
Event Mining: Algorithms and Applications

 Tao Li, FIU/NJUPT
Larisa Shwartz, IBM Research

Genady Ya. Grabanrnik, St. John’s University

Introduction and Overview

Contents

1

 Event Generation and System
Monitoring

2

Pattern Discovery and
Summarization

3

 Conclusions 5

 Mining with Events and Tickets 4

● IT Service Management (ITSM) refers to the

entirety of activities that are performed to plan,

deliver, operate and control IT services offered

to customers.

● ITSM grows in popularity over the last 30 years.

Many ITSM products are booming from different

companies.

3

 Service Management

ITSM Deliver Control

Operate

Plan

IT Service Background

The typical workflow of IT service

mainly includes four components (Tang et

al., CNSM 2012; Tang et al., KDD 2013):

• Customer Servers

• Event DB

• Ticketing System

• System Administrators

How IT Service Works?
Checking (periodically):
If disk_name == “C:” and disk_free < 5%

If CPU_util > 80% and duration > 20 minutes

….
Store and Explore Events, OLAP,

Automatically Generate Incident Tickets

Track Incident Tickets

Fix Problems

in Incident Tickets

A typical workflow of IT Service Management involves an appropriate

mix of people, process, information and technology.

6

The Workflow:Data Perspective

1.Hundreds of time series

2.Hundreds of event types

3.Hundreds of categories

4.Millions of instances over time

labor-intensive

Problem

Determination
Problem

Diagnosis

Problem

Resolution

7

Optimization with tickets, events and system stats data

Problem

Determination
Problem

Diagnosis

Problem

Resolution

Data

labor-intensive

Maximal automation

of

routine IT maintenance procedures
is one of ultimate goals of IT

service management optimization

1.0

Simple

Processing

2.0

Distributed

Processing

3.0

Service

Suites

4.0

Intelligent

Service

Platform

 Different Phases of IT Service Management

Data Processing Perspective

 data size is relatively small: MB/GB

 Using testing tools（ping，traceroute，SNMP，tcpdump）or monitoring

tools (e.g., Zabbix)

 problem identification、problem localization、 problem resolution，

Phase 1.0

◎Keyword search: error, fatal

◎Cmds: head, tail, grep, cut, etc.

◎Scripts: awk, Perl

Manual analysis

 Massive data size: TB/PB

 Distributed processing techniques / platforms

 Four steps of data processing:

Phase 2.0

Data Storage

HDFS，NoSQL

Relational Database

Data Visualization

BIRT，Zeppelin

Data Collection
Apache Chukwa，Facebook Scribe，

Cloudera Flume，Fluentd

Data Analysis

Hadoop MapReduce、Spark、

Storm、Spark Streaming

1

4 3

2

Phase 3.0

 Big data processing suites

Phase 4.0

 Add more intelligent techniques (AI, Machine Learning and Data
Mining Techniques) on top of the existing suites

Natural Language

Processing

Big Data

Mining

Machine

Learning

Efficient Analysis

Algorithms

Overview of Research Problems： Workflow

Monitoring Configuration Optimization

• Reduce False positive (false alerts)

• Reduce False negative (missed alerts)

System Incidents Diagnosis

• Temporal Pattern Discovery

• Event Correlation

• Automatic Resolution Recommendation

• Problem Diagnosis

• Problem determination and resolution

• Root Cause Analysis

• Failure Prediction and Avoidance

Convert Raw Textual Logs into System Events

16

Overview of Research Problems

Problem Determination

Problem Resolution

Problem Diagnosis

Assign

(1) Ticket classification with problem

category

1. Hierarchy multi-label classification

2. Domain knowledge integration

(2) Temporal pattern mining from

events

1. From logs to events

2. Fluctuating time lag modeling

3. Efficient pattern mining method

(3) Temporal dependency discovery from

system stats

1. Granger causality inference

2. Online inference for time varying temporal

dependency

(4) Monitoring Configuration

Optimization

1. Reduce False positive (false alerts)

2. Reduce False negative (missed alerts)

(5) Ticket recommendation

Introduction and Overview

Contents

1

 Event Generation and System
Monitoring

2

Pattern Discovery and
Summarization

3

 Conclusions 5

 Mining with Events and Tickets 4

Outline

Monitoring Configuration Optimization

• Reduce False positive (false alerts)

• Reduce False negative (missed alerts)

System Incidents Diagnosis

• Temporal Pattern Discovery

• Event Correlation

• Automatic Resolution Recommendation

• Problem Diagnosis

• Problem determination and resolution

• Root Cause Analysis

• Failure Prediction and Avoidance

Convert Raw Textual Logs into System Events

Why Convert Textual Logs to System Events?

System events are easier to analyze

other textual logs.

Converting log messages to events provides the capability of canonically describing the semantics

of log data and improves the ability of correlating across the logs from multiple components.

Event Generation from Textual or Semi-

structure Logs: Possible Solutions

• Log Parser (W. Xu et al., 2008)
– Requires the understanding of all log messages.

– Document or Source code are not available.

– Implementation is time consuming.

• Information Extraction (Supervised):
– Conditional Random Field.

• Clustering Based Methods (Unsupervised):

– Bag-of-Word model
• cosine similarity, Jaccard Index…

– Log message matching (M. Aharon et al., 2009; A. Makanju et al, 2009)
• Number of matched words in strings.

• Edit distance of messages.

20

Clustering-based Methods

 Goal: categorize textual or semi-structured system logs into system events.

21

Solution1: utilizing a context-free grammar parser to

help text clustering

Solution2: extracting the message signature to

do message clustering

(Liang Tang and Tao Li, IEEE ICDM 2010)

(Liang Tang and Tao Li, ACM CIKM 2011)

Tree-Structure based Clustering

Basic Idea

1) Convert the log messages into tree-structured data,

where each node is a segment of message.

2) Do clustering based on tree-structured data.

Step 1: Convert into semi-structural log messages

(log tree).

It is only a context-free grammar parser.
It separates log message by comma, TAB, etc.
It does NOT identify the meaning of terms (words).
It can be automatically created by JLex and JCup (or JAVACC) tools.

Step 2: Do clustering with Tree-based similarity

function
Each log message is a tree. Similarity of two log messages is computed as the similarity of two

trees. Root node of s1 Root node of s2

Message Segment at node v1 Message Segment at node v2

Best matching between subtree v1’s nodes with subtree v2’s nodes

Decrease weight for lower layer

𝜆< 1

Message Signature Based Clustering

[Thu Apr 01 00:07:31 2010] [error] [client 131.94.104.150] File does not exist:

/opt/website/sites/users.cs.fiu.edu/data/favicon.ico

[Thu Apr 01 03:47:47 2010] [crit] [client 61.135.249.68] (13)Permission denied:

/home/public_html/ke/.htaccess pcfg_openfile: unable to check htaccess file, ensure it is

readable

[Thu Apr 01 01:41:18 2010] [error] [client 66.249.65.17] Premature end of script headers:

preferences.pl

[Thu Apr 01 01:44:43 2010] [error] [client 207.46.13.87] File does not exist: /home/bear-

011/users/giri/public_html/teach/6936/F03

File does
not exist

Permission
denied

Bad script

Message signature is the signature of the template.

One type of log messages is generated by one template with different parameters.

Message signature

Each log message consists of a sequence of terms.
• Some of the terms are variables or parameters for a system event,

 such as the host name, the user name, IP address, and so on.
• Other terms are plain text words describing semantic information of the event.

Message Signature based Clustering

• Problem: Find k most representative message signatures.

• Question: How to quantify the “representativeness” ?

• Definition:

– Given a message X and a message signature S, the match score is the number of matched terms

minus the number of unmatched terms.

– match(X,S) = |LCS(X,S)| - (|S| - |LCS(X,S)|) =2|LCS(X,S)|- |S|, LCS=Longest Common

Subsequence.

• Example:
– X=“abcdef”, S=“axcey”, match(X,S)=|ace| - |xy| = 1

Problem Definition

Given a set of log messages D and an integer k, find k message signature S =

{S1,…,Sk} and a k-partition C1,…,Ck of D to maximize:

Problem Analysis:

• Similar to k-means problem, but NOT really.

• Finding the Optimal Solution is NP-Hard, even if k=1.

– Multiple Longest Common Subsequence Problem can be reduced to our problem.

Outline

Monitoring Configuration Optimization
• Reduce False positive (false alerts)
• Reduce False negative (missed alerts)

System Incidents Diagnosis
• Temporal Pattern Discovery
• Event Correlation
• Automatic Resolution Recommendation
• Problem Diagnosis
• Problem determination and resolution
• Root Cause Analysis
• Failure Prediction and Avoidance

Convert Raw Textual Logs into System Events

What is False Positive (False Alarm)?

• If PROCESS_CPU_UTILIZATION > 50% and duration > 10 minutes, then

generates a CPU alert

– “rtvscan.exe” scans the system periodically, it is CPU intensive but it is normal, so it

triggers a lot of false positives (false alerts).

• If PAGING_UTILIZATION_15min > 400, then generate a paging alert (default

situation in IBM Tivoli monitoring)

– Some customer servers have multiple CPU and huge memories. For those multi-CPU

servers, it is normal for page swapping over thousands of times in 15 minutes.

Why We Have False Positives?
• Too Conservative Configurations

– Missing a real alert would incur system crash, data loss.

• Changes of Monitored Servers

– New servers and more powerful device are installed.

• Transient Alerts:

– Temporal CPU, Paging, Disk Spike.

– Restart of servers, processes, services, routers… IBM Tivoli Monitoring

Complicated configurations for IBM Tivoli

monitoring

Problem Statement & Challenge

• Problem Statement

– Eliminate false positives by refining the Monitoring

configurations

• Challenge

– Retain all real alerts. No real alert is allowed to miss.

Related Work

• Monitoring Products

– IBM Tivoli, HP OpenView, Splunk

• System Alert Detection

– Heuristic Methods (codebook…).

– Supervised Learning Methods
• Outlier Detection (S. Agrawal et al., 2007, K. Xu et al., 2005)

• Adaptive threshold (S.R. Kashyap et al., 2008)

– Supervised Learning Methods (classification).

 However, they do not guarantee NO real alert is missed.

Motivation of Eliminating False Positives

• Most false positives are transient alerts and automatically

disappear in a short time.

Some transient alerts may be indications of future real alerts and may be useful. But if those real alerts rise later
on, the monitoring system will detect them even if the transient alerts were ignored.

Most false alerts are transient alerts.

Workflow

Gather incident information

and create event

Create ticket

Predict it is
“False”?

Wait
Is this alert

cleared?

Yes Yes Remove

this event

NoNo

Abnormal system

Incident Most false positive alerts are

transient alerts (automatically

disappear in a short time).

Waiting time is the maximum duration of covered false
positives

Implementation and Deployment

• The rules generated by a classifier can be directly translated into monitoring

situations:

– If PROC_CPU_TIME > 50% and PROC_NAME = ‘Rtvscan’, then it is false.

• Waiting time is the polling interval of a monitoring situation.

Predictor

Waiting Time

Offline Evaluation on Historical Data

0

5000

10000

15000

20000

25000

30000

35000

40000

0.9 0.7 0.5 0.3 0.1

C
o
u

n
t

Testing Data Ratio

Eliminated False Tickets All False Tickets

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.9 0.7 0.5 0.3 0.1

C
o
u

n
t

Testing Data Ratio

Postponed Real Tickets

All Real Tickets

Ratio of the testing data size and training data
size

Online Evaluation

October 2011 November 2011 Januray 2012

False Tickets 6217 5536 4901

Real Tickets 5639 5605 5524

4000

4500

5000

5500

6000

6500
N

u
m

b
e

r
o

f
T

ic
k

e
ts

0

2000

4000

6000

8000

10000

12000

Before After

N
u

m
b

e
r

 o
f

F
a

ls
e

 E
v
e

n
ts

A large financial company.

An internal account in IBM.

What is False Negative (Missed Alert) ?

• False negatives are the missed alerts by the monitoring system.

• False negatives are usually captured by human (customers,

helpdesk, system administrators).

• False negatives are not recorded in monitoring events, but only in

manual tickets.

Why We Have False Negatives?

• New devices and software are installed, but are not added into the monitoring

configurations

• Other changes for existing systems. Some thresholds may not be acceptable

after changes.

About False Negative

• How to eliminate false negatives (missed alerts)?
– False negative are quite few (less than 20-40 tickets for a situation).

– No need an automatic approach to correct the misconfiguration.

• False negatives are missed alerts. Where can we find them?
– Manual Tickets (captured by human).

– However, manual tickets contain other kinds of tickets, such as customer
request.

Automatically identify related manual tickets and then refine the configuration

Problem Statement

• Eliminate false negatives by refining the monitoring

configurations

• It consists of two parts:

– Scan the historical manual tickets and provide a short list of

potential false negatives to the monitoring team (automatically)

– Change or add monitoring situations (manually)

Related Work

• Reduce False Negative

– Focus on improving the accuracy of the monitoring

– No prior work is based on discovery of false negatives (Because false negatives are

missed alerts. There is no data record for tracking them).

• Text classification

– Class label “1”: a missed alert; class label “0”: other issues, such as customer request.

Features are the words in the ticket description.

– Imbalanced classification: Cost-sensitive and over-sampling.

Two-Stage Text Classification

• A simple classification to rank all tickets based on their confidence of being false

negative.

– a simple word match algorithm based on given domain words (labeled features)

• Only select top ranked tickets for labeling and training and build the final text classifier.

– Build a binary SVM classifier.

Avoid labeling all tickets and save the labeling cost.

A Case Study

Situation Ticket

dsp_3ntc_std Please clear space from E drive xxxx-fa-ntfwwfdb Please clear space from E drive xxxx-fa-ntfwwfdb.it

is having 2 MB free...

fss_rlzc_std /opt file system is is almost full on xxx Hi Team@/opt file system is almost full. Please clear some

space /home/dbasso>df -h

/optFilesystem...

svc_3ntc_std RFS101681 E2 Frontier all RecAdmin services are down Frontier RecAdmin services are not running

on the batch server Kindly logon to the server

: xxx.xxx.155.183/xxx ...

… …

Discovered False Negatives (Missed alerts)

I will add these devices into Tivoli monitoring
configuration.

System AdministratorSystem Administrator

Optimizing Monitoring Configurations based on Events and Tickets

46

(Liang Tang, Tao Li et. al, IEEE/IFIP NOMS 2012)

(1) CPU_UTIL > 80% and PROCESS_NAME = ‘Rtvscan.exe’ , Duration =
15 minutes

(2) CPU_UTIL > 80% and PROCESS_NAME <>‘Rtvscan.exe’ , Duration = 1
minute

 CPU_UTIL> 80%, Duration = 1 minute

Optimize

false positive

(Liang Tang, Tao Li et. al, CNSM 2013)

Situation Ticket

dsp_3ntc_std Please clear space from E drive xxxx-fa-ntfwwfdb Please

clear space from E drive xxxx-fa-ntfwwfdb.it is having 2 MB

free...

fss_rlzc_std /opt file system is is almost full on xxx Hi Team@/opt file

system is almost full. Please clear some space

/home/dbasso>df -h

/optFilesystem...

svc_3ntc_std RFS101681 E2 Frontier all RecAdmin services are down

Frontier RecAdmin services are not running on the batch

server Kindly logon to the server

: xxx.xxx.155.183/xxx ...

… …

I will add these devices into
Tivoli monitoring
configuration.

System AdministratorSystem AdministratorOctober 2011 November 2011 Januray 2012

False Tickets 6217 5536 4901

Real Tickets 5639 5605 5524

4000

4500

5000

5500

6000

6500

N
u

m
b

e
r

o
f

T
ic

k
e

ts

false negative

Introduction and Overview

Contents

1

 Event Generation and System
Monitoring

2

Pattern Discovery and
Summarization

3

Conclusions 5

 Mining with Events and Tickets 4

• History on Event Mining

• Overview of Temporal Patterns

• Mining Time Lags

– Non-parametric Methods

– Parametric Methods

• Event Summarization

• Temporal Dependency

Outline

History of issue and some apps

• Issue: complex cross platform, multiple applications working
together, how to insure everything is working proper?

• Approach:
– Consider system footprint of each component by querying system

– Consider subcomponents and query subcomponents on working conditions

– Evaluate subcomponent logs on status of components

– Consider customer complains (tickets)

• The first two have unified monitoring solution

• Logs, tickets should be “preprocessed” for analysis

• Start with ‘visualization’ of logs, tickets

• Use unsupervised learning to deal with large volumes of information

• Information generated by systems are events - have timestamp of
occurrence

– Rarely interdependent events has clear transaction like start and end

– Mainly has vague ‘time of start’ and ‘time of end’

Events IDA (Interactive Data Analysis)
• EventBrowser, a few versions,

– Started by S. Ma (Google), J. Hellerstein (?,UW), Visual C++

– Features: In memory events storage, interactive query building,
visualization, 3 views

– Next version: Re-implemented on top of visualization framework,
over 20 different views

• Diamond by D. Rabenhorst (?), added rich visualization, better column
base in memory storage, extended querying (including color based)
capability,

• D. Taylor (UWaterloo) added visual querying graphics->SQL-
>Diamond API->modified view;

• Good for initial intuition development

• Issues typical for IDA,

– low throughput,

– inconsistent by different people usage

Event Mining

• A number of events patterns was

suggested, showing need to

proceed

• To overcome IDA limitation used

combined method: Build tool

providing both IDA and Data

Mining capabilities

• Event Miner was built

(GG+S.Ma) on top of Diamond

Framework, integrated data

mining (frequent datasets,

others) with visualization, round

trip patterns search etc.

• Helped identify 20++ patterns

types

52

Pattern Discovery I

53

Pattern Discovery II

Data Feed from Logs
• Capability of Event Miner allowed to process large

amount of data

• By hand processing of logs was not sufficient

anymore

• To provide appropriate feed and partially automate

process Generic Log Adapter (GG, SM, AS (IBM)

BS(Microsoft), with contr. CP(Google) was built

• Used inverse of control on top of piping

architecture to provide extensible framework

• Eclipse based GUI for interactive log pattern

development

• Was able to semi-automate log processing of many

applications/components

• Contributed to Eclipse foundation TFTP framework

• Back to Event Mining

• History on Event Mining

• Overview of Temporal Patterns

• Mining Time Lags

– Non-parametric Methods

– Parametric Methods

• Event Summarization

• Temporal Dependency

Outline

Mining Event Relationships
• Temporal Patterns (of System Events)

– Wish: A sequence of symptom events providing a signature for identifying the root
cause

– Less ambition: ‘repeating’ (sub)sequences of events

• Host Restart: “host is down” followed by “host is up” in about 10 seconds

• Failure Propagation: “a link is cut” “connection loss”  “lost connection”  “application
terminated unexpectedly”

• Examples of Temporal Dependency

• Disk_Capacity ⟶ [5min,6min] Database, [5min, 6min] is the lag interval.

• Reflects hidden process, here may be database inserts/updates, expect normality here

3 5 7 8 9 13 1715
Timestamp

(Minutes):

Disk_Capactiy

Database

A

B B

A A

BB

665

C C CC CApp_Heartbeat C

A

B

5

23

C C C C C C C C CC

11

B

Issues in Temporal Data Mining
• Temporal correlation of events

– Previous work
• Concept of transactions

• Fix Time Sliding Window schemes

– Problems
• Size of windows

• Can not mine temporal relationships longer than the window size,

• time window varies with pattern

• In our experiments, time distances range from one second to one day

– Approach: distance methods

• Characteristics of interesting patterns

– Previous work: Frequent patterns -- (normal operations)

– Problems
• Infrequent, but significant patterns -- (service disruptions)

• Noisy environments

• Time dimension

– Approach: statistical dependency of inter-arrival times

[Li et al., KDD 2004; Peng et al, KDD 2007; Zeng et al., 2015]

0 Time

a a a
b b b

c c

d d d

• History on Event Mining

• Overview of Temporal Patterns

• Mining Time Lags

– Non-parametric Methods

– Parametric Methods

• Event Summarization

• Temporal Dependency

Outline

 The dependency between events helps for problem diagnosis

 Time lag plays an important role in predicting the incoming events and the

evolving trends of systems’ behavior.

Time Lag

Preliminary Work

• Predefine the lag interval (H. Mannila et al., 1997)

• No interleaved dependency (T. Li et al., 2005, K. Bouandas et al., 2007)

Disk_Capacity ⟶ [5min,6min] Database, [5min, 6min] is the lag interval.

Example of disambiguation issue: Which B event depends on the first A event?

3 5 7 8 9 13 1715
Timestamp

(Minutes):

Disk_Capactiy

Database

A

B B

A A

BB

665

C C CC CApp_Heartbeat C

A

B

5

23

C C C C C C C C CC

11

B
?

Relation with Other Temporal Patterns

Mutually

Dependent

{A,B}

Partial Periodic A with periodic p and

time tolerance δ

Frequent Episode A->B->C

Loose Temporal B follows A before t

Stringent Temporal B follows A about t

 , ABBA tt],0[],0[

AA pp],[ 

 , CBBA tt],0[],0[

 BA t],0[

 BA tt],[ 

Those temporal patterns can be seen as the temporal dependency with particular constraints on the

time lag.

Challenges for Finding Time Lag

• Given a temporal dependency, A⟶[t1,t2]B, what kind of lag interval

[t1,t2] we want to find?

– If the lag interval is too large, every A and every B would be “dependent”.

– If the lag interval is too small, real dependent A and B might not be captured.

• Time complexity is too high.

– A⟶[t1,t2]B, t1 and t2 can be any distance of any two time stamps. There are

O(n4) possible lag intervals.

What is a Qualified Lag Interval

 If [t1,t2] is qualified, we should observe many occurrences for A⟶[t1,t2]B.

3 5 7 8 9 13 1715
Timestamp

(Minutes):

Disk_Capactiy

Database

A

B B

A A

BB

C C CC CApp_Heartbeat C

A

B

23

C C C C C C C C CC

11

B

Length of the lag interval is larger, the number of occurrences also becomes larger.

Lag Interval Number of Occurrences

[0,1] 3

[5,6] 4

[0,6] 4

[0,+∞] 4

What is a Qualified Lag Interval

 Intuition (Statistical Testing):

 If A and B are randomly and independently distributed, how many occurrences observed in a time

interval [t1,t2]?

 What is the minimum number of occurrences (threshold)?

 Consider the number of occurrences in a lag interval to be a variable, nr. Then, use the chi-square test

to judge whether it is caused by randomness or not?

The number of As
Total time length of the

event sequence

)1(

)(2
2

rrA

rAr
r

PPn

Pnn






T

n
rP B

r ||

Expected value

Naive Algorithm for Finding Qualified Lag

Intervals

• (Brute-Force) Algorithm: For A⟶[t1,t2]B, for every possible t1 and t2, scan the event

sequence and count the number of occurrences.

• Time Complexity

– The number of distinct time stamps is O(n).

– The number of possible t1 and t2 is O(n2) (building distribution of t1,t2, linear space).

– The number of possible [t1,t2] is O(n4).

– Each scan is O(n). The total cost is O(n4).

• Cannot handle large event sequences.

Discovering Lag Interval for Dependent

Events
(Liang Tang, Tao Li et. al, ACM SIGKDD 2012)

Lag Interval Number of Occurrences

[0,1] 3

[5,6] 4

[0,6] 4

[0,+∞] 4
3 5 7 8 9 13 1715

Timestamp

(Minutes):

Disk_Capactiy

Database

A

B B

A A

BB

C C CC CApp_Heartbeat C

A

B

23

C C C C C C C C CC

11

B

Length of the lag interval is larger, the number of occurrences also becomes larger.

Dataset Discovered Dependencies

Account1 MSG_Plat_APP ⟶[3600,3600] MSG_Plat_APP

Linux_Process ⟶[0,96] Process

SMP_CPU⟶[0,27] Linux_Process

Account2 TEC_Error ⟶[0,1] Ticket_Retry

TEC_Retry ⟶[0,1] Ticket_Error

AIX_HW_ERROR⟶[8,9] AIX_HW_ERROR

Two experimental data sets from IBM customer monitoring events

 The interleaved temporal dependency makes difficult to correct mapping
between two events

 Noise leads to fluctuating time lag.

Problem and Challenge

 A parametric model to formulate the randomness of time lags between

events. This model is capable of

 providing insight into the correlation of events.

 describing the distribution of time lags.

Parametric Method

Observation: Time Lag distribution for periodic event

Given two events A and B, let μ be the true lag if A implies B. Then it can be
denoted as:

Time Lag Modeling

Let ε be the noise. Then the time lag observed is modeled as a random
variable L which comprises μ and ε.

Time Lag Modeling

 We assume ε follows Gaussian distribution with variance σ2.

 As the result, the time lag is modeled as L, which comprises μ and ε,
follows the Gaussian distribution.

 Given two events A and B, our problem is reduced to learn the distribution of L. We need to determine:

1.Parameter μ.

2.Parameter σ2.

Time Lag Mining

➢Another problem is disambiguation, that there is no idea about which
instance of event A implies a specific instance of event B.

Problem Formulation

Let SA and SB are the sequences of event A and event B respectively, a
mixture model is proposed to formulate the log likelihood of the event data.

The parameters can be learnt by maximizing the log likelihood.

The problem can be solved with EM algorithm.

Solution

➢LagEM is an EM-based algorithm, which mainly involves two parts: Expectation and Maximization.

1. Initialization

2. Loop until converge

1) Expectation:

2) Maximization:

Algorithm(LagEM)

The time complexity is O(r*n*m), where r is the number of iterations, m and n are the numbers of event A and event B,

respectively.

➢Observation: the most possible bj ,which is implied by ai, should be around
the time t=ai + u. The further bj deviates from t, the less probable it is.

Solution improvement

➢We only consider the most probable K pairs and neglect all others.

➢Find the most possible time point and then search the possible time points by looking left and right until the
proportion of the considered points exceeds 1-ε, where ε is very small, like 0.05.

Approximation algorithm

➢ Setup

● Synthetic data: noise and true lags are incorporated into data.

● Provided with ground truth, the experiment conducted on synthetic data allows us to demonstrate the effectiveness.

● Provided with different numbers of synthetic events, it allows to illustrate the efficiency of our algorithm.

➢ Real data: data is collected from several IT outsourcing centers by IBM Tivoli monitoring system.

● It shows that temporal dependencies with time lags can be discovered by running our proposed algorithm.

● Detailed analysis demonstrates the effectiveness and usefulness of our method in practice.

Experimental Result

➢KL(Kullback-Leibler) divergence is used to measure the difference between the
distribution of time lag given by the ground truth and the discovered result.

● The KL divergence caused by appLagEM is almost as small as the one produced by LagEM

Experiment on synthetic data

➢The comparison of time cost over the synthetic data is shown.

Experiment on synthetic data

○ appLagEM is much more
efficient than lagEM

○ The larger the 𝜖 is, the less time
appLagEM takes to find the
optimal distribution of the time
lags

○ Algorithm appLagEM with 𝜖
=0.001 is about two orders of
magnitude faster than lagEM

 The experiment is conducted over two real data sets from the IT outsourcing centers by IBM Tivoli monitoring system.

 Since there are large number of events in both two data sets, lagEM is infeasible. The algorithm appLagEM with 𝜖
=0.001 is used to mine the time lag of temporal dependency.

➢ We Apply the metric signal-to-noise ratio to filter the dependencies discovered by appLagEM.

➢ The Larger the SNR is, the less relative impact of noise to the expected time lags.

Experiment on real data

Experiment on real data

 A snippet of interesting temporal patterns are highlighted in the below table.

● It shows that our algorithm can find patterns with time lags of different scales.

● The distributions of time lags present the confidence of the temporal dependencies.

● The periodic patterns can be discovered by the proposed algorithm.

oTEC_Error -->L Ticket_Retry, where L ~N(0.34,0.107178). It indicates that the two events appear

almost at the same time. In fact, TEC_Error is caused whenever the monitoring system fails to
generate an incident ticket to the ticket system. And Ticket_Retry is raised when the monitoring
system tries to generate the ticket again.

oAIX_HW_Error -->L AIX_HW_Error, where L~N(10.92,0.98). It shows a periodic pattern with 10

seconds. In real environment, the event AIX_HW_Error is raised when monitoring system polls an
AIX server which is down, The failure to respond to the monitoring system leads to an event
AIX_HW_Error almost every 10 seconds.

Interesting temporal patterns are discovered by our algorithm.

• History on Event Mining

• Overview of Temporal Patterns

• Mining Time Lags

– Non-parametric Methods

– Parametric Methods

• Event Summarization

• Temporal Dependency

Outline

Event Summarization - Introduction

What is Event Summarization?
The techniques that provide a concise interpretation of the seemingly

chaotic data, so that domain experts can take actions upon the
summarized models.

Why summarize?
Traditional data mining algorithms output too many patterns.

Properties of event summarization
● Brevity and accuracy

● Global data description

● Local pattern identification

● Minimize number of parameters

Existing Summarization Solutions

● Summarize events with frequency change segments

● Ignore temporal information within segments

● All segments have the same boundaries

● The generated summary is not easy to understand

Solution
● Summarize with temporal patterns./dynamics

● —Modeling temporal patterns with interval

histograms.

● —Leverage MDL to balance accuracy and

brevity.

● Represent summarization result with ERN.

workflow

Event Summarization (Jiang et al., CIKM 2011)

• Existing works focus on algorithmic solutions

Multi-Resolution Event Summarization (Jiang et al., SDM 2014)

• Event Summarization is a Repetitive Procedure

 Different models have different parameters

 Different users have different purposes

 Different applications need to be summarized in different

resolutions

 Event logs need to be updated

event log

summary

view

kiernan et al. 2008

A A

B B B

C C C

A A A

B B B

 C

A

 B

C

Jiang et al.

2011

S1 S2

A A A A A A A A AA

 B B B B B B B B B B

 C C C C C C C C CC

Wang et al. 2010

• A Multi-resolution Summarizaion Framework

 10 Basic operators: Vectorize, Unvectorize, Encode, Decode, Prune,

Concatenate, Project, Select, Zoom, Describe.

 5 Tasks: Summarization, Storing, Recovering, Merging, and Updating

Illustrative Example

• History on Event Mining

• Overview of Temporal Patterns

• Mining Time Lags

– Non-parametric Methods

– Parametric Methods

• Event Summarization

• Temporal Dependency

Outline

➢System statistics is collected instantly as time series data.

Problem and Challenge

➢Temporal dependency is non-stationary.

➢Online inference for time varying temporal dependency is challenging.

Problem and Challenge

➢Bayesian network modeling

● Take each time series as a random variable. Conditional probability is
used to model the correlation among time series

➢Granger causality inference

● If X can (Granger Causality) infer Y, then the past of X should
significantly help predict the future of Y, comparing with using the past
of Y only.

Existing frameworks for temporal dependency discovery

Lasso Granger

Lasso Granger Method: learning regression model with L1 regulation.

Let , the lasso regression for variable yj is given as follows,

If the coefficient corresponding to yi,t-k is non-zero, it shows a Granger Causality between yi and yj.

Online inference of Lasso Granger

Regression with Lasso can be modeled with Bayesian Learning, refer to Bayesian Lasso.

Online inference for Lasso Granger can be implemented by Bayesian Lasso.

Posterior
Knowledge

Posterior
Knowledge

Prior

Posterior
Knowledge

Prior Prior Prior

t1 t2 t3

Bayesian Lasso for Granger Causality

Regression with Lasso can be modeled with Bayesian Learning, refer to Bayesian Lasso. Online

inference for Lasso Granger can be implemented by Bayesian Lasso.

Non-Stationary Granger Causality

➢ L is the maximum time lag for VAR model.

Temporal dependency structure changes over

time.

○ New dependency appears.

○ Old dependency disappears.

○ The strength of dependency changes

○ Sparsity

➢ The temporal structure is highly sparse.

➢ Since patterns relatively short

Proposed Time-Varying Bayesian Lasso

Varying scales

Varying direction:

random walk

Time Varying Component:

Constant Component:

Solution(particle learning)

Baseline Algorithms:
●BLR(q): Bayesian Linear Regression.
●TVLR(q): Time Varying Bayesian Linear Regression.
●BLasso(λ): Bayesian Lasso Regression.
Our proposed algorithm:
TVLasso(λ): Time Varying Bayesian Lasso Regression.

Evaluation Metrics:
➔AUC Score: The Area under the ROC.

➔Prediction Error:

Evaluation

20 time series with different varying patterns. 8 coefficients are selected for illustration.

Evaluation over Synthetic Data

Evaluation over Real Data: TVLasso can effectively identify the time varying dependency

Introduction and Overview

Contents

1

 Event Generation and System
Monitoring

2

Pattern Discovery and
Summarization

3

 Conclusions 5

 Mining with Events and Tickets 4

• Ticket Classification

• Ticket Resolution Recommendation

• Ticket Analysis (Knowledge Extraction)

Outline

106

IT Problem Category Determination by Tickets

107

IT Problem Category Determination by Tickets

108

IT Problem Category Determination by Tickets

➢Text classification (Without considering multi-label and label hierarchy)

● SVM,CART, KNN, Rule-based classification, logistic regression

➢Multi-label classification algorithm(Without considering label hierarchy)

● Problem transformation based approach

● Algorithm adaption based approach

➢Hierarchical multi-label classification algorithm

● Recursively split the training data(Overfitting)

● Hierarchical consistency is guaranteed by post-processing(Our method belongs to this category)

109

Related Work

➢ Hierarchical Constraint: Given a ticket, any node is positive (in green color) if it is the root node or

its parent is positive.

110

Hierarchical Consistency with Multiple Labels

➢ The characteristics of hierarchical multi-label classification over the ticket data are listed as follows:

● With multiple paths.

● With a partial path.

111

Hierarchical Consistency with Multiple Labels

➢ H-Loss.

● Main idea: any mistake occurring in a subtree does not matter if the subtree is rooted with a

mistake as well

● 1 loss because of the error at Database node, while 0 for both DB2 and Down nodes

112

Guarantee Hierarchical Consistency with Loss

Assign to DB2 team and

its sub-team Down will

incur more cost due to

wrong assignment.

➢ HMC-Loss.

● Main idea: misclassification error at a node is weighted by its hierarchy information. It also

weights FP and FN differently.

113

Guarantee Hierarchical Consistency with Loss

➢ Contextual Misclassification Information.
● Different weights for each case

114

Propose CH-Loss

Communication with

its direct parent
Communication with

its grandparent

False Negative

False Positive

➢ CH-Loss generalize other Loss functions.

115

Propose CH-Loss

Goal CH-Loss parameter settings

Minimize Hamming Loss w1 = w2 = w3 = w4=1, Ci = 1

Minimize HMC-Loss w1 = w2 =ɑ, w3 = w4=β, Ci = is defined by user

Minimize H-Loss w1 = w3 =1, w2= w4=0, Ci = 1

Increase recall w1 and w2 are larger than w3 and w4

Increase precision w1 and w2 are smaller than w3 and w4

Minimize misclassification errors occur in both

parent and children nodes

w1 < w2 and w3 < w4

116

Minimize Expected CH-Loss

Issue: it’s difficult to estimate the probability P(y|x), since y can be one of O(2N) vectors.

P(y|x) is the probability of the label vector y given

ticket x.

CH-Loss

s.t. ŷ satisfying the hierarchical constraint

117

Equivalent Derivation (Proposition IV.3 of our work)

Where σ(i) can be computed by P(yi|x) and P(yparent(i)|x). The above equation can be solved by proposing
GLabel, a greedy algorithm.

P(yi|x) can be estimated with a binary classifier on node i.

s.t. ŷ satisfying the hierarchical constraint

118

GLabel Algorithm

 Greedily choose the node i with largest σ(i) to label, considering the hierarchical constraint, Complexity :
O(N lgN).

0

3

8

4 6 5 7

1 2

𝛔(0)=+∞

Node Value

𝛔(0) +∞

𝛔(1) 9

𝛔(2) -8

𝛔(3) 8

𝛔(4) 3

𝛔(5) -5

𝛔(6) 4

𝛔(7) -3

𝛔(8) 7

1 3

𝛔(1)=9 𝛔(3)=8

𝛔(8)=7

𝛔(4)=3

(𝛔(4)+𝛔(8))/2=5

4

8

𝛔(6)=4

(𝛔(2)+𝛔(6))/2=-2

𝛔(2)=-8

𝛔(7)=-3

𝛔(5)=-5

Node Value

𝛔(0) +∞

𝛔(1) 9

𝛔(2) -8

𝛔(3) 8

𝛔(4) 3

𝛔(5) -5

𝛔(6) 4

𝛔(7) -3

𝛔(8) 7

Node Value

𝛔(0) +∞

𝛔(1) 9

𝛔(2) -8

𝛔(3) 8

𝛔(4) 3

𝛔(5) -5

𝛔(6) 4

𝛔(7) -3

𝛔(8) 7

Node Value

𝛔(0) +∞

𝛔(1) 9

𝛔(2) -8

𝛔(3) 8

𝛔(4) 3

𝛔(5) -5

𝛔(6) 4

𝛔(7) -3

𝛔(8) 7

1. 23,000 tickets are collected from the real IT environment.

1. 20,000 tickets are randomly selected for training data

1. The remaining 3,000 tickets are used for testing.

119

Experiment

120

GLabel vs. Flat Classifier

Metric SVM GLabel

CH-Loss 4.2601 2.6889

Parent-Child Error 0.3788 0.1729

Hierarchy Error 0.0102 0.0

121

The state-of-the-art algorithm

1. CSSA , which requires the number of labels for each ticket

1. HIROM, which requires the maximum number of labels for all the tickets

The GLabel algorithm is capable of minimizing the loss automatically.

122

,GLabel can efficiently minimize the loss without any knowledge about the number of labels for tickets. Optimizing varying loss: GLabel can efficiently minimize the loss without any knowledge about the number of

labels for tickets.

123

Domain Knowledge Integration

124

Domain Knowledge Integration (Kilo based on sum-product)

Prior knowledge on given node is propagated
to its linked nodes.

125

Domain Knowledge Integration Experiment over ticket data:The more prior knowledge leads to more accurate

result and smaller loss.

• Ticket Classification

• Ticket Resolution Recommendation

• Ticket Analysis (Knowledge Extraction)

Outline

Ticket Resolution Recommendation (Tang et al., CNSM
2014; Zhou et al., IM 2015)

◎Repeated Resolutions of Event Tickets

• Figure 1: Number of tickets and unique resolution for each account

• Figure 2: Number of tickets solved by the top most common resolutions

• Conclusion: Similar tickets resolved by similar resolutions

Data Set # of tickets Time Frame

account1 31,447 1 month

account2 37,482 4 month

account3 29,057 5 month

Motivations

● Ticket resolving is very labor

intensive

● Problems occurred periodically

● Repeated resolutions exist in

historical tickets

Repeated Resolutions of Event Tickets

Data Set # of tickets Time Frame

account1 31,447 1 month

account2 37,482 4 month

account3 29,057 5 month

• Figure 1: Number of tickets and unique resolution for each

account

• Figure 2: Number of tickets solved by the top most common

resolutions

• Conclusion: Similar tickets resolved by similar resolutions

Related Work

• User-based Recommendation Algorithms

• Item-based Recommendation Algorithms

• Constraint-based Recommender Systems

• Multiple Objective Optimization…

Existing Solution

• Every historical ticket t has two parts. e(t) is

the symptom description, and r(t) is the

resolution attached to it.

• Incoming ticket only has e(t) i.e., the

symptom description

• User-based Top-K Recommendation (L.

Tang et al., 2013)

Challenges

• How to measure the similarity

between incoming ticket and all

historical tickets ?

Challenges

● Given a ticket, how to encode it and represent it ?
○ is every attribute in tickets informative ?

○ How to featurize a ticket ?

● Given two tickets, how to measure their similarity ?
○ Tickets might be quite noisy

○ Ticket might be literally different but semantically similar

T1: The logic disk has a low amount of space

T2: The percent of available space in the file

system is 10 percent.

Prelminary work (Zhou , Tang, Zeng, Li, Shwartz, & Grabarnik, TNSM 2016)

Basic similarity measurement based on attribute level features

Basic similarity measurement based on topic level features

training
• Inference topic level feature

vectors

• Apply cosine similarity

Incorporating Resolutions

Implementation

training

• Inference topic level

feature vectors

• Apply cosine similarity

Feature differences

Topic ID keywords

14 server wsfpp1 lppza0 lppzi0 nalac application

30 server hung condition responding application apps

Metric Learning

local neighborhood

cosine similarity adjusted similarity

Metric learning

similar tickets

dissimilar tickets

dissimilar tickets

Metric Learning

Implementation

topic level
feature vector
for ticket j

Manually
categorized label
for ticket j

Minimize this objective
function, get projection
matrix A for similarity
calculation adjustment

• Ticket Classification

• Ticket Resolution Recommendation

• Ticket Analysis (Knowledge Extraction)

Outline

Transitioning from practitioner-driven technology-assisted to technology-driven

and practitioner-assisted delivery of services

• Enterprises and service providers are increasingly challenged with improving the quality of service

delivery

• The increasing complexity of IT environments dictates the usage of intelligent automation driven by

cognitive technologies, aiming at providing higher quality and more complex services.

• Software monitoring systems are designed to actively collect and signal anomalous behavior and,

when necessary, automatically generate incident tickets.

• Solving these IT tickets is frequently a very labor-intensive process.

• Full automation of these service management processes are needed to target an ultimate goal of

maintaining the highest possible quality of IT services. Which is hard!

Background

• Monitoring system: emits an event if anomalous

behavior persists beyond a predefined duration.

• Event Management system: determines whether

to create an incident ticket.

• IPC (Incident/Problem/Change) System: record

keeping system that collects the tickets and

stored them for tracking and auditing purposes.

• System Administrators (SAs): performs problem

determination, diagnosis, and resolution.

• Enrichment Engine: uses various data mining

techniques to create, maintain and apply insights

generated from a knowledge base to assist in

resolution of an incident ideally with an

automation.

• This research focuses on Enrichment engine
The overview of IT service management workflow.

Motivation

A ticket in IT service management and its corresponding

resolution are given.

 Structured fields:
often inaccurate or incomplete

especially information which is not

generated by monitoring systems

Unstructured text:
written by system administrators in natural

language. Potential knowledge includes:

1. What happened? Problem

2. What troubleshooting was done?

Activity

3. What was the resolution? Action

Challenge

• Challenge 1: Even in cases where the structured fields of a ticket are properly set, they either

have small coverage or do not distinguish tickets well, and hence they contribute little information

to the problem resolution

• Challenge 2: The ambiguity brought by the free-form text in both ticket summary and resolution

poses difficulty in problem inference, although more descriptive information is provided

Ticket distribution with structure fields.

System Overview

An overview of the integrated framework.

• Our proposed integrated framework consists of

three stages:

（1）Phrase Extraction Stage

(a) Phrase Composition and Initial Summary Analysis

Component

 (b) Phrase Refining Component

（2）Knowledge Construction Stage

（3）Ticket Resolution Stage

Phrase Extraction Stage

• In this stage, our framework finds important domain-specific

words and phrases (‘kernel’).

• Constructing domain-specific dictionary

• Mining the repeated words and phrases from unstructured

text field.

• Refining these repeated phrases by diverse criteria filters

(e.g., length, frequency, etc.).

Phrase Composition and Initial Summary Analysis

• Use StanfordNLPAnnotator for preprocessing ticket data.

• Build a domain dictionary by using Word-Level LZW compression algorithm.

• Calculate the frequency of the repeated phrases in tickets data by using Aho-Corasick

algorithm.

History tickets data

Hot Phrases
Patten + Frequence

Repeated pattern extraction and frequency estimation.

Phrase Composition and Initial Summary Analysis

• Word-Level Lempel-Ziv-Welch (WLZW)

• Seeks the trade-off between completeness and efficiency and attempts to find the

longest n-gram with a repeated prefix

• Time complexity: O(n)

• Aho-Corasick algorithm

• Locate all occurrences of any of a finite number of keywords in a string of text.

• Consists of constructing a finite state pattern matching machine from the keywords and

then using the pattern matching machine processing the text string in a single pass.

• Time complexity: O(n).

Phrase Composition and Initial Summary Analysis

An example of a finite state string pattern matching machine.

• Assume we have a dictionary D

composing {

“job failed due to plc issue,”

“job failed due to database deadlock,”

“job failed due to sql error,”

“database connectivity,”

“sql server v7.5,” “sql server v8,”

“sql server memory”

}.

• AC algorithm first constructs finite State Automaton for dictionary using a Trie.

• And then estimates the frequency of the phrases in the dictionary for a single pass.

Phrases Refining

In this stage, we apply two filters to the extracted repeated phrases

allowing the omission of non-informative phrases.

• Phrase Length & Frequency Filters (length > 20 & frequency >= 10)

• Part-Of-Speech Filter

Applied Filter Left Phrases

Frequency Filter >= 10 1117 items

Length Filter > 20 613 items

PoSTag Filter 323 items

Table III: Result of Frequency/Length Filter and PoSTag Filter.

Knowledge Construction Stage

• In this stage, we first develop an ontology model, and then tag all the phrases of the generated

dictionary with the defined classes.

• Build the ontology model

• Define classes

• Define relations

• Knowledge Archive

• Manually tag the important

• phrases in the dictionary with

• their most relevant defined classes.

Figure 9: Ontology model depicting interactions among classes.

150

Knowledge Construction Stage

• Initial Domain Knowledge Base:

Class Number of Tagged Phrases

Entity 628 items

Activity 243 items

Action 24 items

Problem Condition 22 items

SupportTeam 76 items

Ticket Resolution Stage

The goal of this stage is to recommend operational phrases for an incoming ticket.

• Information Inference component:

• Class Tagger Module processes incoming ticket tickets in three steps.

• (1) tokenize the input into sentences;

• (2) construct a Trie by using ontology domain dictionary;

• (3) find the longest matching phrases of each sentence using the Trie and

 knowledge base, then map them onto the corresponding ontology classes

• Define Concept Patterns for Inference: concept patterns based on Problem, Activity and

Action concepts:

1. Problem describes an entity in negative condition or state.

2. Activity denotes the diagnostic steps on an entity.

3. Action represents the fixing operation on an entity.

Ticket Resolution Stage

• Problem, Activity and Action Extraction:

• 1. Class Tagger module tokenizes the input into sentences and outputs a list of

tagged phrases.

• 2. We decide whether it is an informative snippet or not by checking if it exists in a

Problem-Condition/Action list.

• 3. The phrase is appended to the dictionary as a key, and all its related entities are

added as the corresponding values via a neighborhood search. Each of the three

key concepts has its own dictionary.

• Finally, we obtain the problem, activity, and action inferences.

Ticket Resolution Stage

• The goal of this stage is to recommend operational phrases for an incoming ticket.
• Ontology-based Resolution Recommendation component

• Previous study, the KNN-based algorithm will be used to recommend the historical

tickets’ resolution to the incoming ticket which have the top summary similarity scores.

• Jaccard similarity performs poorly due to noisy text (many non-informative words): two

tickets describes the same issue

• Ontology model can greatly facilitates our resolution recommendation task by better

capturing the similarity between ticket summaries.

Experiment

• Dataset

• Experimental tickets are collected from real production servers of IBM Cloud Monitoring system

covers three month time period containing |D| = 22,423 tickets.

• Training data: 90% of total tickets

• Testing data: 10% of total tickets

• Evaluation Metrics

• Precision, Recall, F1 score and Accuracy.

• Accuracy = (TP + TN)/(TP + TN + FP + FN)

• Precision = TP/(TP + FP) Recall = TP/(TP + FN)

• F1 score = 2 Precision Recall / (Precision + Recall)

155

Experiment

• Ground Truth

• Domain experts manually find and tag all phrases instances into six predefined classes in

testing dataset.

• Evaluate our integrated system

• Class Tagger is applied to testing tickets to produce tagged phrases with predefined

classes. Comparing the tagged phrases with ground truth, we obtain the performance.

Evaluation of our integrated system.

Experiment

• Evaluate Information Inference

• Usability: we evaluate the average accuracy to be 95.5%, 92.3%, and 86.2% for

Problem, Activity, and Action respectively.

• Readability: we measure the time cost. Domain expert can be quicker to identity

the Problem, Activity and Action which output from the Information Inference

component from 50 randomly selected tickets.

Introduction and Overview

Contents

1

 Event Generation and System
Monitoring

2

Pattern Discovery and
Summarization

3

 Conclusions 5

 Mining with Events and Tickets 4

159

Monitoring is the fundamental systems management operation
Needs to be optimized to meet quality expectations without expending excessive

labor in managed environments
• Generically set monitoring situations and thresholds generate excessive alerts driving excessive

consumption of labor

• Impact can be exacerbated with auto-ticketing if not properly handled

• Adversely skews attention towards large volume of tickets instead of focusing on improvements –

client value opportunity

–Initial study of sample accounts with automated ticketing shows that*:

• 20-30% of Incident tickets are False Positives (tickets not requiring an immediate

corrective action)

• 10 - 15% of Labor relates to incident management

15

9

Account
% of monitoring tickets for
the account

% of false positives tickets for
the account

Accout_id_1 69.5% 21.0%

Accout_id_2 35.1% 6.7%

Accout_id_3 67.2% 27.7

Accout_id_4 90.0% 33.5%

Accout_id_5 40.3% Many resolutions are blank:2.4%

* ROM analysis suggests that for a medium to large service provider the opportunity is in mil$

9628	

6212	

0	

2000	

4000	

6000	

8000	

10000	

12000	

Before	 A er	

N
u
m
b
e
r	
o
f	
A
le
rt
s	
d
a
il
y
	f
o
r	
IG
A
	o
v
e
ra
ll
	

Changes	to	Monitoring	Situa ons	

Before	

A er	

Identification of complex or correlated event

160

Suggested rule as

combination of alerts

By Server

By 15 min Cluster

Detail of a sample 15

min Cluster

KPI “Correlation

Opportunity” to

track progress

% of tickets that can

be reduced by

implementing

generic correlation

rules for given

account

Benefit of Correlation Rules: significant QoS increase, reduction in ticket volume upto 30%

Cognitive Solution Designer

Cognitive Services Optimizer

Automated Services Manager

Client Insight Dashboards

 Data Lake

 Watson

ITaaS Environment

Business Solutions

Composable Services

Brokerage

Orchestration

Traditional IT Private Cloud Public Cloud

Cognitive IT Services Delivery Platform

•Next generation of easily consumed cognitive infrastructure services are basis for an open, standards-based,

and integrated platform

•Continuously expanding the platform with additional cognitive and automation capabilities using

• operational data, historical and real-time,

• curated operational data, e.g. reports or insights derived from raw data and stored within the lake,

• automation content, patterns,

• knowledge, e.g. solutions, offering, reference architecture, cartridges, ontologies,

• user interaction, e.g. usage, feedback, customer satisfaction,

• meta data, e.g. data catalogues, taxonomies, classifiers, rules

What Log/Event Analysis Can Do I

• Proactively monitors system resources to detect potential problems and automatically

respond to events.

– By identifying issues early, it enables rapid fixes before users notice any

difference in performance.

• Provides dynamic thresholding and performance analytics to improve incident

avoidance.

– This ‘early warning’ system allows you to start working on an incident before it

impacts users, business applications or business services.

• Improves availability and mean-to-time recovery with quick incident visualization and

historical look for fast incident research.

– You can identify and take action on a performance or service interruption in

minutes rather than hours.

What Log/Event Analysis Can Do II

• Collects data you can use to drive timely performance and capacity planning activities

to avoid outages from resource over-utilization.

– The software monitors, alerts and reports on future capacity bottlenecks.

• Facilitates system monitoring with a common, flexible and intuitive browser interface

and customizable workspaces.

– Can include an easy-to-use data warehouse and advanced reporting capabilities..

Looking Forward

• Real-time requirements

• Failure prediction

• Incorporation domain knowledge with mining results

• Integration of different types of information

• From systems to networks and devices

• Limited labeled data

• Interpretation and Transparency

Acknowledgements

• Funding

– National Science Foundation

– IBM Research

– Simons Foundation

• Ph.D. Students working on Log/Event/Ticket mining

– Dr. Wei Peng (Google)

– Dr. Yexi Jiang (Facebook)

– Dr. Liang Tang (LinkedIn)

– Dr. Chao Shen (Amazon)

– Dr. Chunqiu Zeng (Google)

– Wubai Zhou (FIU)

– Qing Wang (FIU)

Thank you!

Email: taoli@cs.fiu.edu

 lshwart@us.ibm.com

 grabarng@stjohns.edu

All the slides and references can be found at

http://www.cs.fiu.edu/~taoli/event-mining

