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● IT Service Management (ITSM) refers to the 

entirety of activities that are performed to plan, 

deliver, operate and control IT services offered 

to customers. 
 

 

 

● ITSM grows in popularity over the last 30 years.  

Many ITSM products are booming from different 

companies. 
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 Service Management 

ITSM Deliver Control 

Operate 

Plan 



IT Service Background 

The typical workflow of IT service 

mainly includes four components (Tang  et 

al., CNSM 2012; Tang et al., KDD 2013): 

• Customer Servers 

• Event DB 

• Ticketing System 

• System Administrators 
 



How IT Service Works? 
Checking (periodically):  
If disk_name == “C:” and  disk_free < 5%  

If CPU_util > 80% and duration > 20 minutes 

…. 
Store and Explore Events, OLAP, 

Automatically Generate Incident Tickets 

Track Incident Tickets 

Fix Problems  

in Incident Tickets 



A typical workflow of IT Service Management involves an appropriate 

mix of people, process, information and technology.  
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The Workflow:Data Perspective 

1.Hundreds of time series  

2.Hundreds of  event types  

3.Hundreds of categories 

4.Millions of instances over time 

labor-intensive 

Problem 

Determination 
Problem 

Diagnosis 

Problem 

Resolution 
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Optimization with tickets, events and system stats data 

Problem 

Determination 
Problem 

Diagnosis 

Problem 

Resolution 

Data 

labor-intensive 



Maximal automation  

of  

routine IT maintenance procedures 
is one of ultimate goals of IT 

service management optimization 



1.0 

Simple 

Processing 

2.0 

Distributed 

Processing  

3.0 

Service 

Suites 

4.0 

Intelligent 

Service 

Platform 

        Different Phases of IT Service Management 

Data Processing Perspective  



 data size is relatively small: MB/GB  

 

 

 Using testing tools（ping，traceroute，SNMP，tcpdump）or monitoring 

tools (e.g., Zabbix) 

 

 problem identification、problem localization、 problem resolution，  

Phase 1.0  



◎Keyword search: error, fatal 

 

 

 

 

 

 

 

 

 

 

◎Cmds: head, tail, grep, cut, etc. 

◎Scripts: awk, Perl 

Manual analysis 



 Massive data size: TB/PB  

 

 Distributed processing techniques / platforms  

 

 Four steps of data processing:   

Phase 2.0  

Data Storage 

HDFS，NoSQL  

Relational Database 

 
Data Visualization  

BIRT，Zeppelin 

Data Collection 
Apache Chukwa，Facebook Scribe，

Cloudera Flume，Fluentd  

Data Analysis 

Hadoop MapReduce、Spark、

Storm、Spark Streaming  

1 

4 3 
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Phase 3.0 

 Big data processing suites 

 

 

 

 

 

 



Phase 4.0 

 Add more intelligent techniques (AI, Machine Learning and Data 
Mining Techniques) on top of the existing suites 

 

Natural Language 

Processing 

Big Data 

Mining 

Machine 

Learning 

Efficient Analysis 

Algorithms 

   



Overview of Research Problems： Workflow 

Monitoring Configuration Optimization 

• Reduce False positive (false alerts)   

• Reduce False negative (missed alerts)    

System Incidents Diagnosis  

• Temporal Pattern Discovery  

• Event Correlation 

• Automatic Resolution Recommendation 

• Problem Diagnosis 

• Problem determination and resolution 

• Root Cause Analysis 

• Failure Prediction and Avoidance 

Convert Raw Textual Logs into System Events 
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Overview of Research Problems 

Problem Determination 

Problem Resolution 

Problem Diagnosis 

Assign 

(1) Ticket classification with problem 

category 

1. Hierarchy multi-label  classification 

2. Domain knowledge integration 

(2) Temporal pattern mining from 

events 

1. From logs to events 

2. Fluctuating time lag modeling 

3. Efficient pattern mining method 

(3) Temporal dependency discovery from 

system stats 

1. Granger causality inference 

2. Online inference for time varying temporal 

dependency  

(4) Monitoring Configuration 

Optimization 

 

1. Reduce False positive (false alerts) 

2. Reduce False negative (missed alerts) 

(5) Ticket recommendation 
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Outline 

Monitoring Configuration Optimization 

• Reduce False positive (false alerts)   

• Reduce False negative (missed alerts)    

System Incidents Diagnosis  

• Temporal Pattern Discovery  

• Event Correlation 

• Automatic Resolution Recommendation 

• Problem Diagnosis 

• Problem determination and resolution 

• Root Cause Analysis 

• Failure Prediction and Avoidance 

Convert Raw Textual Logs into System Events 

   



Why Convert Textual Logs to System Events? 

System events are easier to analyze 

other textual logs. 

Converting log messages to events provides the capability of canonically describing the semantics 

of log data and improves the ability of correlating across the logs from multiple components. 

 



Event Generation from Textual or Semi-

structure Logs:  Possible Solutions 

• Log Parser (W. Xu et al., 2008)  
– Requires the understanding of  all log messages.  

– Document or Source code are not available.  

– Implementation is time consuming. 

 

• Information Extraction (Supervised): 
– Conditional Random Field. 

 

• Clustering Based Methods (Unsupervised): 

– Bag-of-Word model 
• cosine similarity, Jaccard Index… 

 

– Log message matching (M. Aharon et al., 2009; A. Makanju et al, 2009) 
• Number of matched words in strings. 

• Edit distance of messages. 
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Clustering-based Methods 

 Goal: categorize textual or semi-structured system logs into system events. 

21 

Solution1: utilizing a context-free grammar parser to 

help text clustering 

Solution2: extracting the message signature to 

do message clustering 

(Liang Tang and Tao Li, IEEE ICDM 2010) 

(Liang Tang and Tao Li, ACM CIKM 2011) 



Tree-Structure based Clustering 

Basic Idea 

1) Convert the log messages into tree-structured data, 

where each node is a segment of message. 

 

2) Do clustering based on tree-structured data. 



Step 1:  Convert into semi-structural log messages 

( log tree).  

  

      

      

       

  

It is only a context-free grammar parser. 
It separates log message by comma, TAB, etc. 
It does NOT identify the meaning of terms (words). 
It can be automatically created by JLex and JCup (or JAVACC) tools. 



Step 2: Do clustering with Tree-based similarity 

function 
Each log message is a tree. Similarity of two log messages is computed as the similarity of two 

trees. Root node of s1 Root node of s2 

Message Segment at node v1 Message Segment at node v2 

Best matching between subtree v1’s nodes with subtree v2’s nodes 

Decrease weight for lower layer 

𝜆< 1 
 



Message Signature Based Clustering 

[Thu Apr 01 00:07:31 2010] [error] [client 131.94.104.150] File does not exist: 

/opt/website/sites/users.cs.fiu.edu/data/favicon.ico 

 

[Thu Apr 01 03:47:47 2010] [crit] [client 61.135.249.68] (13)Permission denied: 

/home/public_html/ke/.htaccess pcfg_openfile: unable to check htaccess file, ensure it is 

readable 

 

[Thu Apr 01 01:41:18 2010] [error] [client 66.249.65.17] Premature end of script headers: 

preferences.pl 

 

[Thu Apr 01 01:44:43 2010] [error] [client 207.46.13.87] File does not exist: /home/bear-

011/users/giri/public_html/teach/6936/F03 

 

File does 
not exist 

Permission 
denied 

Bad script 

Message signature is the signature of the template. 

 

One type of log messages is generated by one template with different parameters. 

Message signature 

Each log message consists of a sequence of terms.  
•    Some of the terms are variables or parameters for a system event, 

 such as the host name, the user name, IP address, and so on.  
• Other terms are plain text words describing semantic information of the event. 



Message Signature based Clustering 

• Problem: Find k most representative message signatures. 

• Question: How to quantify the “representativeness” ?  

• Definition: 

– Given a message X and a message signature S, the match score is the number of matched terms 

minus the number of unmatched terms. 

– match(X,S)  = |LCS(X,S)| - (|S| - |LCS(X,S)|) =2|LCS(X,S)|- |S|, LCS=Longest Common 

Subsequence. 

• Example: 
– X=“abcdef”, S=“axcey”,   match(X,S)=|ace| - |xy| = 1 

 



Problem Definition 

Given a set of log messages D and an integer k, find k message signature S = 

{S1,…,Sk} and a k-partition C1,…,Ck of D to maximize: 

  

 

Problem Analysis: 

• Similar to k-means problem, but NOT really. 

• Finding the Optimal Solution is NP-Hard, even if k=1. 

– Multiple Longest Common Subsequence Problem can be reduced to our problem.  



Outline 

Monitoring Configuration Optimization 
• Reduce False positive (false alerts)   
• Reduce False negative (missed alerts)    

System Incidents Diagnosis  
• Temporal Pattern Discovery  
• Event Correlation 
• Automatic Resolution Recommendation 
• Problem Diagnosis 
• Problem determination and resolution 
• Root Cause Analysis 
• Failure Prediction and Avoidance 

Convert Raw Textual Logs into System Events 
   



What is False Positive (False Alarm)? 

• If PROCESS_CPU_UTILIZATION > 50% and duration > 10 minutes, then 

generates a CPU alert  

– “rtvscan.exe” scans the system periodically, it is CPU intensive but it is normal, so it 

triggers a lot of false positives (false alerts). 

 

• If PAGING_UTILIZATION_15min > 400, then generate a paging alert (default 

situation in IBM Tivoli monitoring) 

– Some customer servers have multiple CPU and huge memories. For those multi-CPU 

servers, it is normal for page swapping over thousands of times in 15 minutes.    

 



Why We Have False Positives? 
• Too Conservative Configurations 

– Missing a real alert would incur system crash, data loss. 

• Changes of Monitored Servers 

– New servers and more powerful device are installed. 

• Transient Alerts: 

– Temporal CPU, Paging, Disk Spike.  

– Restart of servers, processes, services, routers… IBM Tivoli Monitoring 

Complicated configurations for IBM Tivoli 

monitoring 



Problem Statement & Challenge 

• Problem Statement 

– Eliminate false positives by refining the Monitoring 

configurations 

 

• Challenge 

– Retain all real alerts. No real alert is allowed to miss. 

 



Related Work 

• Monitoring Products 

– IBM Tivoli, HP OpenView, Splunk 

 

• System Alert Detection 

– Heuristic Methods (codebook…). 

– Supervised Learning Methods 
• Outlier Detection (S. Agrawal et al., 2007, K. Xu et al., 2005) 

• Adaptive threshold (S.R. Kashyap et al., 2008) 

– Supervised Learning Methods (classification). 

 However, they do not guarantee NO real alert is missed. 



Motivation of Eliminating False Positives 

• Most false positives are transient alerts and automatically 

disappear in a short time. 

Some transient alerts may be indications of future real alerts and may be useful. But if those real alerts rise later 
on, the monitoring system will detect them even if the transient alerts were ignored.  

Most false alerts are transient alerts.  



Workflow 

Gather incident information

and create event

Create ticket

Predict it is 
“False”?

Wait
Is this alert 

cleared?

Yes Yes Remove 

this event

NoNo

Abnormal system 

Incident Most false positive alerts are 

transient alerts ( automatically  

disappear in a short time). 

Waiting time is the maximum duration of covered false 
positives 



Implementation and Deployment 

• The rules generated by a classifier can be directly translated into monitoring 

situations: 

– If PROC_CPU_TIME > 50% and PROC_NAME = ‘Rtvscan’, then it is false. 

 

 

• Waiting time is the polling interval of a monitoring situation. 

 

Predictor 

Waiting Time 



Offline Evaluation on Historical Data 
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Online Evaluation  

October 2011 November 2011 Januray 2012

False Tickets 6217 5536 4901

Real Tickets 5639 5605 5524
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A large financial company. 

An internal account in IBM. 



What is False Negative (Missed Alert) ? 

• False negatives are the missed alerts by the monitoring system. 

 

• False negatives are usually captured by human (customers, 

helpdesk, system administrators). 

 

• False negatives are not recorded in monitoring events, but only in 

manual tickets. 



Why We Have False Negatives? 

• New devices and software are installed, but are not added into the monitoring 

configurations 

 
• Other changes for existing systems. Some thresholds may not be acceptable 

after changes. 



About False Negative 

• How to eliminate false negatives (missed alerts)? 
– False negative are quite few (less than 20-40 tickets for a situation).  

– No need an automatic approach to correct the misconfiguration.  

 

 

• False negatives are missed alerts. Where can we find them? 
– Manual Tickets (captured by human).  

– However, manual tickets contain other kinds of tickets, such as customer 
request. 

 

Automatically identify related manual tickets and then refine the configuration 

 



Problem Statement 

• Eliminate false negatives by refining the monitoring 

configurations 

 

• It consists of two parts: 

– Scan the historical manual tickets and provide a short list of 

potential false negatives to the monitoring team  (automatically) 

 

– Change or add monitoring situations  (manually) 

 

 



Related Work 

• Reduce False Negative 

– Focus on improving the accuracy of the monitoring  

 

– No prior work is based on discovery of false negatives (Because false negatives are 

missed alerts. There is no data record for tracking them). 

 

• Text classification 

– Class label “1”: a missed alert; class label “0”: other issues, such as customer request. 

Features are the words in the ticket description. 

– Imbalanced classification: Cost-sensitive and over-sampling.  

 

 

 

 



Two-Stage Text Classification 

• A simple classification to rank all tickets based on their confidence of being false 

negative. 

– a simple word match algorithm based on given domain words (labeled features)  

 

 

 

 

 
• Only select top ranked tickets for labeling and training and build the final text classifier. 

– Build a binary SVM classifier. 

Avoid labeling all tickets and save the labeling cost. 



A Case Study 

Situation Ticket 

dsp_3ntc_std Please clear space from E drive xxxx-fa-ntfwwfdb Please clear space from E drive xxxx-fa-ntfwwfdb.it 

is having 2 MB free... 

fss_rlzc_std /opt file system is is almost full on xxx Hi Team@/opt file system is almost full. Please clear some 

space /home/dbasso>df -h 

/optFilesystem... 

svc_3ntc_std RFS101681 E2 Frontier all RecAdmin services are down Frontier RecAdmin services are not running 

on the batch server Kindly logon to the server 

: xxx.xxx.155.183/xxx ... 

… … 

Discovered False Negatives (Missed alerts) 

I will add these devices into Tivoli monitoring 
configuration. 

System AdministratorSystem Administrator



Optimizing Monitoring Configurations based on Events and Tickets  

46 

(Liang Tang, Tao Li et. al, IEEE/IFIP NOMS 2012) 

(1) CPU_UTIL > 80% and PROCESS_NAME = ‘Rtvscan.exe’ , Duration = 
15 minutes 

  
(2) CPU_UTIL > 80% and PROCESS_NAME <>‘Rtvscan.exe’ , Duration = 1 
minute 

       CPU_UTIL> 80%, Duration = 1 minute 

Optimize 

false positive 

(Liang Tang, Tao Li et. al, CNSM 2013) 

Situation Ticket 

dsp_3ntc_std Please clear space from E drive xxxx-fa-ntfwwfdb Please 

clear space from E drive xxxx-fa-ntfwwfdb.it is having 2 MB 

free... 

fss_rlzc_std /opt file system is is almost full on xxx Hi Team@/opt file 

system is almost full. Please clear some space 

/home/dbasso>df -h 

/optFilesystem... 

svc_3ntc_std RFS101681 E2 Frontier all RecAdmin services are down 

Frontier RecAdmin services are not running on the batch 

server Kindly logon to the server 

: xxx.xxx.155.183/xxx ... 

… … 

I will add these devices into 
Tivoli monitoring 
configuration. 

System AdministratorSystem AdministratorOctober 2011 November 2011 Januray 2012

False Tickets 6217 5536 4901

Real Tickets 5639 5605 5524
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• History on Event Mining 

• Overview of Temporal Patterns 

• Mining Time Lags 

– Non-parametric Methods 

– Parametric Methods 

• Event Summarization 

• Temporal Dependency  

 

Outline 



History of issue and some apps 

• Issue: complex cross platform, multiple applications working 
together, how to insure everything is working proper? 

• Approach: 
– Consider system footprint of each component by querying system 

– Consider subcomponents and query subcomponents on working conditions 

– Evaluate subcomponent logs on status of components  

– Consider customer complains (tickets) 

• The first two have unified monitoring solution 

• Logs, tickets should be “preprocessed” for analysis 

• Start with ‘visualization’ of logs, tickets 

• Use unsupervised learning to deal with large volumes of information 

 

• Information generated by systems are events - have timestamp of 
occurrence 

– Rarely interdependent events has clear transaction like start and end 

– Mainly has vague ‘time of start’ and ‘time of end’ 



Events IDA (Interactive Data Analysis) 
• EventBrowser, a few versions,  

– Started by S. Ma (Google), J. Hellerstein (?,UW), Visual C++ 

– Features: In memory events storage, interactive query building, 
visualization, 3 views 

– Next version: Re-implemented on top of visualization framework, 
over 20 different views 

• Diamond by D. Rabenhorst (?), added rich visualization, better column 
base in memory storage, extended querying (including color based) 
capability,  

• D. Taylor (UWaterloo) added visual querying    graphics->SQL-
>Diamond API->modified view; 

• Good for initial intuition development 

• Issues typical for IDA,  

– low throughput,  

– inconsistent by different people usage 

 

 



Event Mining 

• A number of events patterns was 

suggested, showing need to 

proceed  

• To overcome IDA limitation used 

combined method: Build tool 

providing both IDA and Data 

Mining capabilities 

• Event Miner was built 

(GG+S.Ma) on top of Diamond 

Framework, integrated data 

mining (frequent datasets, 

others) with visualization, round 

trip patterns search etc. 

• Helped identify 20++ patterns 

types 
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Pattern Discovery I  
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Pattern Discovery II  

 



Data Feed from Logs 
• Capability of Event Miner allowed to process large 

amount of data 

• By hand processing of logs was not sufficient 

anymore 

• To provide appropriate feed and partially automate 

process Generic Log Adapter (GG, SM, AS (IBM) 

BS(Microsoft), with contr. CP(Google) was built  

• Used inverse of control on top of piping 

architecture to provide extensible framework 

• Eclipse based GUI for interactive log pattern 

development  

• Was able to semi-automate log processing of many 

applications/components  

• Contributed to Eclipse foundation TFTP framework 

• Back to Event Mining 



• History on Event Mining 

• Overview of Temporal Patterns 

• Mining Time Lags 

– Non-parametric Methods 

– Parametric Methods 

• Event Summarization 

• Temporal Dependency  

 

Outline 



Mining Event Relationships 
• Temporal Patterns (of System Events) 

– Wish: A sequence of symptom events providing a signature for identifying the root 
cause 

– Less ambition: ‘repeating’ (sub)sequences of events    

•  Host Restart:  “host is down” followed by “host is up” in about 10 seconds 

•  Failure Propagation: “a link is cut” “connection loss”  “lost connection”  “application 
terminated unexpectedly”  

• Examples of Temporal Dependency 

 

 

 

 

 
• Disk_Capacity ⟶ [5min,6min] Database, [5min, 6min] is the lag interval. 

• Reflects hidden process, here may be database inserts/updates, expect normality here 

 

 

3 5 7 8 9 13 1715
Timestamp

(Minutes):

Disk_Capactiy

Database

A

B B

A A

BB

665

C C CC CApp_Heartbeat C

A

B

5

23

C C C C C C C C CC

11

B



Issues in Temporal Data Mining  
• Temporal correlation of events 

–  Previous work 
• Concept of transactions 

• Fix Time Sliding Window schemes 

– Problems  
• Size of windows 

• Can not mine temporal relationships longer than the window size,  

• time window varies with pattern  

• In our experiments, time distances range from one second to one day 

– Approach: distance methods 

• Characteristics of interesting patterns  

– Previous work: Frequent patterns  -- (normal operations) 

– Problems 
• Infrequent, but significant patterns -- (service disruptions) 

• Noisy environments 

• Time dimension 

–  Approach: statistical dependency of inter-arrival times 

[Li et al., KDD 2004; Peng et al, KDD 2007; Zeng et al., 2015] 

 

0 Time 

a a a 
b b b 

c c 

d d d 



• History on Event Mining 

• Overview of Temporal Patterns 

• Mining Time Lags 

– Non-parametric Methods 

– Parametric Methods 

• Event Summarization 

• Temporal Dependency  

 

Outline 



 The dependency between events helps for problem diagnosis 

 Time lag plays an important role in predicting the incoming events and the 

evolving trends of systems’ behavior. 

Time Lag 



Preliminary Work 

• Predefine the lag interval (H. Mannila et al., 1997) 

• No interleaved dependency (T. Li et al., 2005, K. Bouandas et al., 2007) 

 

Disk_Capacity ⟶ [5min,6min] Database, [5min, 6min] is the lag interval. 

 

Example of disambiguation issue: Which B event depends on the first A event? 

3 5 7 8 9 13 1715
Timestamp

(Minutes):

Disk_Capactiy

Database
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B B
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Relation with Other Temporal Patterns 

Mutually

Dependent

{A,B}

Partial Periodic A with periodic p and 

time tolerance δ

Frequent Episode A->B->C

Loose Temporal B follows A before t

Stringent Temporal B follows A about t

 , ABBA tt ],0[],0[ 

AA pp ],[  

 , CBBA tt ],0[],0[ 

 BA t ],0[

 BA tt ],[  

Those temporal patterns can be seen as the temporal dependency with particular constraints on the 

time lag. 



Challenges for Finding Time Lag 

• Given a temporal dependency, A⟶[t1,t2]B, what kind of lag interval 

[t1,t2] we want to find? 

– If the lag interval is too large, every A and every B would be “dependent”. 

– If the lag interval is too small, real dependent A and B might not be captured. 

 

• Time complexity is too high. 

– A⟶[t1,t2]B, t1 and t2 can be any distance of any two time stamps.  There are 

O(n4) possible lag intervals. 

 



What is a Qualified Lag Interval 

 If [t1,t2] is qualified, we should observe many occurrences for A⟶[t1,t2]B.  

3 5 7 8 9 13 1715
Timestamp

(Minutes):

Disk_Capactiy

Database

A

B B

A A

BB

C C CC CApp_Heartbeat C

A

B

23

C C C C C C C C CC

11

B

Length of the lag interval is larger, the number of occurrences also becomes larger. 

Lag Interval Number of Occurrences 

[0,1] 3 

[5,6] 4 

[0,6] 4 

[0,+∞] 4 



What is a Qualified Lag Interval 

 Intuition (Statistical Testing): 

 If A and B are randomly and independently distributed, how many occurrences observed in a time 

interval [t1,t2]?  

 What is the minimum number of occurrences (threshold)? 

 Consider the number of occurrences in a lag interval to be a variable, nr. Then, use the chi-square test 

to judge whether it is caused by randomness or not? 

The number of As 
Total time length of the 

event sequence 
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Naive Algorithm for Finding Qualified Lag 

Intervals 
 

• (Brute-Force) Algorithm: For A⟶[t1,t2]B, for every possible t1 and t2, scan the event 

sequence and count the number of occurrences.   

• Time Complexity 

– The number of distinct time stamps is O(n). 

– The number of possible t1 and t2 is O(n2) (building distribution of t1,t2, linear space).  

– The number of possible [t1,t2] is O(n4). 

– Each scan is O(n). The total cost is O(n4). 

• Cannot handle large event sequences. 



Discovering Lag Interval for Dependent 

Events 
(Liang Tang, Tao Li et. al, ACM SIGKDD 2012) 

Lag Interval Number of Occurrences 

[0,1] 3 

[5,6] 4 

[0,6] 4 

[0,+∞] 4 
3 5 7 8 9 13 1715

Timestamp

(Minutes):

Disk_Capactiy

Database
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B B
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C C C C C C C C CC

11
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Length of the lag interval is larger, the number of occurrences also  becomes larger. 

Dataset Discovered Dependencies 

Account1 MSG_Plat_APP ⟶[3600,3600] MSG_Plat_APP 

Linux_Process ⟶[0,96] Process 

SMP_CPU⟶[0,27] Linux_Process 

Account2 TEC_Error ⟶[0,1] Ticket_Retry 

TEC_Retry ⟶[0,1] Ticket_Error 

AIX_HW_ERROR⟶[8,9] AIX_HW_ERROR 

Two experimental data sets from IBM customer monitoring events 



 The interleaved temporal dependency makes difficult to correct mapping 
between two events 

 

  Noise leads to fluctuating time lag. 

 

Problem and Challenge 



  A parametric model to formulate the randomness of time lags between 

events. This model is capable of  

 providing insight into the correlation of events. 

 describing the distribution of time lags. 

Parametric Method 



Observation: Time Lag distribution for periodic event 



Given two events A and B, let μ be the true lag if A implies B. Then it can be 
denoted as: 

 

Time Lag Modeling 

Let ε be the noise. Then the time lag observed is modeled as a random 
variable L which comprises μ  and ε.  

 



Time Lag Modeling 

 We assume ε follows Gaussian distribution with variance σ2. 

 

 As the result, the time lag is modeled as L, which comprises μ  and ε, 
follows the Gaussian distribution. 

 



 Given two events A and B, our problem is reduced to learn the distribution of L. We need to determine: 

1.Parameter μ. 

2.Parameter σ2. 

Time Lag Mining 



➢Another problem is disambiguation, that there is no idea about which 
instance of event A implies a specific instance of event B. 

 

Problem Formulation 



Let SA and SB are the sequences of event A and event B respectively, a 
mixture model is proposed to formulate the log likelihood of the event data. 

 

 

The parameters can be learnt by maximizing the log likelihood. 

 

 

The problem can be solved with EM algorithm. 

 

Solution 



➢LagEM is an EM-based algorithm, which mainly involves two parts: Expectation and Maximization. 

1. Initialization 

2. Loop until converge 

1)  Expectation: 

 

2)  Maximization: 

Algorithm(LagEM) 

The time complexity is O(r*n*m), where r is the number of iterations, m and n are the numbers of event A and event B, 

respectively. 



➢Observation: the most possible bj ,which is implied by ai, should be around 
the  time  t=ai + u. The further bj deviates from t, the less probable it is.  

 

Solution improvement 



➢We only consider the most probable K pairs and neglect all others. 

➢Find the most possible time point and then search the possible time points by looking left and right until the 
proportion of the considered points exceeds 1-ε, where ε is very small, like 0.05.  

 

Approximation algorithm 



➢ Setup 

● Synthetic data: noise and true lags are incorporated into data. 

● Provided with ground truth, the experiment conducted on synthetic data allows us to demonstrate the effectiveness. 

● Provided with different numbers of synthetic events, it allows to illustrate the efficiency of our algorithm. 
 

➢ Real data:  data is collected from several IT outsourcing centers by IBM Tivoli monitoring system. 

● It shows that temporal dependencies with time lags can be discovered by running our proposed algorithm. 

● Detailed analysis demonstrates the effectiveness and usefulness of our method in practice. 

 

Experimental Result 



➢KL(Kullback-Leibler) divergence is used to measure the difference between the 
distribution of time lag given by the ground truth and the discovered result. 

● The KL divergence caused by appLagEM is almost as small as the one produced by LagEM 

 

 

Experiment on synthetic data 



➢The comparison of time cost over the synthetic data is shown. 

 

 

Experiment on synthetic data 

○ appLagEM is much more 
efficient than lagEM 

○ The larger the 𝜖 is, the less time 
appLagEM takes to find the 
optimal distribution of the time 
lags 

○ Algorithm appLagEM with 𝜖
=0.001 is about two orders of 
magnitude faster than lagEM  

 

 



 The experiment is conducted over two real data sets from the IT outsourcing centers by IBM Tivoli monitoring system. 

 

 

 

 

 

 Since there are large number of events in both two data sets, lagEM is infeasible. The algorithm appLagEM with 𝜖
=0.001 is used to mine the time lag of temporal dependency. 

 

➢ We Apply the metric signal-to-noise ratio to filter the dependencies discovered by appLagEM. 

 

 

➢ The Larger the SNR is, the less relative impact of noise to the expected time lags. 

Experiment on real data 



Experiment on real data 

 A snippet of interesting temporal patterns are highlighted in the below table. 

● It shows that our algorithm can find patterns with time lags of different scales. 

● The distributions of time lags present the confidence of the temporal dependencies. 

● The periodic patterns can be discovered by the proposed algorithm. 



oTEC_Error -->L Ticket_Retry, where L ~N(0.34,0.107178).  It indicates that the two events appear 

almost at the same time. In fact, TEC_Error is caused whenever the monitoring system fails to 
generate an incident ticket to the ticket system. And Ticket_Retry is raised when the monitoring 
system tries to generate the ticket again. 

oAIX_HW_Error -->L AIX_HW_Error, where L~N(10.92,0.98). It shows a periodic pattern with 10 

seconds. In real environment, the event AIX_HW_Error is raised when monitoring system polls an 
AIX server which is down, The failure to respond to the monitoring system leads to an event 
AIX_HW_Error almost every 10 seconds. 

 

Interesting temporal patterns are discovered by our algorithm. 



• History on Event Mining 

• Overview of Temporal Patterns 

• Mining Time Lags 

– Non-parametric Methods 

– Parametric Methods 

• Event Summarization 

• Temporal Dependency  

 

Outline 



Event Summarization - Introduction 

What is Event Summarization? 
The techniques that provide a concise interpretation of the seemingly 

chaotic data, so that domain experts can take actions upon the 
summarized models. 

Why summarize? 
Traditional data mining algorithms output too many patterns. 

Properties of event summarization 
● Brevity and accuracy 

● Global data description 

● Local pattern identification 

● Minimize number of parameters 



Existing Summarization Solutions 

● Summarize events with frequency change segments 

 

 

 

 

 

 

 

● Ignore temporal information within segments 

● All segments have the same boundaries 

● The generated summary is not easy to understand 



 

Solution 
● Summarize with temporal patterns./dynamics 

● —Modeling temporal patterns with interval 

histograms. 

● —Leverage MDL to balance accuracy and 

brevity. 

● Represent summarization result with ERN. 

workflow 

Event Summarization (Jiang et al., CIKM 2011) 



 



• Existing works focus on algorithmic solutions 

 

  

Multi-Resolution Event Summarization (Jiang et al., SDM  2014) 

• Event Summarization is a Repetitive Procedure 

 

 Different models have different parameters 

 Different users have different purposes 

 Different applications need to be summarized in different 

resolutions 

 Event logs need to be updated 

event log 

summary 

view 

kiernan et al. 2008 

A A 

B  B  B 

C  C   C 

A       A            A 

B         B        B 

               C 

A  

  B 

C   

Jiang et al.  

2011 

S1 S2 

A         A A A A        A    A A AA  

  B      B B B B       B     B B B B 

 C        C C C C     C     C C CC  

Wang et al. 2010 

• A  Multi-resolution Summarizaion Framework 

 10 Basic operators: Vectorize, Unvectorize, Encode, Decode, Prune, 

Concatenate, Project, Select, Zoom, Describe. 

 5 Tasks: Summarization, Storing, Recovering, Merging, and Updating 



Illustrative Example 



• History on Event Mining 

• Overview of Temporal Patterns 

• Mining Time Lags 

– Non-parametric Methods 

– Parametric Methods 

• Event Summarization 

• Temporal Dependency  

 

Outline 



➢System statistics is collected instantly as time series data. 

 

Problem and Challenge 



➢Temporal dependency is non-stationary. 

➢Online inference for time varying temporal dependency is challenging.  

 

Problem and Challenge 



➢Bayesian network modeling 

● Take each time series as a random variable. Conditional probability is 
used to model the correlation among time series  

 

➢Granger causality inference  

● If X can (Granger Causality) infer Y, then the past of X should 
significantly help predict the future of Y, comparing with  using the past 
of Y only.  

 

Existing  frameworks for temporal dependency discovery  



Lasso Granger 

Lasso Granger Method: learning regression model with L1 regulation.  

Let                                                 , the lasso regression for variable yj is given as follows, 

 

 

 

If the coefficient corresponding to yi,t-k is non-zero, it shows a Granger Causality between yi and yj. 



Online inference of Lasso Granger 

Regression with Lasso can be modeled with Bayesian Learning, refer to Bayesian Lasso.  

 

Online inference for Lasso Granger can be implemented by Bayesian Lasso. 

 

Posterior 
Knowledge 

Posterior 
Knowledge 

Prior 

Posterior 
Knowledge 

Prior Prior Prior 

t1 t2 t3 



Bayesian Lasso for Granger Causality 

Regression with Lasso can be modeled with Bayesian Learning, refer to Bayesian Lasso. Online 

inference for Lasso Granger can be implemented by Bayesian Lasso. 

 



Non-Stationary Granger Causality 

➢ L is the maximum time lag for VAR model. 

Temporal dependency structure changes over 

time. 

 

○ New dependency appears. 

○ Old dependency disappears. 

○ The strength of dependency changes 

○ Sparsity 

 

➢ The temporal structure is highly sparse. 

➢ Since patterns relatively short 



Proposed Time-Varying Bayesian Lasso 

Varying scales 

Varying direction:  

random walk 

Time Varying Component: 

Constant Component: 



Solution(particle learning) 



Baseline Algorithms: 
●BLR(q): Bayesian Linear Regression. 
●TVLR(q): Time Varying Bayesian Linear Regression. 
●BLasso(λ): Bayesian Lasso Regression. 
Our proposed algorithm: 
TVLasso(λ): Time Varying Bayesian Lasso Regression. 
 
Evaluation Metrics: 
➔AUC Score: The Area under the ROC. 
 
➔Prediction Error:  

Evaluation 



20 time series with different varying patterns. 8 coefficients are selected for illustration. 

Evaluation over Synthetic Data 



Evaluation over Real Data: TVLasso can effectively identify the time varying dependency 
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• Ticket Classification  

• Ticket Resolution Recommendation 

• Ticket Analysis (Knowledge Extraction) 

Outline 
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IT Problem Category Determination by Tickets 
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IT Problem Category Determination by Tickets 
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IT Problem Category Determination by Tickets 



➢Text classification (Without considering multi-label and label hierarchy) 

● SVM,CART, KNN, Rule-based classification, logistic regression 

➢Multi-label classification algorithm(Without considering label hierarchy) 

● Problem transformation based approach 

● Algorithm adaption based approach 

➢Hierarchical multi-label classification algorithm 

● Recursively split the training data(Overfitting) 

● Hierarchical consistency  is guaranteed by post-processing(Our method belongs to this category) 

109 

Related Work 



➢ Hierarchical Constraint:  Given a ticket, any node is positive (in green color) if it is the root node or 

its parent is positive. 

110 

Hierarchical Consistency with Multiple Labels 



➢ The characteristics of hierarchical multi-label classification over the ticket data are listed as follows: 

● With multiple paths. 

● With a partial path. 

111 

Hierarchical Consistency with Multiple Labels 



➢ H-Loss.   

● Main idea: any mistake occurring in a subtree does not matter if the subtree is rooted with a 

mistake as well 

● 1 loss because of the error at Database node, while 0 for both DB2 and Down nodes 

112 

Guarantee Hierarchical Consistency with Loss 

Assign to DB2 team and 

its sub-team Down will 

incur more cost due to 

wrong assignment. 



➢ HMC-Loss.   

● Main idea: misclassification error at a node  is weighted by its hierarchy information. It also 

weights FP and FN differently. 

113 

Guarantee Hierarchical Consistency with Loss 



➢ Contextual Misclassification Information. 
● Different weights for each case   
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Propose CH-Loss 

Communication with  

its direct parent 
Communication with  

its grandparent 

False Negative 

False Positive 



➢ CH-Loss generalize other Loss functions. 
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Propose CH-Loss 

Goal CH-Loss parameter settings 

Minimize Hamming Loss w1 = w2 = w3 = w4=1, Ci = 1 

Minimize HMC-Loss w1 = w2 =ɑ, w3 = w4=β, Ci = is defined by user 

Minimize H-Loss w1 = w3 =1, w2= w4=0, Ci = 1 

Increase recall w1 and w2  are larger than  w3  and  w4 

Increase precision w1 and w2  are smaller than  w3 and w4 

Minimize misclassification errors occur in both 

parent and children nodes 

w1 < w2  and  w3 < w4 
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Minimize Expected CH-Loss  

Issue: it’s difficult to estimate the probability P(y|x), since y can be one of O(2N) vectors. 
 
 
 

P(y|x) is the probability of the label vector y given 

ticket x. 

CH-Loss 

s.t. ŷ satisfying the hierarchical constraint 
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Equivalent Derivation (Proposition IV.3 of our work ) 

Where σ(i) can be computed by P(yi|x) and P(yparent(i)|x).  The above equation can be solved by proposing 
GLabel, a greedy algorithm. 
 
P(yi|x) can be estimated with a binary classifier on node i. 
 
 
 

s.t. ŷ satisfying the hierarchical constraint 
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GLabel Algorithm  

 Greedily choose the node i with largest σ(i) to label, considering the hierarchical constraint, Complexity : 
O(N lgN). 
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1. 23,000 tickets are collected from the real IT environment. 
 
1. 20,000 tickets are randomly selected for training data 
 
1. The remaining 3,000 tickets are used for testing.  
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Experiment 
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GLabel vs. Flat Classifier 

Metric SVM GLabel 

CH-Loss 4.2601 2.6889 

Parent-Child Error 0.3788 0.1729 

Hierarchy Error 0.0102 0.0 
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The state-of-the-art algorithm 

1. CSSA , which requires the number of labels for each ticket  

 

1. HIROM, which requires the maximum number of labels for all the tickets 

 

The GLabel algorithm is capable of minimizing the loss automatically. 
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,GLabel can efficiently minimize the loss without any knowledge about the number of labels for tickets. Optimizing varying loss: GLabel can efficiently minimize the loss without any knowledge about the number of 

labels for tickets. 
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Domain Knowledge Integration  
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Domain Knowledge Integration (Kilo based on sum-product  )  

Prior knowledge on given node  is propagated 
to its linked nodes.  
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Domain Knowledge Integration Experiment over ticket data:The more prior knowledge leads to more accurate 

result and smaller loss.   



• Ticket Classification  

• Ticket Resolution Recommendation 

• Ticket Analysis (Knowledge Extraction) 

Outline 



Ticket Resolution Recommendation (Tang et al., CNSM 
2014; Zhou et al., IM 2015)  

◎Repeated Resolutions of Event Tickets 

• Figure 1: Number of tickets and unique resolution for each account 

• Figure 2: Number of tickets solved by the top most common resolutions 

• Conclusion: Similar tickets resolved by similar resolutions 

Data Set # of tickets Time Frame 

account1 31,447 1 month 

account2 37,482 4 month 

account3 29,057 5 month 



Motivations 

● Ticket resolving is very labor 

intensive 

● Problems occurred periodically 

● Repeated resolutions exist in 

historical tickets 



Repeated Resolutions of Event Tickets  

Data Set # of tickets Time Frame 

account1 31,447 1 month 

account2 37,482 4 month 

account3 29,057 5 month 

• Figure 1: Number of tickets and unique resolution for each 

account 

• Figure 2: Number of tickets solved by the top most common 

resolutions 

• Conclusion: Similar tickets resolved by similar resolutions 



Related Work 

• User-based Recommendation Algorithms 

 

• Item-based Recommendation Algorithms 

 

• Constraint-based Recommender Systems 

 

• Multiple Objective Optimization… 



Existing Solution 

• Every historical ticket t has two parts. e(t) is 

the symptom description, and r(t) is the 

resolution attached to it.  

 

• Incoming ticket only has e(t) i.e., the 

symptom description  

 

• User-based Top-K Recommendation (L. 

Tang et al., 2013) 



Challenges 

• How to measure the similarity 

between incoming ticket and all 

historical tickets ?  



Challenges 

● Given a ticket, how to encode it and represent it ? 
○ is every attribute in tickets  informative ? 

○ How to featurize a ticket ? 

 

● Given two tickets, how to measure their similarity ? 
○ Tickets might be quite noisy 

○ Ticket might be literally different but semantically similar  

T1: The logic disk has a low amount of space 

 

T2: The percent of available space in the file 

system is 10 percent. 



Prelminary work (Zhou , Tang, Zeng, Li, Shwartz, & Grabarnik,  TNSM 2016) 

Basic similarity measurement based on attribute level features 

Basic similarity measurement based on topic level features 

training 
• Inference topic level feature 

vectors 

• Apply cosine similarity 



Incorporating Resolutions 

Implementation 

training 

• Inference topic level 

feature vectors 

• Apply cosine similarity 



Feature differences 

Topic ID keywords 

14 server wsfpp1 lppza0 lppzi0 nalac application 

30 server hung condition responding application apps 



Metric Learning 

local neighborhood 

cosine similarity adjusted similarity 

Metric learning 

similar tickets 

dissimilar tickets 

dissimilar tickets 



Metric Learning 

Implementation 

topic level 
feature vector 
for ticket j 

Manually 
categorized label 
for ticket j 

Minimize this objective 
function, get projection 
matrix A for similarity 
calculation adjustment 



• Ticket Classification  

• Ticket Resolution Recommendation 

• Ticket Analysis (Knowledge Extraction) 

Outline 



Transitioning from practitioner-driven technology-assisted to technology-driven 

and practitioner-assisted delivery of services 

• Enterprises and service providers are increasingly challenged with improving the quality of service 

delivery  

• The increasing complexity of IT environments dictates the usage of intelligent automation driven by 

cognitive technologies, aiming at providing higher quality and more complex services.  

• Software monitoring systems are designed to actively collect and signal anomalous  behavior and, 

when necessary, automatically generate incident tickets. 

• Solving these IT tickets is frequently a very labor-intensive process. 

• Full automation of these service management processes are needed to target an ultimate goal of 

maintaining the highest possible quality of IT services. Which is hard! 

 

 



Background 

• Monitoring system: emits an event if anomalous 

behavior persists beyond a predefined duration. 

• Event Management system: determines whether 

to create an incident ticket. 

• IPC (Incident/Problem/Change) System: record 

keeping system that collects the tickets and 

stored them for tracking and auditing purposes. 

• System Administrators (SAs): performs problem 

determination, diagnosis, and resolution. 

• Enrichment Engine: uses various data mining 

techniques to create, maintain and apply insights 

generated from a knowledge base to assist in 

resolution of an incident ideally with an 

automation. 

• This research focuses on Enrichment engine 
The overview of IT service management workflow. 



Motivation 

A ticket in IT service management and its corresponding 

resolution are given. 

  Structured fields: 
often inaccurate or incomplete 

especially information which is not 

generated by monitoring systems 

Unstructured text: 
written by system administrators in natural 

language. Potential knowledge includes: 

1. What happened? Problem 

2. What troubleshooting was done? 

Activity 

3. What was the resolution? Action 



Challenge 

• Challenge 1:  Even in cases where the structured fields of a ticket are properly set, they either 

have small coverage or do not distinguish tickets well, and hence they contribute little information 

to the problem resolution 

• Challenge 2:  The ambiguity brought by the free-form text in both ticket summary and resolution 

poses difficulty in problem inference, although more descriptive information is provided 

Ticket distribution with structure fields. 



System Overview 

An overview of the integrated framework. 

• Our proposed integrated framework consists of 

three stages:  

（1）Phrase Extraction Stage 

(a) Phrase Composition and Initial Summary Analysis 

Component 

 (b)     Phrase Refining Component 

（2）Knowledge Construction Stage 

（3）Ticket Resolution Stage 



Phrase Extraction Stage 

• In this stage, our framework finds important domain-specific 

words and phrases (‘kernel’). 

• Constructing domain-specific dictionary 

• Mining the repeated words and phrases from unstructured 

text field. 

• Refining these repeated phrases by diverse criteria filters 

(e.g., length, frequency, etc.). 



Phrase Composition and Initial Summary Analysis 

• Use StanfordNLPAnnotator for preprocessing ticket data. 

• Build a domain dictionary by using Word-Level LZW compression algorithm. 

• Calculate the frequency of the repeated phrases in tickets data by using Aho-Corasick 

algorithm. 

History tickets data 

Hot Phrases 
Patten + Frequence 

Repeated pattern extraction and frequency estimation. 



Phrase Composition and Initial Summary Analysis 

• Word-Level Lempel-Ziv-Welch (WLZW) 

• Seeks the trade-off between completeness and efficiency and attempts to find the 

longest n-gram with a repeated prefix 

• Time complexity: O(n) 

• Aho-Corasick algorithm 

• Locate all occurrences of any of a finite number of keywords in a string of text. 

• Consists of constructing a finite state pattern matching machine from the keywords and 

then using the pattern matching machine processing the text string in a single pass. 

• Time complexity: O(n). 



Phrase Composition and Initial Summary Analysis 

An example of a finite state string pattern matching machine. 

• Assume we have a dictionary D 

composing {  

“job failed due to plc issue,” 

“job failed due to database deadlock,” 

“job failed due to sql error,”  

“database connectivity,” 

“sql server v7.5,” “sql server v8,”  

“sql server memory” 

}. 

 

• AC algorithm first constructs finite State Automaton for dictionary using a Trie. 

• And then estimates the frequency of the phrases in the dictionary for a single pass. 



Phrases Refining  

In this stage, we apply two filters to the extracted repeated phrases 

allowing the omission of non-informative phrases. 

• Phrase Length & Frequency Filters (length > 20 & frequency >= 10) 

• Part-Of-Speech Filter 

Applied Filter Left Phrases 

Frequency Filter >= 10 1117 items 

Length Filter > 20 613 items 

PoSTag Filter 323 items 

Table III: Result of Frequency/Length Filter and PoSTag Filter.  



Knowledge Construction Stage 

• In this stage, we first develop an ontology model, and then tag all the phrases of the generated 

dictionary with the defined classes.  

• Build the ontology model  

• Define classes 

• Define relations 

• Knowledge Archive 

• Manually tag the important  

•                   phrases in the dictionary with                

•                   their most relevant defined classes. 

Figure 9: Ontology model depicting interactions among classes. 
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Knowledge Construction Stage 

• Initial Domain Knowledge Base: 
 

Class Number of  Tagged Phrases 

Entity 628 items 

Activity 243 items 

Action 24 items 

Problem Condition 22 items 

SupportTeam 76 items 



Ticket Resolution Stage 

The goal of this stage is to recommend operational phrases for an incoming ticket. 

  

• Information Inference component:  

• Class Tagger Module processes incoming ticket tickets in three steps. 

•    (1) tokenize the input into sentences;  

•    (2) construct a Trie by using ontology domain dictionary;  

•    (3) find the longest matching phrases of each sentence using the Trie and    

 knowledge base, then map them onto the corresponding ontology classes 

• Define Concept Patterns for Inference: concept patterns based on Problem, Activity and 

Action concepts: 

1. Problem describes an entity in negative condition or state.  

2. Activity denotes the diagnostic steps on an entity.  

3. Action represents the fixing operation on an entity.  

 

 

 

 

 



Ticket Resolution Stage 

• Problem, Activity and Action Extraction: 

• 1. Class Tagger module tokenizes the input into sentences and outputs a list of 

tagged phrases.  

• 2. We decide whether it is an informative snippet or not by checking if it exists in a 

Problem-Condition/Action list. 

• 3. The phrase is appended to the dictionary as a key, and all its related entities are 

added as the corresponding values via a neighborhood search. Each of the three 

key concepts has its own dictionary.  

 

• Finally, we obtain the problem, activity, and action inferences. 

 

 

 

 



Ticket Resolution Stage 

• The goal of this stage is to recommend operational phrases for an incoming ticket.  
• Ontology-based Resolution Recommendation component 

• Previous study, the KNN-based algorithm will be used to recommend the historical 

tickets’ resolution to the incoming ticket which have the top summary similarity scores. 

• Jaccard similarity performs poorly due to noisy text (many non-informative words): two 

tickets describes the same issue 

 

 

 

 

 

 

 

• Ontology model can greatly facilitates our resolution recommendation task by better 

capturing the similarity between ticket summaries. 

 

 



Experiment 

• Dataset 

• Experimental tickets are collected from real production servers of IBM Cloud Monitoring system 

covers three month time period containing |D| = 22,423 tickets. 

• Training data: 90% of total tickets 

• Testing data: 10% of total tickets 

 

• Evaluation Metrics 

• Precision, Recall, F1 score and Accuracy. 

• Accuracy = (TP + TN)/(TP + TN + FP + FN) 

• Precision = TP/(TP + FP)   Recall = TP/(TP + FN) 

• F1 score = 2 Precision Recall / (Precision + Recall) 

 

 

155 



Experiment 

• Ground Truth 

• Domain experts manually find and tag all phrases instances into six predefined classes in 

testing dataset. 

• Evaluate our integrated system 

• Class Tagger is applied to testing tickets to produce tagged phrases with predefined 

classes. Comparing the tagged phrases with ground truth, we obtain the performance. 

 

 

Evaluation of our integrated system. 



Experiment 

• Evaluate Information Inference 

• Usability: we evaluate the average accuracy to be 95.5%, 92.3%, and 86.2% for 

Problem, Activity, and Action respectively. 

• Readability: we measure the time cost. Domain expert can be quicker to identity 

the Problem, Activity and Action which output from the Information Inference 

component from 50 randomly selected tickets. 
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Monitoring is the fundamental systems management operation  
Needs to be optimized to meet quality expectations without expending excessive 

labor in managed environments 
• Generically set monitoring situations and thresholds generate excessive alerts driving excessive 

consumption of labor 

• Impact can be exacerbated with auto-ticketing if not properly handled 

• Adversely skews attention towards large volume of tickets instead of focusing on improvements – 

client value opportunity 

–Initial study of sample accounts with automated ticketing shows that*:  

• 20-30% of Incident tickets are False Positives (tickets not requiring an immediate 

corrective  action) 

• 10 - 15% of Labor relates to incident management 

15

9 

Account 
% of monitoring tickets for 
the account 

% of false positives tickets for 
the account 

Accout_id_1 69.5% 21.0% 

Accout_id_2 35.1% 6.7% 

Accout_id_3 67.2% 27.7 

Accout_id_4 90.0% 33.5% 

Accout_id_5 40.3% Many resolutions are blank:2.4% 

* ROM analysis suggests that for a medium to large service provider the opportunity is in mil$ 
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Identification of complex or correlated event  

160 

Suggested rule as 

combination of alerts 

By Server 

By 15 min Cluster 

Detail of a sample 15 

min Cluster 

KPI “Correlation 

Opportunity” to 

track progress 

% of tickets that can 

be reduced by 

implementing 

generic correlation 

rules for given 

account  

Benefit of Correlation Rules: significant QoS increase, reduction in ticket volume upto 30% 



Cognitive Solution Designer 

Cognitive Services Optimizer 

Automated Services Manager 

Client Insight Dashboards 

 Data Lake 

 Watson 

ITaaS Environment 

Business Solutions 

Composable Services 

Brokerage 

Orchestration 

Traditional IT Private Cloud Public Cloud 

Cognitive IT Services Delivery Platform 

•Next generation of easily consumed cognitive infrastructure services are basis for an open, standards-based, 

and integrated platform 

•Continuously expanding the platform with additional cognitive and automation capabilities using  

• operational data, historical and real-time,  

• curated operational data, e.g. reports or insights derived from raw data and stored within the lake,  

• automation content, patterns,  

• knowledge, e.g. solutions, offering, reference architecture, cartridges, ontologies,  

• user interaction, e.g. usage, feedback, customer satisfaction,  

• meta data, e.g. data catalogues, taxonomies, classifiers, rules 



What Log/Event Analysis Can Do I 

• Proactively monitors system resources to detect potential problems and automatically 

respond to events.  

– By identifying issues early,  it enables rapid fixes before users notice any 

difference in performance.  

 

• Provides dynamic thresholding and performance analytics to improve incident 

avoidance.  

– This ‘early warning’ system allows you to start working on an incident before it 

impacts users, business applications or business services. 

 

• Improves availability and mean-to-time recovery with quick incident visualization and 

historical look for fast incident research.  

– You can identify and take action on a performance or service interruption in 

minutes rather than hours. 



What Log/Event Analysis Can Do II 

• Collects data you can use to drive timely performance and capacity planning activities 

to avoid outages from resource over-utilization.  

– The software monitors, alerts and reports on future capacity bottlenecks. 

 

 

• Facilitates system monitoring with a common, flexible and intuitive browser interface 

and customizable workspaces.  

– Can include an easy-to-use data warehouse and advanced reporting capabilities.. 



Looking Forward 

 

• Real-time requirements  

• Failure prediction 

• Incorporation domain knowledge with mining results  

• Integration of different types of  information  

• From systems to networks and devices 

• Limited labeled data 

• Interpretation and Transparency 
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Thank you!  

Email: taoli@cs.fiu.edu  

           lshwart@us.ibm.com   

          grabarng@stjohns.edu 

 

All the slides and references can be found at 

http://www.cs.fiu.edu/~taoli/event-mining 


