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Dynamic Time Warping Algorithm 

 



Shift variance 

•  Time series have shift variance 
– Are these two points close? 
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Time warp variance 

•  Slight changes in timing are not relevant 
– Are these two point close? 
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Noise/filtering variance 

•  Small changes can look serious 
– How about these two points? 
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A real-world case 

•  Spoken digits 



Example data 



Going from fine to coarse 

•  Small differences are not important 
–  Find features that obscure them 



A basic speech recognizer 

•  Collect template spoken words Ti(t) 
•  Get their DTW distances from input x(t) 

–  Smallest distance wins  

x(t) 

Ti(t) 



Clustering Time Series 

•  How do we cluster time series? 
– We can’t just use k-means … 

•  We can use DTW for this 



Matching warped series 

•  Represent the warping with a path 
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Finding the overall “distance” 

•  Each node will have a cost 
–  e.g.,  

•  Overall path cost is: 

•  Optimal D path defines 
the “distance” between 
two given sequences 
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Bellman’s optimality principle 

•  For an optimal path 
passing through (i , j): 

 

•  Then: 
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Gene expression time series are expected to vary not 
only in terms of expression amplitudes, but also in terms 
of time progression since biological processes may unfold 
with different rates in response to different experimental 
conditions or within different organisms and individuals.  

What is Special about Time Series Data? 
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Why Dynamic Time Warping? 

Any distance (Euclidean, Manhattan, 
…) which aligns the i-th point on one 
time series with the i-th point on the 
other will produce a poor similarity 
score. 

A non-linear (elastic) alignment 
produces a more intuitive similarity 
measure, allowing similar shapes to 
match even if they are out of phase in 
the time axis. 
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To find the best alignment 
between A and B one needs to 
find the path through the grid  

P = p1, … , ps , … , pk  

ps = (is , js ) 

which minimizes the total 
distance between them. 

P is called a warping function. 



Time-Normalized Distance Measure 

D(A , B ) =  
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d(ps): distance between is and js  

P
minarg

ws  > 0: weighting coefficient. 

Best alignment path between A 
and B :              

Time-normalized distance between 
A and B : 

P0 =             (D(A , B )). 
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Optimisations to the DTW Algorithm 

The number of possible warping 
paths through the grid is 
exponentially explosive!  

Restrictions on the warping function: 

• monotonicity 

• continuity 

• boundary conditions 

• warping window 

• slope constraint. 

reduction of the 
search space 
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Restrictions on the Warping Function 

Monotonicity: is-1  ≤ is  and  js-1 ≤ js. 

The alignment path does not go back 
in “time” index. 

Continuity: is – is-1  ≤ 1 and js – js-1 ≤ 1. 

The alignment path does not jump in 
“time” index. 

Guarantees that features are not 
repeated in the alignment.  

Guarantees that the alignment does 
not omit important features.  
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Restrictions on the Warping Function 

Boundary Conditions: i1  = 1, ik = n  and  
j1 = 1,  jk = m. 

The alignment path starts at the bottom 
left and ends at the top right. 

Warping Window: |is – js| ≤ r, where r > 0 
is the window length. 

A good alignment path is unlikely to 
wander too far from the diagonal.  

Guarantees that the alignment does not 
consider partially one of the sequences.  

Guarantees that the alignment does not 
try to skip different features and gets 
stuck at similar features.  
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Restrictions on the Warping Function 

Slope Constraint: ( jsp
 – js0

) / ( isp
 – is0

) ≤ p and ( isq
 – is0

) / ( jsq
 – js0

) ≤ q , where q ≥ 0 

is the number of steps in the x-direction and p ≥ 0 is the number of steps in the y-

direction. After q steps in x one must step in y and vice versa: S = p / q �[0 , v].  

Prevents that very short parts of the sequences 
are matched to very long ones.  

The alignment path should not be too steep or 
too shallow. 
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The Choice of the Weighting Coefficient 

D(A , B ) =  .
)(

min

1

1

»
»
»
»

¼

º

«
«
«
«

¬

ª
�

¦

¦

 

 
k

s
s

k

s
ss

P
w

wpd

Time-normalized distance between A and B : 

complicates 
optimisation 
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Seeking a weighting coefficient function which 
guarantees that: 

can be solved by use of dynamic programming. 

is independent of the warping function. Thus 

Weighting Coefficient Definitions 

• Symmetric form 

  ws  = (is – is-1) + (js – js-1),  

 then C = n  + m. 
• Asymmetric form 

 ws  = (is – is-1),  

 then C = n. 

 Or equivalently,   

 ws  = (js – js-1), 

 then C = m. 



Initial condition: g(1,1) = d(1,1). 
DP-equation:     

      g(i, j – 1) + d(i, j)  

g(i, j) = min  g(i – 1, j – 1) + d(i, j) . 

                     g(i – 1, j) + d(i, j)  

Warping window:    j – r ≤ i ≤ j + r. 
Time-normalized distance:  

D(A , B ) = g(n, m) / C   

C = n  + m. 

Quazi-symmetric DTW Algorithm 
 (warping window, no slope constraint) 
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DTW Algorithm at Work 

Start with the calculation of g(1,1) = d(1,1). 

Move to the second row g(i, 2) = min(g(i, 1), 
g(i–1, 1), g(i – 1, 2)) + d(i, 2). Book keep for 
each cell the index of this neighboring cell, 
which contributes the minimum score (red 
arrows).  

Calculate the first row g(i, 1) = g(i–1, 1) + 
d(i, 1).  

Calculate the first column g(1,  j) = g(1,  j) + 
d(1,  j). 

Trace back the  best path through the grid 
starting from g(n, m) and moving towards 
g(1,1) by following the red arrows. 

Carry on from left to right and from bottom 
to top with the rest of the grid g(i, j) = 
min(g(i, j–1), g(i–1, j–1), g(i – 1, j)) + d(i, j).  



DTW Algorithm: Example 
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