
Slides from:
Elena Tsiporkova

Dynamic Time Warping Algorithm

Shift variance

•  Time series have shift variance
– Are these two points close?

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time warp variance

•  Slight changes in timing are not relevant
– Are these two point close?

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Noise/filtering variance

•  Small changes can look serious
– How about these two points?

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A real-world case

•  Spoken digits

Example data

Going from fine to coarse

•  Small differences are not important
–  Find features that obscure them

A basic speech recognizer

•  Collect template spoken words Ti(t)
•  Get their DTW distances from input x(t)

–  Smallest distance wins

x(t)

Ti(t)

Clustering Time Series

•  How do we cluster time series?
– We can’t just use k-means …

•  We can use DTW for this

Matching warped series

•  Represent the warping with a path

5

4

3

2

11

1 2 3 4 5 6 i

j

0
0

r(i),i = 1,2,…,6 t(j), j = 1,2,…,5

Finding the overall “distance”

•  Each node will have a cost
–  e.g.,

•  Overall path cost is:

•  Optimal D path defines
the “distance” between
two given sequences

5

4

3

2

11

1 2 3 4 5 6 i

j

0
0

d(i, j)= r(i)− t(j)

D = d(ik , jk)
k
∑

Bellman’s optimality principle

•  For an optimal path
passing through (i , j):

•  Then:

5

4

3

2

11

1 2 3 4 5 6 i

j

0
0

(i0, j0)→
opt

(if , jf)

(i0, j0)→
opt

(if , jf)=

 (i0, j0)→
opt

(i, j),(i, j)→
opt

(if , jf)
⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪

(i , j)

Gene expression time series are expected to vary not
only in terms of expression amplitudes, but also in terms
of time progression since biological processes may unfold
with different rates in response to different experimental
conditions or within different organisms and individuals.

What is Special about Time Series Data?

time

i

i+2

i

i i

time time

Why Dynamic Time Warping?

Any distance (Euclidean, Manhattan,
…) which aligns the i-th point on one
time series with the i-th point on the
other will produce a poor similarity
score.

A non-linear (elastic) alignment
produces a more intuitive similarity
measure, allowing similar shapes to
match even if they are out of phase in
the time axis.

js

is
m

1

n 1

Time Series B

Time Series A

Warping Function

pk

ps

p1

To find the best alignment
between A and B one needs to
find the path through the grid

P = p1, … , ps , … , pk

ps = (is , js)

which minimizes the total
distance between them.

P is called a warping function.

Time-Normalized Distance Measure

D(A , B) =

»
»
»
»

¼

º

«
«
«
«

¬

ª
�

¦

¦

k

s
s

k

s
ss

w

wpd

1

1
)(

d(ps): distance between is and js

P
minarg

ws > 0: weighting coefficient.

Best alignment path between A
and B :

Time-normalized distance between
A and B :

P0 = (D(A , B)).

js

is
m

1

n 1

Time Series B

Time Series A

pk

ps

p1

Optimisations to the DTW Algorithm

The number of possible warping
paths through the grid is
exponentially explosive!

Restrictions on the warping function:

• monotonicity

• continuity

• boundary conditions

• warping window

• slope constraint.

reduction of the
search space

js

is
m

1

n 1

Time Series B

Time Series A

Restrictions on the Warping Function

Monotonicity: is-1 ≤ is and js-1 ≤ js.

The alignment path does not go back
in “time” index.

Continuity: is – is-1 ≤ 1 and js – js-1 ≤ 1.

The alignment path does not jump in
“time” index.

Guarantees that features are not
repeated in the alignment.

Guarantees that the alignment does
not omit important features.

i

j

i

j

Restrictions on the Warping Function

Boundary Conditions: i1 = 1, ik = n and
j1 = 1, jk = m.

The alignment path starts at the bottom
left and ends at the top right.

Warping Window: |is – js| ≤ r, where r > 0
is the window length.

A good alignment path is unlikely to
wander too far from the diagonal.

Guarantees that the alignment does not
consider partially one of the sequences.

Guarantees that the alignment does not
try to skip different features and gets
stuck at similar features.

n

m

i

j

(1,1) i

j

r

Restrictions on the Warping Function

Slope Constraint: (jsp
 – js0

) / (isp
 – is0

) ≤ p and (isq
 – is0

) / (jsq
 – js0

) ≤ q , where q ≥ 0

is the number of steps in the x-direction and p ≥ 0 is the number of steps in the y-

direction. After q steps in x one must step in y and vice versa: S = p / q �[0 , v].

Prevents that very short parts of the sequences
are matched to very long ones.

The alignment path should not be too steep or
too shallow.

i

j ≤ p ≤ q

The Choice of the Weighting Coefficient

D(A , B) = .
)(

min

1

1

»
»
»
»

¼

º

«
«
«
«

¬

ª
�

¦

¦

k

s
s

k

s
ss

P
w

wpd

Time-normalized distance between A and B :

complicates
optimisation

»
¼

º
«
¬

ª
�¦

k

s
ssP

wpd
C 1

)(min1
D(A , B) =

¦

k

s
swC

1

Seeking a weighting coefficient function which
guarantees that:

can be solved by use of dynamic programming.

is independent of the warping function. Thus

Weighting Coefficient Definitions

• Symmetric form

 ws = (is – is-1) + (js – js-1),

 then C = n + m.
• Asymmetric form

 ws = (is – is-1),

 then C = n.

 Or equivalently,

 ws = (js – js-1),

 then C = m.

Initial condition: g(1,1) = d(1,1).
DP-equation:

 g(i, j – 1) + d(i, j)

g(i, j) = min g(i – 1, j – 1) + d(i, j) .

 g(i – 1, j) + d(i, j)

Warping window: j – r ≤ i ≤ j + r.
Time-normalized distance:

D(A , B) = g(n, m) / C

C = n + m.

Quazi-symmetric DTW Algorithm
 (warping window, no slope constraint)

j

m

1

n 1 i

g(1,1)

g(n, m)

i = j + r

i = j - r

1
1

1

Time Series B

Time Series A

j

m

1

n 1 i

Time Series B

Time Series A

i = j + r

i = j - r

DTW Algorithm at Work

Start with the calculation of g(1,1) = d(1,1).

Move to the second row g(i, 2) = min(g(i, 1),
g(i–1, 1), g(i – 1, 2)) + d(i, 2). Book keep for
each cell the index of this neighboring cell,
which contributes the minimum score (red
arrows).

Calculate the first row g(i, 1) = g(i–1, 1) +
d(i, 1).

Calculate the first column g(1, j) = g(1, j) +
d(1, j).

Trace back the best path through the grid
starting from g(n, m) and moving towards
g(1,1) by following the red arrows.

Carry on from left to right and from bottom
to top with the rest of the grid g(i, j) =
min(g(i, j–1), g(i–1, j–1), g(i – 1, j)) + d(i, j).

DTW Algorithm: Example

-0.87 -0.84 -0.85 -0.82 -0.23 1.95 1.36 0.60 0.0 -0.29
-0.88 -0.91 -0.84 -0.82 -0.24 1.92 1.41 0.51 0.03 -0.18

-0
.6

0

-0
.6

5

-0
.7

1

-0
.5

8

-0
.1

7

0.
77

 1

.9
4

-0
.4

6

-0
.6

2

-0
.6

8

-0
.6

3

-0
.3

2

0.
74

 1

.9
7

0.02 0.05 0.08 0.11 0.13 0.34 0.49 0.58 0.63 0.66

0.04 0.04 0.06 0.08 0.11 0.32 0.49 0.59 0.64 0.66

0.06 0.06 0.06 0.07 0.11 0.32 0.50 0.60 0.65 0.68

0.08 0.08 0.08 0.08 0.10 0.31 0.47 0.57 0.62 0.65

0.13 0.13 0.13 0.12 0.08 0.26 0.40 0.47 0.49 0.49

0.27 0.27 0.26 0.25 0.16 0.18 0.23 0.25 0.31 0.68

0.51 0.51 0.49 0.49 0.35 0.17 0.21 0.33 0.41 0.49

Time Series B

Time Series A

Euclidean distance between vectors

