tions that utilize only the existing heterogeneous compo-
nent logs. The Mystery Machine uses this model to per-
form standard analyses, such as identifying critical paths,
slack analysis, and outlier detection.

In this paper, we also present a detailed case study
of performance optimization based on results from The
Mystery Machine. First, we note that whereas the aver-
age request workload shows a balance between client,
server, and network time on the critical path, there is
wide variance in this balance across individual requests.
In particular, we demonstrate that Facebook servers have
considerable slack when processing some requests, but
they have almost no slack for other requests. This ob-
servation suggests that end-to-end latency would be im-
proved by having servers produce elements of the re-
sponse as they are needed, rather than trying to pro-
duce all elements as fast as possible. We conjecture that
this just-in-time approach to response generation will im-
prove the end-to-end latency of requests with no slack
while not substantially degrading the latency of requests
that currently have considerable slack.

Implementing such an optimization is a formidable
task, requiring substantial programming effort. To help
justify this cost by partially validating our conjecture, we
use The Mystery Machine to perform a “what-if” analy-
sis. We use the inherent variation in server processing
time that arises naturally over a large number of requests
to show that increasing server latency has little effect
on end-to-end latency when slack is high. Yet, increas-
ing server latency has an almost linear effect on end-to-
end latency when slack is low. Further, we show that
slack can be predicted with reasonable accuracy. Thus,
the case study demonstrates two separate benefits of The
Mystery Machine: (1) it can identify opportunities for
performance improvement, and (2) it can provide pre-
liminary evidence about the efficacy of hypothesized im-
provements prior to costly implementation.

2 Background
In the early days of the Web, a request could often be

modeled as a single logical thread of control in which a
client executed an RPC to a single Web server. Those
halcyon days are over.

At Facebook, the end-to-end path from button click to
final render spans a diverse set of systems. Many com-
ponents of the request are under Facebook’s control, but
several components are not (e.g., the external network
and the client’s Web browser). Yet, users care little about
who is responsible for each component; they simply de-
sire that their content loads with acceptable delay.

A request begins on a client with a user action to re-
trieve some piece of content (e.g., a news feed). After

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 219

DNS resolution, the request is routed to an Edge Load
Balancer (ELB) [16]. ELBs are geo-distributed so as to
allow TCP sessions to be established closer to the user
and avoid excessive latency during TCP handshake and
SSL termination. ELBs also provide a point of indirec-
tion for better load balancing, acting as a proxy between
the user and data center.

Once a request is routed to a particular data center, a
Software Load Balancer routes it to one of many possi-
ble Web servers, each of which runs the HipHop Virtual
Machine runtime [35]. Request execution on the Web
server triggers many RPCs to caching layers that include
Memcache [20] and TAO [7]. Requests also occasionally
access databases.

RPC responses pass through the load-balancing lay-
ers on their way back to the client. On the client, the
exact order and manner of rendering a Web page are
dependent on the implementation details of the user’s
browser. However, in general, there will be a Cascad-
ing Style Sheet (CSS) download stage and a Document
Object Model rendering stage, followed by a JavaScript
execution stage.

As with all modern Internet services, to achieve la-
tency objectives, the handling of an individual request
exhibits a high degree of concurrency. Tens to hun-
dreds of individual components execute in parallel over
a distributed set of computers, including both server and
client machines. Such concurrency makes performance
analysis and debugging complex. Fortunately, standard
techniques such as critical path analysis and slack analy-
sis can tame this complexity. However, all such analyses
need a model of the causal dependencies in the system
being analyzed. Our work fills this need.

3 ÜberTrace: End-to-end Request Tracing
As discussed in the prior section, request execution

at Facebook involves many software components. Prior
to our work, almost all of these components had logging
mechanisms used for debugging and optimizing the indi-
vidual components. In fact, our results show that individ-
ual components are almost always well-optimized when
considered in isolation.

Yet, there existed no complete and detailed instru-
mentation for monitoring the end-to-end performance of
Facebook requests. Such end-to-end monitoring is vital
because individual components can be well-optimized in
isolation yet still miss opportunities to improve perfor-
mance when components interact. Indeed, the opportuni-
ties for performance improvement we identify all involve
the interaction of multiple components.

Thus, the first step in our work was to unify the indi-
vidual logging systems at Facebook into a single end-to-
end performance tracing tool, dubbed ÜberTrace. Our
basic approach is to define a minimal schema for the in-

formation contained in a log message, and then map ex-
isting log messages to that schema.

ÜberTrace requires that log messages contain at least:

1. A unique request identifier.

2. The executing computer (e.g., the client or a partic-
ular server)

3. A timestamp that uses the local clock of the execut-
ing computer

4. An event name (e.g., “start of DOM rendering”).

5. A task name, where a task is defined to be a dis-
tributed thread of control.

ÜberTrace requires that each <event, task> tuple is
unique, which implies that there are no cycles that would
cause a tuple to appear multiple times. Although this
assumption is not valid for all execution environments, it
holds at Facebook given how requests are processed. We
believe that it is also a reasonable assumption for similar
Internet service pipelines.

Since all log timestamps are in relation to local clocks,
ÜberTrace translates them to estimated global clock val-
ues by compensating for clock skew. ÜberTrace looks
for the common RPC pattern of communication in which
the thread of control in an individual task passes from
one computer (called the client to simplify this explana-
tion) to another, executes on the second computer (called
the server), and returns to the client. ÜberTrace calcu-
lates the server execution time by subtracting the latest
and earliest server timestamps (according to the server’s
local clock) nested within the client RPC. It then cal-
culates the client-observed execution time by subtract-
ing the client timestamps that immediately succeed and
precede the RPC. The difference between the client and
server intervals is the estimated network round-trip time
(RTT) between the client and server. By assuming that
request and response delays are symmetric, ÜberTrace
calculates clock skew such that, after clock-skew adjust-
ment, the first server timestamp in the pattern is exactly
1/2 RTT after the previous client timestamp for the task.

The above methodology is subject to normal variation
in network performance. In addition, the imprecision
of using existing log messages rather than instrument-
ing communication points can add uncertainty. For in-
stance, the first logged server message could occur only
after substantial server execution has already completed,
leading to an under-estimation of server processing time
and an over-estimation of RTT. ÜberTrace compensates
by calculating multiple estimates. Since there are many
request and response messages during the processing of
a higher-level request, it makes separate RTT and clock

220 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

skew calculations for each pair in the cross-product of re-
quests. It then uses the calculation that yields the lowest
observed RTT.

Timecard [23] used a similar approach to reconcile
timestamps and identified the need to account for the ef-
fects of TCP slow start. Our use of multiple RTT esti-
mates accomplishes this. Some messages such as the ini-
tial request are a single packet and so are not affected by
slow start. Other messages such as the later responses oc-
cur after slow start has terminated. Pairing two such mes-
sages will therefore yield a lower RTT estimate. Since
we take the minimum of the observed RTTs and use its
corresponding skew estimate, we get an estimate that is
not perturbed by slow start.

Due to performance considerations, Facebook log-
ging systems use statistical sampling to monitor only
a small percentage of requests. ÜberTrace must en-
sure that the individual logging systems choose the same
set of requests to monitor; otherwise the probability of
all logging systems independently choosing to monitor
the same request would be vanishingly small, making it
infeasible to build a detailed picture of end-to-end la-
tency. Therefore, ÜberTrace propagates the decision
about whether or not to monitor a request from the initial
logging component that makes such a decision through
all logging systems along the path of the request, ensur-
ing that the request is completely logged. The decision
to log a request is made when the request is received at
the Facebook Web server; the decision is included as part
of the per-request metadata that is read by all subsequent
components. ÜberTrace uses a global identifier to col-
lect the individual log messages, extracts the data items
enumerated above, and stores each message as a record
in a relational database.

We made minimal changes to existing logging sys-
tems in order to map existing log messages to the
ÜberTrace schema. We modified log messages to use
the same global identifier, and we made the event or task
name more human-readable. We added no additional log
messages. Because we reused existing component log-
ging and required only a minimal schema, these logging
changes required approximately one person-month of ef-
fort.

4 The Mystery Machine
The Mystery Machine uses the traces generated by

ÜberTrace to create a causal model of how software
components interact during the end-to-end processing of
a Facebook request. It then uses the causal model to per-
form several types of distributed systems performance
analysis: finding the critical path, quantifying slack for
segments not on the critical path, and identifying seg-
ments that are correlated with performance anomalies.
The Mystery Machine enables more targeted analysis by

Relationship Example Counterexample

Happens Before

Pipeline

A B

A
B

AB
or

A B C

Mutual Exclusion
A B

B A
or A

B

t

t1
t2 A' B' C'

A B Ct1
t2 C' A' B'

Figure 1: Causal Relationships. This figure depicts examples
of the three kinds of causal relationship we consider. Happens-
before relationships are when one segment (A) always finishes
in its entirety before another segment (B) begins. FIFO re-
lationships exist when a sequence of segments each have a
happens-before relationship with another sequence in the same
order. A mutual exclusion relationship exists when two seg-
ments never overlap.

exporting its results through a relational database and
graphical query tools.

4.1 Causal Relationships Model
To generate a causal model, The Mystery Machine

first transforms each trace from a collection of logged
events to a collection of segments, which we define to be
the execution interval between two consecutive logged
events for the same task. A segment is labeled by the tu-
ple <task, start event, end event>, and the segment du-
ration is the time interval between the two events.

Next, The Mystery Machine identifies causal relation-
ships. Currently, it looks for three types of relationships:

1. Happens-before (→) We say that segment A
happens-before segment B (A → B) if the start
event timestamp for B is greater than or equal to
the end event timestamp for A in all requests.

2. Mutual exclusion (∨) Segments A and B are mutu-
ally exclusive (A ∨ B) if their time intervals never
overlap.

3. Pipeline (≫) Given two tasks, t1 and t2, there ex-
ists a data dependency between pairs of segments
of the two tasks. Further, the segment that operates
on data element d1 precedes the segment that oper-
ates on data element d2 in task t1 if and only if the
segment that operates on d1 precedes the segment
that operates on d2 in task t2 for all such pairs of
segments. In other words, the segments preserve a
FIFO ordering in how data is produced by the first
task and consumed by the second task.

We summarize these relationships in Figure 1. For each
relationship we provide a valid example and at least one
counterexample that would contradict the hypothesis.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 221

S1 N1 C1

S2 N2 C2

S1 N1 C1

S2 N2 C2

S1 N1 C1

S2 N2 C2

Timing

Model

No Traces After Trace 1 After Trace 2

S1 N1 C1

S2 N2 C2

S1 N1 C1

S2 N2 C2

S1 N1 C1

S2 N2 C2

S1 N1 C1

S2 N2 C2

S1 N1 C1

S2 N2 C2

S1 N1 C1

S2 N2 C2

Critical Path of Trace 1 Critical Path of Trace 2

S1 N1 C1

S2 N2 C2

Refined Model

Timing

Model

Step 2: Calculate critical path of dependency graph through longest path analysis

Step 1: Refine dependency graph with counter examples

Critical Path

t

t
Figure 2: Dependency model generation and critical path calculation. This figure provides an example of discovering the true
dependency model through iterative refinement. We show only a few segments and relationships for the sake of simplicity. Without
any traces, the dependency model is a fully connected graph. By eliminating dependency edges invalidated by counterexamples,
we arrive at the true model. With a refined model, we can reprocess the same traces and derive the critical path for each.

We use techniques from the race detection literature to
map these static relationships to dynamic happens-before
relationships. Note that mutual exclusion is a static prop-
erty; e.g., two components A and B that share a lock
are mutually exclusive. Dynamically, for a particular re-
quest, this relationship becomes a happens-before rela-
tionship: either A→B or B→A, depending on the order
of execution. Pipeline relationships are similar. Thus, for
any given request, all of these static relationships can be
expressed as dynamic causal relationships between pairs
of segments.

4.2 Algorithm

The Mystery Machine uses iterative refinement to in-
fer causal relationships. It first generates all possible hy-
potheses for causal relationships among segments. Then,
it iterates through a corpus of traces and rejects a hypoth-
esis if it finds a counterexample in any trace.

Step 1 of Figure 2 illustrates this process. We depict
the set of hypotheses as a graph where nodes are seg-

ments (”S” nodes are server segments, ”N” nodes are
network segments and ”C” nodes are client segments)
and edges are hypothesized relationships. For the sake
of simplicity, we restrict this example to consider only
happens-before relationships; an arrow from A to B
shows a hypothesized “A happens before B” relationship.

The “No Traces” column shows that all possible rela-
tionships are initially hypothesized; this is a large num-
ber because the possible relationships scale quadratically
as the number of segments increases. Several hypothe-
ses are eliminated by observed contradictions in the first
request. For example, since S2 happens after S1, the hy-
pothesized relationship, S2 → S1, is removed. Further
traces must be processed to complete the model. For in-
stance, the second request eliminates the hypothesized
relationship, N1→ N2. Additional traces prune new hy-
potheses due to the natural perturbation in timing of seg-
ment processing; e.g., perhaps the second user had less
friends, allowing the network segments to overlap due to

222 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 3: Hypothesis Refinement. This graph shows the
growth of number of hypothesized relationships as a function
of requests analyzed. As more requests are analyzed, the rate at
which new relationships are discovered and removed decreases
and eventually reaches a steady-state. The total number of re-
lationships increases over time due to code changes and the
addition of new features.

shorter server processing time.
The Mystery Machine assumes that the natural vari-

ation in timing that arises over large numbers of traces
is sufficient to expose counterexamples for incorrect re-
lationships. Figure 3 provides evidence supporting this
hypothesis from traces of over 1.3 million requests to
the Facebook home page gathered over 30 days. As the
number of traces analyzed increases, the observation of
new counterexamples diminishes, leaving behind only
true relationships. Note that the number of total rela-
tionships changes over time because developers are con-
tinually adding new segments to the pipeline.

4.3 Validation

To validate the causal model produced by the Mys-
tery Machine, we confirmed several specific relation-
ships identified by the Mystery Machine. Although we
could not validate the entire model due to its size, we did
substantial validation of two of the more intricate compo-
nents: the interplay between JavaScript execution on the
client and the dependencies involved in delivering data to
the client. These components have 42 and 84 segments,
respectively, as well as 2,583 and 10,458 identified ca-
sual relationships.

We confirmed these specific relationships by examin-
ing source code, inserting assertions to confirm model-
derived hypotheses, and consulting relevant subsystem
experts. For example, the system discovered the specific,
pipelined schedule according to which page content is
delivered to the client. Further, the model correctly re-
flects that JavaScript segments are mutually exclusive (a
known property of the JavaScript execution engine) and

identified ordering constraints arising from synchroniza-
tion.

4.4 Analysis
Once The Mystery Machine has produced the causal

model of segment relationships, it can perform several
types of performance analysis.
4.4.1 Critical Path

Critical path analysis is a classic technique for under-
standing how individual components of a parallel execu-
tion impact end-to-end latency [22, 32]. The critical path
is defined to be the set of segments for which a differ-
ential increase in segment execution time would result in
the same differential increase in end-to-end latency.

The Mystery Machine calculates the critical path on a
per-request basis. It represents all segments in a request
as a directed acyclic graph in which the segments are ver-
tices with weight equal to the segment duration. It adds
an edge between all vertices for which the corresponding
segments have a causal relationship. Then, it performs a
transitive reduction in which all edges A→ C are recur-
sively removed if there exists a path consisting of A →
B and B→ C that links the two nodes.

Finally, The Mystery Machine performs a longest-path
analysis to find the critical path from the first event in
the request (the initiation of the request) to the last event
(which is typically the termination of some JavaScript
execution). The length of the critical path is the end-to-
end latency of the entire request. If there are equal-length
critical paths, the first discovered path is chosen.

We illustrate the critical path calculation for the two
example requests in Step 2 of Figure 2. Each request
has a different critical path even though the dependency
graph is the same for both. The critical path of the first
request is {S1, S2, N2, C2}. Because S2 has a long du-
ration, all dependencies for N2 and C2 have been met
before they start, leaving them on the critical path. The
critical path of the second request is {S1, N1, C1, C2}.
In this case, S2 and N2 could have longer durations and
not affect end-to-end latency because C2 must wait for
C1 to finish.

Typically, we ask The Mystery Machine to calculate
critical paths for large numbers of traces and aggregate
the results. For instance, we might ask how often a given
segment falls on the critical path or the average percent-
age of the critical path represented by each segment.
4.4.2 Slack

Critical path analysis is useful for determining where
to focus optimization effort; however, it does not pro-
vide any information about the importance of latency for
segments off the critical path. The Mystery Machine pro-
vides this information via slack analysis.

We define slack to be the amount by which the du-
ration of a segment may increase without increasing the

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 223

Hive

Mystery MachineRequests

Web Server

Sampling
w/ Scribe

Dependency Model Generation Critical path calculation

Generate Predictive Model

Sl
ac

k

Feature

Data Aggregation Performance Analytics

1
2
3
4Thread

Scheduler

Figure 4: The Mystery Machine data pipeline.

end-to-end latency of the request, assuming that the du-
ration of all other segments remains constant. By this
definition, segments on the critical path have no slack
because increasing their latency will increase the end-to-
end latency of the request.

To calculate the slack for a given segment, S, The
Mystery Machine calculates CPstart , the critical path
length from the first event in the request to the start of
S and CPend the critical path length from the end of S to
the last event in the request. Given the critical path length
for the entire request (CP) and the duration of segment S
(DS), the slack for S is CP - CPstart - DS - CPend . The
Mystery Machine’s slack analysis calculates and reports
this value for every segment. As with critical path re-
sults, slack results are typically aggregated over a large
number of traces.
4.4.3 Anomaly detection

One special form of aggregation supported by The
Mystery Machine is anomaly analysis. To perform this
analysis, it first classifies requests according to end-to-
end latency to identify a set of outlier requests. Currently,
outliers are defined to be requests that are in the top 5%
of end-to-end latency. Then, it performs a separate ag-
gregation of critical path or slack data for each set of
requests identified by the classifiers. Finally, it performs
a differential comparison to identify segments with pro-
portionally greater representation in the outlier set of re-
quests than in the non-outlier set. For instance, we have
used this analysis to identify a set of segments that corre-
lated with high latency requests. Inspection revealed that
these segments were in fact debugging components that
had been returned in response to some user requests.

4.5 Implementation

We designed The Mystery Machine to automatically
and continuously analyze production traffic at scale over
long time periods. It is implemented as a large-scale data
processing pipeline, as depicted in Figure 4.

ÜberTrace continuously samples a small fraction of
requests for end-to-end tracing. Trace data is collected
by the Web servers handling these requests, which write
them to Scribe, Facebook’s distributed logging service.

The trace logs are stored in tables in a large-scale data
warehousing infrastructure called Hive [30]. While
Scribe and Hive are the in-house analysis tools used at
Facebook, their use is not fundamental to our system.

The Mystery Machine runs periodic processing jobs
that read trace data from Hive and calculate or refine the
causal model based on those traces. The calculation of
the causal model is compute-intensive because the num-
ber of possible hypotheses is quadratic with the num-
ber of segments and because model refinement requires
traces of hundreds of thousands of requests. Therefore,
our implementation parallelizes this step as a Hadoop
job running on a compute cluster. Infrequently occur-
ring testing and debugging segments are automatically
removed from the model; these follow a well-defined
naming convention that can be detected with a single reg-
ular expression. The initial calculation of the model an-
alyzed traces of over 1.3 million requests collected over
30 days. On a Hadoop cluster, it took less than 2 hours
to derive a model from these traces.

In practice, the model must be recomputed periodi-
cally in order to detect changes in relationships. Paral-
lelizing the computation made it feasible to recompute
the model every night as a regularly-scheduled batch job.

In addition to the three types of analysis described
above, The Mystery Machine supports on-demand user
queries by exporting results to Facebook’s in-house an-
alytic tools, which can aggregate, pivot, and drill down
into the results. We used these tools to categorize re-
sults by browser, connection speed, and other such di-
mensions; we share some of this data in Section 5.

4.6 Discussion

A key characteristic of The Mystery Machine is that
it discovers dependencies automatically, which is criti-
cal because Facebook’s request processing is constantly
evolving. As described previously, The Mystery Machine
assumes a hypothesized relationship between two seg-
ments until it finds a counterexample. Over time, new
segments are added as the site evolves and new features
are added. The Mystery Machine automatically finds the
dependencies introduced by the new segments by hy-

224 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 5: Mean End-to-End Performance Breakdown. Simply summing delay measured at each system component (“Summed
Delay”) ignores overlap and underestimates the importance of server latency relative to the actual mean critical path (“Critical
Path”).

pothesizing new possible relationships and removing re-
lationships in which a counterexample is found. This is
shown in Figure 3 by the increase in number of total re-
lationships over time. To account for segments that are
eliminated and invariants that are added, one can simply
run a new Hadoop job to generate the model over a dif-
ferent time window of traces.

Excluding new segments, the rate at which new rela-
tionships are added levels off. The rate at which relation-
ships are removed due to counterexamples also levels off.
Thus, the model converges on a set of true dependencies.

The Mystery Machine relies on ÜberTrace for com-
plete log messages. Log messages, however, may be
missing for two reasons: the component does no logging
at all for a segment of its execution or the component
logs messages for some requests but not others. In the
first case, The Mystery Machine cannot identify causal
relationships involving the unlogged segment, but causal
relationships among all other segments will be identified
correctly. When a segment is missing, the model over-
estimates the concurrency in the system, which would
affect the critical path/slack analysis if the true critical
path includes the unlogged segment. In the second case,
The Mystery Machine would require more traces in or-
der to discover counterexamples. This is equivalent to
changing the sampling frequency.

5 Results

We demonstrate the utility of The Mystery Machine
with two case studies. First, we demonstrate its use for
aggregate performance characterization. We study live
traffic, stratifying the data to identify factors that influ-
ence which system components contribute to the critical
path. We find that the critical path can shift between three
major components (servers, network, and client) and that

these shifts correlate with the client type and network
connection quality.

This variation suggests one possible performance op-
timization for Facebook servers: provide differentiated
service by prioritizing service for connections where the
server has no slack while deprioritizing those where net-
work and client latency will likely dominate. Our second
case study demonstrates how the natural variance across
a large trace set enables testing of such performance hy-
potheses without expensive modifications to the system
under observation. Since an implementation that pro-
vided differential services would require large-scale ef-
fort to thread through hundreds of server components, we
use our dataset to first determine whether such an opti-
mization is likely to be successful. We find that slack, as
detected by The Mystery Machine, indeed indicates that
slower server processing time minimally impacts end-to-
end latency. We also find that slack tends to remain stable
for a particular user across multiple Facebook sessions,
so the observed slack of past connections can be used to
predict the slack of the current connection.

5.1 Characterizing End-to-End Performance

In our first case study, we characterize the end-to-
end performance critical path of Web accesses to the
home.php Facebook endpoint. The Mystery Machine an-
alyzes traces of over 1.3 million Web accesses collected
over 30 days in July and August 2013.

Importance of critical path analysis. Figure 5
shows mean time breakdowns over the entire trace
dataset. The breakdown is shown in absolute time in the
left graph, and as a percent of total time on the right. We
assign segments to one of five categories: Server for seg-
ments on a Facebook Web server or any internal service
accessed from the Web server over RPC, Network for
segments in which data traverses the network, DOM for

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 225

(a) Server (b) Network (c) Client
Figure 6: Cumulative distribution of the fraction of the critical path attributable to server, network, and client portions

browser segments that parse the document object model,
CSS for segments processing cascading style sheets, and
JavaScript for JavaScript segments. Each graph includes
two bars: one showing the stacked sum of total pro-
cessing time in each component ignoring all concurrency
(“Summed Delay”) and the other the critical path as iden-
tified by The Mystery Machine (“Critical Path”).

On average, network delays account for the largest
fraction of the critical path, but client and server pro-
cessing are both significant. JavaScript execution re-
mains a major bottleneck in current Web browsers, par-
ticularly since the JavaScript execution model admits lit-
tle concurrency. The comparison of the total delay and
critical path bars reveals the importance of The Mystery
Machine—by examining only the total latency break-
down (e.g., if an engineer were profiling only one sys-
tem component), one might overestimate the importance
of network latency and JavaScript processing on end-to-
end performance. In fact, the server and other client pro-
cessing segments are frequently critical, and the overall
critical path is relatively balanced across server, client,
and network.

High variance in the critical path. Although analyz-
ing the average case is instructive, it grossly oversimpli-
fies the performance picture for the home.php endpoint.
There are massive sources of latency variance over the
population of requests, including the performance of the
client device, the size of the user’s friend list, the kind of
network connection, server load, Memcache misses, etc.
Figure 6 shows the cumulative distribution of the frac-
tion of the critical path attributable to server, network,
and client segments over all requests. The key revela-
tion of these distributions is that the critical path shifts
drastically across requests—any of the three components
can dominate delay, accounting for more than half of the
critical path in a non-negligible fraction of requests.

Variance is greatest in the contribution of the network
to the critical path, as evidenced by the fact that its CDF
has the least curvature. It is not surprising that network
delays vary so greatly since the trace data set includes ac-
cesses to Facebook over all sorts of networks, from high-

speed broadband to cellular networks and even some
dial-up connections. Client processing always accounts
for at least 20% of the critical path. After content de-
livery, there is a global barrier in the browser before the
JavaScript engine begins running the executable compo-
nents of the page, hence, JavaScript execution is a factor
in performance measurement. However, the client rarely
accounts for more than 40% of the critical path. It is un-
usual for the server to account for less than 20% of the
critical path because the initial request processing before
the server begins to transmit any data is always critical.
Noticing this high variance in the critical path was very
valuable to us because it triggered the idea of differenti-
ated services that we explore in Section 5.2.

Stratification by connection type. We first consider
stratifying by the type of network over which a user con-
nects to Facebook’s system, as it is clear one would ex-
pect network latency to differ, for example, between ca-
ble modem and wireless connections. Facebook’s edge
load balancing system tags each incoming request with
a network type. These tags are derived from the net-
work type recorded in the Autonomous System Number
database for the Internet service provider responsible for
the originating IP address. Figure 7 illustrates the criti-
cal path breakdown, in absolute time, for the four largest
connection type categories. Each bar is annotated with
the fraction of all requests that fall within that connec-
tion type (only a subset of connection types are shown,
so the percentages do not sum to 100%).

Perhaps unsurprisingly, these coarse network type
classifications correlate only loosely to the actual per-
formance of the network connection. Mobile connec-
tions show a higher average network critical path than
the other displayed connection types, but the data is oth-
erwise inconclusive. We conclude that the network type
reported by the ASN is not very helpful for making per-
formance predictions.

Stratification by client platform. The client plat-
form is included in the HTTP headers transmitted by the
browser along with each request, and is therefore also
available at the beginning of request processing. The

226 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 7: Critical path breakdowns stratified by browser, platform, connection type, and computed bandwidth

client operating system is a hint to the kind of client de-
vice, which in turn may suggest relative client perfor-
mance. Figure 7 shows a critical path breakdown for the
five most common client platforms in our traces, again
annotated with the fraction of requests represented by the
bar. Note that we are considering only Web browser re-
quests, so requests initiated by Facebook cell phone apps
are not included. The most striking feature of the graph
is that Mac OS X users (a small minority of Facebook
connections at only 7.1%) tend to connect to Facebook
from faster networks than Windows users. We also see
that the bulk of connecting Windows users still run Win-
dows 7, and many installations of Windows XP remain
deployed. Client processing time has improved markedly
over the various generations of Windows. Nevertheless,
the breakdowns are all quite similar, and we again find
insufficient predictive power for differentiating service
time by platform.

Stratification by browser. The browser type is also
indicated in the HTTP headers transmitted with a re-
quest. In Figure 7, we see critical paths for the four most
popular browsers. Safari is an outlier, but this category is
strongly correlated with the Mac OS X category. Chrome
appears to offer slightly better JavaScript performance
than the other browsers.

Stratification by measured network bandwidth.
All of the preceding stratifications only loosely corre-
late to performance—ASN is a poor indication of net-
work connection quality, and browser and OS do not
provide a reliable indication of client performance. We
provide one more example stratification where we sub-
divide the population of requests into five categories di-
rectly from the measured network bandwidth, which can
be deduced from our traces based on network time and

Figure 8: Slack CDF for Last Data Item. Nearly 20% of
traces exhibit considerable slack—over 2 s—for the server seg-
ment that generates the last pagelet transmitted to the client.
Conversely, nearly 20% of traces exhibit little (< 250 ms) slack.

bytes transmitted. Each of the categories are equally
sized to represent 20% of requests, sorted by increas-
ing bandwidth (p80 is the quintile with the highest ob-
served bandwidth). As one would expect, network crit-
ical path is strongly correlated to measured network
bandwidth. Higher bandwidth connections also tend
to come from more capable clients; low-performance
clients (e.g., smart phones) often connect over poor net-
works (3G and Edge networks).

5.2 Differentiated Service using Slack

Our second case study uses The Mystery Machine
to perform early exploration of a potential performance
optimization—differentiated service—without undertak-
ing the expense of implementing the optimization.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 227

Figure 9: Server vs. End-to-end Latency. For the traces with slack below 25ms (left graph), there is strong correlation (clustering
near y = x) between server and end-to-end latency. The correlation is much weaker (wide dispersal above y = x) for the traces with
slack above 2.5s (right graph).

The characterization in the preceding section reveals
that there is enormous variation in the relative impor-
tance of client, server, and network performance over
the population of Facebook requests. For some requests,
server segments form the bulk of the critical path. For
these requests, any increase in server latency will result
in a commensurate increase in end-to-end latency and a
worse user experience. However, after the initial critical
segment, many connections are limited by the speed at
which data can be delivered over the network or rendered
by the client. For these connections, server execution can
be delayed to produce data as needed, rather than as soon
as possible, without affecting the critical path or the end-
to-end request latency.

We use The Mystery Machine to directly measure the
slack in server processing time available in our trace
dataset. For simplicity of explanation, we will use the
generic term “slack” in this section to refer to the slack
in server processing time only, excluding slack available
in any other types of segments.

Figure 8 shows the cumulative distribution of slack
for the last data item sent by the server to the client.
The graph is annotated with a vertical line at 500 ms of
slack. For the purposes of this analysis, we have selected
500 ms as a reasonable cut-off between connections for
which service should be provided with best effort (<
500 ms slack), and connections for which service can be
deprioritized (> 500 ms). However, in practice, the best
cut-off will depend on the implementation mechanism
used to deprioritize service. More than 60% of all con-
nections exhibit more than 500 ms of slack, indicating
substantial opportunity to defer server processing. We
find that slack typically increases monotonically during
server processing as data items are sent to the client dur-
ing a request. Thus, we conclude that slack is best con-
sumed equally as several segments execute, as opposed
to consuming all slack at the start or end of processing.

Validating Slack Estimates It is difficult to directly
validate The Mystery Machine’s slack estimates, as we
can only compute slack once a request has been fully
processed. Hence, we cannot retrospectively delay server
segments to consume the slack and confirm that the end-
to-end latency is unchanged. Such an experiment is dif-
ficult even under highly controlled circumstances, since
it would require precisely reproducing the conditions of
a request over and over while selectively delaying only a
few server segments.

Instead, we turn again to the vastness of our trace data
set and the natural variance therein to confirm that slack
estimates hold predictive power. Intuitively, small slack
implies that server latency is strongly correlated to end-
to-end latency; indeed, with a slack of zero we expect any
increase in server latency to delay end-to-end latency by
the same amount. Conversely, when slack is large, we
expect little correlation between server latency and end-
to-end latency; increases in server latency are largely hid-
den by other concurrent delays. We validate our notion
of slack by directly measuring the correlation of server
and end-to-end latency.

Figure 9 provides an intuitive view of the relationship
for which we are testing. Each graph is a heat map of
server generation time vs. end-to-end latency. The left
graph includes only requests with the lowest measured
slack, below 25 ms. There are slightly over 115,000 such
requests in this data set. For these requests, we expect
a strong correlation between server time and end-to-end
time. We find that this subset of requests is tightly clus-
tered just above the y = x (indicated by the line in the
figure), indicating a strong correlation. The right fig-
ure includes roughly 100,000 requests with the greatest
slack (above 2500 ms). For these, we expect no particu-
lar relationship between server time and end-to-end time
(except that end-to-end time must be at least as large as
slack, since this is an invariant of request processing).

228 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 10: Server–End-to-end Latency Correlation vs.
Slack. As reported slack increases, the correlation between
total server processing time and end-to-end latency weakens,
since a growing fraction of server segments are non-critical.

Indeed, we find the requests dispersed in a large cloud
above y = x, with no correlation visually apparent.

We provide a more rigorous validation of the slack
estimate in Figure 10. Here, we show the correlation
coefficient between server time and end-to-end time for
equally sized buckets of requests sorted by increasing
slack. Each block in the graph corresponds to 5% of
our sample, or roughly 57,000 requests (buckets are
not equally spaced since the slack distribution is heavy-
tailed). As expected, the correlation coefficient between
server and end-to-end latency is quite high, nearly 0.8,
when slack is low. It drops to 0.2 for the requests with
the largest slack.

Predicting Slack. We have found that slack is predic-
tive of the degree to which server latency impacts end-
to-end latency. However, The Mystery Machine can dis-
cover slack only through a retrospective analysis. To be
useful in a deployed system, we must predict the avail-
ability or lack of slack for a particular connection as
server processing begins.

One mechanism to predict slack is to recall the slack a
particular user experienced in a prior connection to Face-
book. Previous slack was found to be more useful in
predicting future slack than any other feature we stud-
ied. Most users connect to Facebook using the same de-
vice and over the same network connection repeatedly.
Hence, their client and network performance are likely
to remain stable over time. The user id is included as
part of the request, and slack could be easily associated
with the user id via a persistent cookie or by storing the
most recent slack estimate in Memcache [20].

We test the hypothesis that slack remains stable over
time by finding all instances within our trace dataset
where we have multiple requests associated with the

Figure 11: Historical Slack as Classifier. The clustering
around the line y = x shows that slack is relatively stable over
time. The history-based classifier is correct 83% of the time. A
type I error is a false positive, reporting slack as available when
it is not. A type II error is a false negative.

same user id. Since the request sampling rate is ex-
ceedingly low, and the active user population is so large,
selecting the same user for tracing more than once is a
relatively rare event. Nevertheless, again because of the
massive volume of traces collected over the course of 30
days of sampling, we have traced more than 1000 repeat
users. We test a simple classifier that predicts a user will
experience a slack greater than 500 ms if the slack on
their most recent preceding connection was also greater
than 500 ms. Figure 11 illustrates the result. The graph
shows a scatter plot of the first slack and second slack
in each pair; the line at y = x indicates slack was iden-
tical between the two connections. Our simple history-
based classifier predicts the presence or absence of slack
correctly 83% of the time. The shaded regions of the
graph indicate cases where we have misclassified a con-
nection. A type I error indicates a prediction that there is
slack available for a connection when in fact server per-
formance turns out to be critical–8% of requests fall in
this category. Conversely, a type II error indicates a pre-
diction that a connection will not have slack when in fact
it does, and represents a missed opportunity to throttle
service—9% of requests fall in this category.

Note that achieving these results does not require fre-
quent sampling. The repeated accesses we study are of-
ten several weeks separated in time, and, of course, it is
likely that there have been many intervening unsampled
requests by the same user. Sampling each user once ev-
ery few weeks would therefore be sufficient.

Potential Impact. We have shown that a potential
performance optimization would be to offer differenti-
ated service based on the predicted amount of slack avail-
able per connection. Deciding which connections to ser-
vice is equivalent to real-time scheduling with deadlines.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 229

By using predicted slack as a scheduling deadline, we
can improve average response time in a manner simi-
lar to the earliest deadline first real-time scheduling al-
gorithm. Connections with considerable slack can be
given a lower priority without affecting end-to-end la-
tency. However, connections with little slack should see
an improvement in end-to-end latency because they are
given scheduling priority. Therefore, average latency
should improve. We have also shown that prior slack val-
ues are a good predictor of future slack. When new con-
nections are received, historical values can be retrieved
and used in scheduling decisions. Since calculating slack
is much less complex than servicing the actual Facebook
request, it should be feasible to recalculate the slack for
each user approximately once per month.

6 Related Work
Critical path analysis is an intuitive technique for un-

derstanding the performance of systems with concurrent
activity. It has been applied in a wide variety of areas
such as processor design [26], distributed systems [5],
and Internet and mobile applications [22, 32].

Deriving the critical path requires knowing causal
dependencies between components throughout the en-
tire end-to-end system. A model of causal dependen-
cies can be derived from comprehensively instrumenting
all middleware for communication, scheduling, and/or
synchronization to record component interactions [1, 3,
9, 13, 15, 18, 22, 24, 28]. In contrast to these prior
systems, The Mystery Machine is targeted at environ-
ments where adding comprehensive new instrumentation
to an existing system would be too time-consuming due
to heterogeneity (e.g., at Facebook, there a great num-
ber of scheduling, communication, and synchronization
schemes used during end-to-end request processing) and
deployment feasibility (e.g., it is not feasible to add new
instrumentation to client machines or third-party Web
browser code). Instead, The Mystery Machine extracts
a causal model from already-existing log messages, rely-
ing only a minimal schema for such messages.

Sherlock [4] also uses a “big data” approach to build
a causal model. However, it relies on detailed packet
traces, not log messages. Packet traces would not serve
our purpose: it is infeasible to collect them on user
clients, and they reveal nothing about the interaction
of software components that run on the same computer
(e.g., JavaScript), which is a major focus of our work.
Observing a packet sent between A and B inherently im-
plies some causal relationship, while The Mystery Ma-
chine must infer such relationships by observing if the
order of log messages from A and B obey a hypothe-
sized invariant. Hence, Sherlock’s algorithm is funda-
mentally different: it reasons based on temporal local-
ity and infers probabilistic relationships; in contrast, The

Mystery Machine uses only message order to derive in-
variants (though timings are used for critical path and
slack analysis).

The lprof tool [36] also analyzes log messages to re-
construct the ordering of logged events in a request. It
supplements logs with static analysis to discover depen-
dencies between log points and uses those dependencies
to differentiate events among requests. Since static anal-
ysis is difficult to scale to heterogeneous production envi-
ronments, The Mystery Machine used some manual mod-
ifications to map events to traces and leverages a large
sample size and natural variation in ordering to infer
causal dependencies between events in a request.

In other domains, hypothesizing likely invariants
and eliminating those contradicted by observations has
proven to be a successful technique. For instance, likely
invariants have been used for fault localization [25] and
diagnosing software errors [12, 21]. The Mystery Ma-
chine applies this technique to a new domain.

Many other systems have looked at the notion of criti-
cal path in Web services. WebProphet [17] infers Web
object dependencies by injecting delays into the load-
ing of Web objects to deduce the true dependencies be-
tween Web objects. The Mystery Machine instead lever-
ages a large sample size and the natural variation of tim-
ings to infer the causal dependencies between segments.
WProf [32] modifies the browser to learn browser page
load dependencies. It also injects delays and uses a series
of test pages to learn the dependencies and applies a crit-
ical path analysis. The Mystery Machine looks at end-to-
end latency from the server to the client. It automatically
deduces a dependency model by analyzing a large set of
requests. Google Pagespeed Insight [14] profiles a page
load and reports its best estimate of the critical path from
the client’s perspective. The Mystery Machine traces a
Web request from the server through the client, enabling
it to deduce the end-to-end critical path.

Chen et al. [11] analyzed end-to-end latency of a
search service. They also analyzed variation along the
server, network, and client components. The Mystery
Machine analyzes end-to-end latency using critical path
analysis, which allows for attributing latency to specific
components and performing slack analysis.

Many other systems have looked at automatically
discovering service dependencies in distributed systems
by analyzing network traffic. Orion [10] passively ob-
serves network packets and relies on discovering service
dependencies by correlating spikes in network delays.
The Mystery Machine uses a minimum common con-
tent tracing infrastructure finds counterexamples to dis-
prove causal relationship dependencies. WISE [29] an-
swers ”what-if” questions in CDN configuration. It uses
machine learning techniques to derive important features
that affect user response time and uses correlation to de-

230 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

rive dependencies between these features. Butkiewicz et
al. [8] measured which network and client features best
predicted Web page load times across thousands of web-
sites. They produced a predictive model from these fea-
tures across a diverse set of Web pages. The Mystery
Machine aims to characterize the end-to-end latency in a
single complex Web service with a heterogeneous client
base and server environment.

The technique of using logs for analysis has been ap-
plied to error diagnosis [2, 34, 33] and debugging perfor-
mance issues [19, 27].

7 Conclusion
It is challenging to understand an end-to-end request

in a highly-concurrent, large-scale distributed system.
Analyzing performance requires a causal model of the
system, which The Mystery Machine produces from ob-
servations of component logs. The Mystery Machine uses
a large number of observed request traces in order to val-
idate hypotheses about causal relationships.

Acknowledgements
We thank the anonymous reviewers and our shepherd, Willy

Zwaenepoel, for comments that improved this paper. We also
thank Claudiu Gheorghe, James Ide, and Okay Zed for their
help and support in understanding the Facebook infrastructure.
This research was partially supported by NSF awards CNS-
1017148 and CNS-1421441. The views and conclusions con-
tained in this document are those of the authors and should not
be interpreted as representing NSF, Michigan, Facebook, or the
U.S. government.

References
[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds,

and A. Muthitacharoen. Performance debugging for dis-
tributed systems of black boxes. In Proceedings of the
19th ACM Symposium on Operating Systems Principles,
pages 74–89, Bolton Landing, NY, October 2003.

[2] Gautam Altekar and Ion Stoica. ODR: Output-
deterministic replay for multicore debugging. In Proceed-
ings of the 22nd ACM Symposium on Operating Systems
Principles, pages 193–206, Big Sky, MT, October 2009.

[3] Mona Attariyan, Michael Chow, and Jason Flinn. X-ray:
Automating root-cause diagnosis of performance anoma-
lies in production software. In Proceedings of the 10th
Symposium on Operating Systems Design and Implemen-
tation, Hollywood, CA, October 2012.

[4] Paramvir Bahl, Ranveer Chandra, Albert Greenberg,
Srikanth Kandula, David A. Maltz, and Ming Zhang. To-
wards highly reliable enterprise network services via in-
terface of multi-level dependencies. In Proceedings of the
Symposium on Communications Architectures and Proto-
cols (SIGCOMM), August 2007.

[5] Paul Barford and Mark Crovella. Critical path analysis of
TCP transactions. In Proceedings of the ACM Conference

on Computer Communications (SIGCOMM), Stockholm,
Sweden, August/September 2000.

[6] Paul Barham, Austin Donnelly, Rebecca Isaacs, and
Richard Mortier. Using Magpie for request extraction and
workload modelling. In Proceedings of the 6th Sympo-
sium on Operating Systems Design and Implementation,
pages 259–272, San Francisco, CA, December 2004.

[7] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov,
Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat
Venkataramani. Tao: Facebook’s distributed data store
for the social graph. In Proceedings of the 2013 USENIX
Annual Technical Conference, San Jose, CA, June 2013.

[8] Michael Butkiewicz, Harsha V. Madhyastha, and Vyas
Sekar. Understanding website complexity: Measure-
ments, metrics, and implications. In Internet Measure-
ment Conference (IMC), Berlin, Germany, November
2011.

[9] Anupam Chanda, Alan L. Cox, and Willy Zwanepoel.
Whodunit: Transactional profiling for multi-tier applica-
tions. In Proceedings of the 2nd ACM European Con-
ference on Computer Systems, Lisboa, Portugal, March
2007.

[10] Xu Chen, Ming Zhang, Z. Morley Mao, and Paramir
Bahl. Automating network application dependency dis-
covery: Experiences, limitations, and new solutions. In
Proceedings of the 8th Symposium on Operating Systems
Design and Implementation, San Diego, CA, December
2008.

[11] Yingying Chen, Ratul Mahajan, Baskar Sridharan, and
Zhi-Li Zhang. A provider-side view of web search re-
sponse time. In Proceedings of the 2013 ACM Confer-
ence on Computer Communications, Hong Kong, China,
August 2013.

[12] Michael D. Ernst, Jake Cockrell, William G. Griswold,
and David Notkin. Dynamically discovering likely pro-
gram invariants to support program evolution. IEEE
Transactions on Software Engineering, 27(2), February
2001.

[13] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott
Shenker, and Ion Stoica. X-trace: A pervasive network
tracing framework. In Proceedings of the 4th USENIX
Symposium on Networked Systems Design and Implemen-
tation, pages 271–284, Cambridge, MA, April 2007.

[14] Google. Google Pagespeed Insight. https://
developers.google.com/speed/pagespeed/.

[15] Eric Koskinen and John Jannotti. Borderpatrol: Isolat-
ing events for precise black-box tracing. In Proceedings
of the 3rd ACM European Conference on Computer Sys-
tems, April 2008.

[16] Adam Lazur. Building a billion user load balancer. In
Velocity Web Performance and Operations Conference,
Santa Clara, CA, June 2013.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 231

[17] Zhichun Li, Ming Zhang, Zhaosheng Zhu, Yan Chen, Al-
bert Greenberg, and Yi-Min Wang. Webprophet: Au-
tomating performance prediction for web services. In
Proceedings of the 7th USENIX Symposium on Net-
worked Systems Design and Implementation, April 2010.

[18] Gideon Mann, Mark Sandler, Darja Krushevskaja,
Sudipto Guha, and Eyal Even-dar. Modeling the paral-
lel execution of black-box services. In Proceedings of the
3rd USENIX Workshop on Hot Topics in Cloud Comput-
ing (HotCloud), Portland, OR, June 2011.

[19] Karthik Nagaraj, Charles Killian, and Jennifer Neville.
Structured comparative analysis of systems logs to diag-
nose performance problems. In Proceedings of the 9th
USENIX Symposium on Networked Systems Design and
Implementation, San Jose, CA, April 2012.

[20] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing memcache at facebook. In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and
Implementation, Lombard, IL, April 2013.

[21] Brock Pytlik, Manos Renieris, Shriram Krishnamurthi,
and Steven P. Reiss. Automated fault localization using
potential invariants. In Proceedings of the 5th Interna-
tional Workshop on Automated and Algorithmic Debug-
ging, Ghent, Belgium, September 2003.

[22] Lenin Ravindranath, Jitendra Padjye, Sharad Agrawal,
Ratul Mahajan, Ian Obermiller, and Shahin Shayandeh.
AppInsight: Mobile app performance monitoring in the
wild. In Proceedings of the 10th Symposium on Operat-
ing Systems Design and Implementation, Hollywood, CA,
October 2012.

[23] Lenin Ravindranath, Jitendra Pahye, Ratul Mahajan, and
Hari Balakrishnan. Timecard: Controlling user-perceived
delays in server-based mobile applications. In Proceed-
ings of the 24th ACM Symposium on Operating Systems
Principles, Farmington, PA, October 2013.

[24] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jef-
frey C. Mogul, Mehul A. Shah, and Amin Vahdat. Pip:
Detecting the unexpected in distributed systems. In Pro-
ceedings of the 3rd USENIX Symposium on Networked
Systems Design and Implementation, pages 115–128, San
Jose, CA, May 2006.

[25] Swarup Kumar Sahoo, John Criswell, Chase Geigle, and
Vikram Adve. Using likely invariants for automated soft-
ware fault localization. In Proceedings of the 18th In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Houston,
TX, March 2013.

[26] Ali Ghassan Saidi. Full-System Critical-Path Analysis
and Performance Prediction. PhD thesis, Department of
Computer Science and Engineering, University of Michi-
gan, 2009.

[27] Raja R. Sambasivan, Alice X. Zheng, Michael De
Rosa, Elie Krevat, Spencer Whitman, Michael Stroucken,

William Wang, Lianghong Xu, and Gregory R. Ganger.
Diagnosing performance changes by comparing request
flows. In Proceedings of the 8th USENIX Symposium
on Networked Systems Design and Implementation, pages
43–56, Boston, MA, March 2011.

[28] Benjamin H Sigelman, Luiz Andre Barroso, Mike Bur-
rows, Pat Stephenson, Manoj Plakal, Donald Beaver, Saul
Jaspan, and Chandan Shanbhag. Dapper, a large-scale
distributed systems tracing infrastructure. Technical re-
port, Google research, 2010.

[29] Mukarram Bin Tariq, Amgad Zeitoun, Vytautas Valan-
cius, Nick Feamster, and Mostafa Ammar. Answer-
ing what-if deployment and configuration questions with
wise. In Proceedings of the 2008 ACM Conference on
Computer Communications, Seattle, WA, August 2008.

[30] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng
Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete
Wyckoff, and Raghotham Murthy. Hive – a warehous-
ing solution over a map-reduce framework. In 35th Inter-
national Conference on Very Large Data Bases (VLDB),
Lyon, France, August 2009.

[31] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy,
Mike Spreitzer, and Asser Tantawi. An analytical model
for multi-tier Internet services and its applications. In
Proceedings of the Joint International Conference on
Measurement and Modeling of Computer Systems (ACM
SIGMETRICS), Banff, AB, June 2005.

[32] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Kr-
ishnamurthy, and David Wetherall. Demystifying page
load performance with wprof. In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and
Implementation, April 2013.

[33] Wei Xu, Ling Huang, Armando Fox, David Patterson, and
Michael I. Jordan. Detecting large-scale system problems
by mining console logs. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles, Big Sky,
MT, October 2009.

[34] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan,
Yuanyuan Zhou, and Shankar Pasupathy. SherLog: Er-
ror diagnosis by connecting clues from run-time logs. In
Proceedings of the 15th International Conference on Ar-
chitectural Support for Programming Languages and Op-
erating Systems, pages 143–154, Pittsburgh, PA, March
2010.

[35] Haiping Zhao, Iain Proctor, Minghui Yang, Xin Qi, Mark
Williams, Qi Gao, Guilherme Ottoni, Andrew Paroski,
Scott MacVicar, Jason Evans, and Stephen Tu. The
HipHop compiler for PHP. ACM International Con-
ference on Object Oriented Programming Systems, Lan-
guages, and Applications, October 2012.

[36] Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan,
Yu Luo, Ding Yuan, and Michael Stumm. lprof: A non-
intrusive request flow profiler for distributed systems. In
Proceedings of the 11th Symposium on Operating Sys-
tems Design and Implementation, October 2014.

