
Managing Data Center Tickets:
Prediction and Active Sizing

Ji Xue
College of William and Mary

Virginia, USA
xuejimic@cs.wm.edu

Robert Birke
IBM Research Zurich Lab
Ruschlikon, Switzerland

bir@zurich.ibm.com

Lydia Y. Chen
IBM Research Zurich Lab
Ruschlikon, Switzerland

yic@zurich.ibm.com

Evgenia Smirni
College of William and Mary

Virginia, USA
esmirni@cs.wm.edu

Abstract—Performance ticket handling is an expensive opera-
tion in highly virtualized cloud data centers where physical boxes
host multiple virtual machines (VMs). A large body of tickets
arise from the resource usage warnings, e.g., CPU and RAM
usages that exceed predefined thresholds. The transient nature
of CPU and RAM usage as well as their strong correlation across
time among co-located VMs drastically increase the complexity
in ticket management. Based on a large resource usage data
collected from production data centers, amount to 6K physical
machines and more than 80K VMs, we first discover patterns
of spatial dependency among co-located virtual resources. Lever-
aging our key findings, we develop an Active Ticket Managing
(ATM) system that consists of (i) a novel time series prediction
methodology and (ii) a proactive VM resizing policy for CPU
and RAM resources for co-located VMs on a physical box that
aims to drastically reduce usage tickets. ATM exploits the spatial
dependency across multiple resources of co-located VMs for
usage prediction and proactive VM resizing. Evaluation results
on traces of 6K physical boxes and a prototype of a MediaWiki
system show that ATM is able to achieve excellent prediction
accuracy of a large number of VM time series and significant
usage ticket reduction, i.e., up to 60%, at low computational
overhead.

I. INTRODUCTION

Performance ticketing systems provide the means to data
centers to interactively improve user experience, maintain
performance at tails, and guarantee smooth system operation.
Typically, system monitoring and users issue tickets when
encountering an array of performance violations, e.g., unre-
sponsive service, high resource usage due to transient load
dynamics, or persistent insufficient provisioning. Ticket reso-
lution is unfortunately very expensive [1], [2] as a significant
amount of manual labor is required for root-cause analysis and
to remedy the detected problem [3]. Prior work has shown
that there is strong correlation of ticket issuing with resource
usage exceeding certain predefined thresholds [4]. In today’s
data centers, with physical resources being aggressively multi-
plexed across multiple virtual machines (VMs), the likelihood
of issuing performance tickets due to physical or virtual
machines crossing predefined usage thresholds dramatically
increases.

Past work has established that resource usage at data centers
exhibits strong temporal patterns [5], [6]. Beyond temporal
dependencies that are established by usage time series [7],
it is common for co-located VMs to simultaneously compete

Time (hour)
0 3 6 9 12 15 18 21 24

C
P

U
 U

S
E

D
 P

C
T

 (
%

)

0

20

40

60

80

100
VM1
VM2
VM3
VM4

Fig. 1: An illustration of spatial dependency across usage time
series for 4 VMs co-located on a box.

for the limited physical resources, essentially exhibiting strong
spatial dependency. We illustrate a motivating example in
Figure 1 depicting the CPU usage time series1 of 4 VMs
co-located within the same physical box, where performance
tickets are issued automatically when a VM utilization exceeds
a threshold of 60%. One can easily see the spatial dependency
of VMs 1, 3, and 4, i.e., time usages move up and down syn-
chronously, and their respective tickets are triggered together,
at around the 19:00 hour mark. These time series come from
a data center production system and are quite representative
of typical patterns in such systems. The temporal and spatial
dependencies among VMs not only increase the number of
tickets but also the difficulty in identifying their root cause
and the corresponding resolution.

The focus of this paper is to develop a methodology to
increase the data center dependability by using a proactive
approach: reduce the number of tickets by predicting when
they will occur in the future and by employing dynamic
virtual machine resizing to adjust resource usage to avoid
the triggering of future tickets. To this end, we first do a
detailed, post-hoc workload characterization study of usage
time series in production data centers of a major vendor
which correspond to 80K VMs hosted on 6K physical servers.

1We interchangeably use the terms time series and series.

We develop an Active Ticket Managing (ATM) system that
predicts future VM resource usage and proactively resizes the
virtual resources of the resident VMs. The research challenges
are numerous and outlined as follows.

Effective usage prediction is prerequisite to the development
of any management policy. Indeed, in our past work we have
shown that neural networks can be effectively employed for
prediction [7], but their effective usage remains prohibitively
expensive in practical situations as it suffers by its high
training cost. In practice, in a large-scaled data center, with
more than tens of thousands of physical boxes and hundreds
of thousands of VMs, it is infeasible to rely on neural networks
to predict future resource usage. We solve this first problem
by developing a prediction methodology that discovers spatial
dependencies across usage series and exploits them to develop
an agile methodology for prediction. To this end, we introduce
the concept of signature VM series, a subset of usage series
that are representative of all other usage series. We are able
to predict usage series not in the signatures set and the usage
violation tickets of co-located VMs, via a linear combination
of signature VM series, which provides a time series prediction
model with as low as only 26% of the original time series.
Second, based on predicted resource usage, we define a multi-
choice knapsack problem and develop a greedy algorithm
to dynamically adjust virtual resource allocation across co-
located VMs. ATM is evaluated on production traces of 80K
VMs and a small test-bed deployment on a cluster that runs
MediaWiki [8], the open source platform for Wikipedia. Our
extensive evaluation results show that ATM has remarkably
high accuracy in prediction, i.e., reaching prediction errors
as low as 20% and significant ticket reductions, i.e., up to
60%− 70% less tickets while using only 26% of the original
time series. The contributions of this paper are as follows:

1) We do post-hoc characterization of usage ticket issuing
in a large data center setting. We focus on discovering the
distribution of usage tickets and spatial patterns of resources
usages across co-located VMs. We find that usage tickets are
mostly contributed by a small set of VMs, and that VMs show
significant cross correlation among their CPU and RAM usage
series.

2) Motivated by the strong spatial patterns across resources
and co-located VMs, we argue that a small number of signature
usage time series can be used as predictors to represent well
the entire set of resource usage time series. This prediction
methodology is the basis of ATM.

3) We develop a VM resizing policy to reduce usage tickets
by setting the upper limits of CPU and RAM allocations when
several VMs are co-located, a problem which is shown to
be NP-hard. We rigorously formulate the ticket minimiza-
tion problem subject to the physical capacity constraints.
We propose a greedy algorithm to solve it and compare its
performance to the max-min fairness algorithm.

The outline of this work is as follows. Section II provides
a characterization study on the usage tickets as well as the
spatial patterns among usage series of co-located VMs. We
propose spatial-temporal prediction methods for demand series

in Section III. In Section IV, we formulate the ticket mini-
mization problem and demonstrate a greedy resizing algorithm
to reduce usage tickets. An extensive evaluation of ATM on
both production traces and a Wikipedia cluster is discussed in
Section V. Section VI presents related work, followed by the
summary and conclusions in Section VII.

II. STATISTICS AND OBSERVATIONS

The motivation for the design of ATM is the urge to reduce
usage tickets that are typically issued when VM resource uti-
lizations exceed certain thresholds. The trace that we consider
here comes from IBM production data centers serving various
industries, including banking, pharmaceutical, IT, consulting,
and retail, and using various UNIX-like operating systems,
e.g., AIX, HP-UX, Linux, and Solaris. The majority of VMs in
the trace are VMware VMs. The trace contains CPU and RAM
capacity but also utilization data taken at a time granularity
of 15 minutes for 6K physical boxes hosting more than 80K
VMs during a 7-day period from April 3, 2015 to April
9, 2015. Naturally, the level of consolidation is very high,
i.e., on average 10 VMs are consolidated within a single
physical box [5]. In addition, both VMs and boxes are very
heterogeneous in terms of resource configuration.

In the following, we first show the distribution of usage
tickets under different ticket thresholds, followed by a more
detailed analysis on the spatial patterns of usage series of
co-located VMs. We aim to uncover how usage tickets are
distributed across resources and most importantly how usage
patterns trigger usage tickets. We anticipate that the design
principles of the proposed ATM system leverages this charac-
terization analysis.

A. Usage Tickets

Usage tickets are generated when utilization values exceed
target thresholds. Naturally, lower thresholds trigger a higher
number of usage tickets and increase the cost of resolution,
whereas higher thresholds result into fewer tickets but at a
higher risk of performance degradation. To quantify the effect
of different thresholds, we consider three threshold levels,
namely 60%, 70%, and 80%. Such values are commonly
adopted in production systems [9]. Figure 2 illustrates quanti-
tative information on the issued tickets for the CPU and RAM
usage series of April 3, 2015. We focus on the following: how
many boxes have tickets and how these tickets are distributed
across co-located VMs and their resources.

Figure 2(a) plots the percentage of boxes that have at least
one VM usage ticket under the different thresholds. Even with
the highest ticket threshold of 80%, almost 40% of boxes
obtain at least one ticket due to CPU violation and 10%
due to RAM violation, these percentages increase to 57%
and 38%, respectively, when the threshold is 60%. Overall,
the percentage of boxes having CPU tickets is higher than
RAM tickets, independently of the threshold. This can be
explained by the fact that RAM tends to be over-provisioned
for performance reasons. Figure 2(b) illustrates the mean and
standard deviation of the number of tickets per box for CPU

CPU RAMP
er

ce
nt

ag
e

of
 B

ox
es

 (
%

)

0

10

20

30

40

50

60

70
Ticket Threshold = 60%
Ticket Threshold = 70%
Ticket Threshold = 80%

CPU RAM

N
um

be
r

of
 T

ic
ke

ts

0

20

40

60

80

100
Ticket Threshold = 60%
Ticket Threshold = 70%
Ticket Threshold = 80%

CPU RAM

N
um

be
r

of
 C

ul
pr

it
V

M
s

0

1

2

3
Ticket Threshold = 60%
Ticket Threshold = 70%
Ticket Threshold = 80%

(a) Percentage of boxes having tickets (b) Distribution of tickets (c) Number of culprit VMs

Fig. 2: Characterization of usage tickets for CPU and RAM of VMs per box.

and RAM. The average number of CPU(RAM) usage tickets
per box are 39(15), 33(11), 29(9), for the three thresholds of
60%, 70%, and 80%, respectively, showing a relatively minor
decreasing trend. The next natural question is whether tickets
are evenly distributed across all co-located VMs. To this end,
we compute the number of VMs that accounts for the majority
of tickets, where the majority is defined to 80% of usage
tickets per box (this is an ad-hoc value). Figure 2(c) shows
that on average one to two VMs per box cause the majority
of tickets irrespective of the three threshold values. A further
interesting observation is that since the culprit VMs are few,
if we increase the capacity allocation of the culprit VMs by
removing resources from other co-located VMs, then tickets
may reduce. On the contrary, if tickets are evenly distributed,
resizing does not help.

B. Do Spatial Dependencies Exist?

To better understand the spatial patterns of usage tickets, we
estimate the magnitude of spatial dependency by computing
the Pearson’s correlation coefficients [10] over each pair of
CPU and RAM usage series of co-located VMs. For each box
and co-located VMs, we compute four types of correlation
coefficients ρ: (i) between any pair of CPU usage series (intra-
CPU), (ii) between any pair of RAM usage series (intra-RAM),
(iii) between any pair of CPU and RAM usage series (inter-
all), and (iv) between CPU and RAM usage series from the
same VM (inter-pair). The first two correlation metrics mea-
sure the relationship among specific resources, i.e. CPU and
RAM, time series (“intra” resource measures), the latter two
focus on the relationship between CPU-RAM pairs (“inter”
measures). For each box, we compute the median value of
the above measures and present the cumulative distribution
functions (CDFs) across all the boxes in Figure 3.

One can immediately see from the shapes of the CDFs
that intra-RAM ρ is higher than intra-CPU, followed by inter-
resources measured from any pair of VM or the same VM.
This implies that inter-resource dependency is higher than the
intra-resource one. Indeed, the mean values for intra-CPU,
intra-RAM, inter-CPU/RAM from any pair, inter-CPU/RAM
from the same VM are 0.26, 0.24, 0.30, and 0.62 respectively.
The CDFs give a clear message: the CPU-RAM pairs across
co-located VMs are correlated, this is a fact that we take

Median Correlation Coefficient
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Intra-CPU
Intra-RAM
Inter-all
Inter-pair

Fig. 3: Cumulative distribution of correlation of intra-CPU,
intra-RAM, inter-CPU/RAM.

advantage of when we attempt to use clustering to reduce the
cost of prediction.

III. SPATIAL-TEMPORAL PREDICTION MODELS

We first elaborate on the challenges for concurrent predic-
tion for a large number of time series representing multiple
resource usages from co-located VMs at production data
centers. The immediate obstacles of prediction given a large
number of demand series are accuracy, training overhead, and
model scalability. Typically, temporal models [10], such as
ARIMA are not able to capture well bursty behaviors. More
sophisticated temporal models such as neural networks, cap-
ture irregular patterns better but at much higher computational
overheads. Given such restrictions, it is important to come up
with efficient and accurate prediction models that also scale
well.

We propose a new prediction methodology that combines
both temporal and spatial models to predict on each box the
resource demand time series2 Di (∀i ∈ [1,M × N]) where
M is the number of co-located VMs and N is the number
of different resources taken into consideration. We introduce

2Demand series is the product of usage series and the allocated virtual
capacity. Both demand and usage series share the same correlation character-
istics. For the purpose of virtual resource resizing, we predict demand series
directly.

the concept of signature series: a minimum number of time
series that are predicted via temporal models. The rest of
the demand series, termed as dependent series, are predicted
through a linear combination of signature series via spatial
models. Essentially, we divide the demand series, Di, into
two sets: the signature set, denoted by Ωs, and the dependent
set, Ωd.

The novelty of ATM is to derive novel spatial models for
dependent series while applying existing temporal models to
predict signature series. Many practical techniques exist in the
literature for reducing the overhead of temporal models by
extracting and storing features of the time series [7], [11].
We stress that any temporal prediction model can be directly
plugged into the ATM framework.

To derive the spatial models, we want to express all demand
series Dk, k ∈ Ωd by a linear combination fk of the signature
series Dj , j ∈ Ωs:

Dk = fk(Dj). (1)

As every demand series can be either a signature or a depen-
dent series, a brute force solution to find the minimum sig-
nature set is to explore all 2N×M combinations of regression
models. For boxes hosting an average number of VMs, i.e.,
M around 10 and expected to grow as servers become more
powerful, it is clear that this method is not viable. To address
this issue, we devise an efficient searching algorithm that can
quickly find signature series without using exhaustive search,
by leveraging time series clustering techniques and stepwise
regression.

A. Searching for Signature Demand Series

Key to the discovery of signature series is clustering. We
propose a two-step algorithm to identify the signature set
Ωs. Step 1 defines the initial set of signature series. This
is achieved using time series clustering, specifically dynamic
time warping (DTW) [12] or correlation based clustering
(CBC) that we propose here. Step 2 defines the final set of
signature series by detecting and removing multicollinearity
among initial set of signature series using variance inflation
factors (VIF) and stepwise regression. The intent of the second
step is to fix the pitfall that although signature series appear
independent, it is possible that a combination of certain subsets
of the initial signature series can well represent the others. For
example, a group of series can be separated into three clusters
because of their dissimilarity in the distances or the correlation
patterns. If however one of the clusters can actually be well
expressed as a linear combination of the other two, then this
falls under a classical example of multicollinearity. Figure 4
illustrates the steps of signature set search.

Step 1: Time Series Clustering: Dynamic time warping is
an effective solution for finding clusters of time series where
the distance across the series is short. A potential problem is
that DTW falls short in capturing within the cluster series that
are of larger distance. Correlation based clustering solves this
problem by capturing highly correlated time series that are far
enough apart and cannot be captured by DTW. Applying DTW

Fig. 4: Overview of searching for signature set.

on the exemplary four series shown in Figure 1 illustrates
how clustering with DTW only offers a partial solution. DTW
detects three clusters: cluster 1 VM1, cluster 2 VM2, and
cluster 3 VM3 and VM4. CBC instead puts VM1, VM3, and
VM4 within the same cluster. Indeed, the series D1 and D4 of
VM1 and VM4 can be well represented as linear models of the
series D3 of VM3, e.g., D1 = a0+aD3, and D4 = b0+bD3,
where a0, a, b0, and b are scalars. In the remaining of this
section we provide details on DTW and CBC.

Dynamic Time Warping Clustering: The high level idea of
DTW is to group series that show low distance dissimilarity.
To obtain the distance dissimilarity between two series P =
{p1, p2, ..., pi, ..., pn} and Q = {q1, q2, ..., qj , ..., qm}, we first
build a matrix that consists of the pair-wise squared distances,
i.e., d(pi, qj) = (pi − qj)

2, between each pair of elements pi
and qj in the two series. The distance dissimilarity λ(n,m)
of the two series is given by the wrapping path through the
matrix that minimizes the total cumulative distance [12] and
can be recursively computed as follows:

λ(i, j) = d(pi, qj) +

min{λ(i− 1, j − 1), λ(i− 1, j), λ(i, j − 1)}.
(2)

Next, we apply hierarchical clustering [13] for any given
number of clusters, ranging from 2 to (M × N)/2 since we
aim to reduce the original set to at least its half. We determine
the optimal number of clusters, based on the average silhouette
value [14] of all time series within each cluster. For each series
i, its silhouette value s(i) is defined as

s(i) =
b(i)− a(i)

max{b(i), a(i)}
(3)

where a(i) is the average distance dissimilarity between series
i to all the other series within the same cluster using DTW,
and b(i) is the lowest average distance dissimilarity between
series i to the all the series in a different cluster. The higher the
silhouette value, the better the series lies within its cluster. For
each number of clusters, we average the silhouette values of all
the series as the representative silhouette value. The optimal
number of clusters is the one with the maximal silhouette
value. As last step and beyond conventional DTW, we identify

each signature series as the series with the lowest average
dissimilarity in each cluster.

Correlation-based Clustering: CBC focuses on grouping
series showing high correlation. For each box, we first compute
the pairwise correlation coefficients, denoted as ρ, for all pairs
of the M × N series. For a demand series Di, there are
(M ×N − 1) pairs ρi,l,∀l ̸= i. To form the clusters, we rank
each series Di, i ∈ [1,M×N] first by the total number of ρi,l
above a threshold ρTh, and second by the mean value of the
ρi,l above the threshold. In the following we set ρTh = 0.7, a
common threshold value used to determine strong correlation
between two series, which suggests a potential for linear
fitting [15]. After the series have been ranked, we select the
topmost one and remove it together with all the series being
correlated with it with a correlation coefficient higher than
the threshold. These series are now considered within a new
cluster with the top ranked series being the signature series.
This procedure continues by selecting the next topmost series
still in the ranked list and ends when the ranked list becomes
empty.

Step 2: Stepwise Regression: To further reduce the number
of signature series, we calculate the variance inflation factor
– a metric that can detect multicollinearity in regression. For
each series in the signature set, we regress it on the rest of
signature series and obtain its VIF value [15]. The rule of
practice is that a VIF greater than 4 indicates a dependency
with the other series in the initial set. After detecting the risk
of multicollinearity, i.e., at least one series has a VIF greater
than 4, we perform standard stepwise regression to remove
the series that can be represented as linear combinations of
the other signature series.

B. Prediction Models

To predict all M × N demand series, we first predict the
signature series Di (i ∈ Ωs), using neural network models
and their historical data [7]. To predict all dependent series,
we regress each dependent series on the set of signature series,
obtaining coefficients using ordinary least square estimates.
We stress that the signature series predictions are not tied to
the any specific model rather any suitable prediction model
can be easily plugged into our ATM framework.

In summary, we first leverage historical data to develop
spatial models to define dependent series and their respective
signatures. Later, we use temporal models to predict the
signature series and inexpensive linear transformation models
to predict the dependent series.

C. Results on Spatial Models

Prior to moving to the proposed VM resizing policy, we
present evaluation results of the proposed spatial models across
the demand series of the trace data (6K boxes and 80K
VMs) presented in Section II. Our evaluation focuses on: (i)
the difference between DTW and CBC clustering, (ii) the
effectiveness of clustering and stepwise regression, and (iii)
inter- v.s. intra-resource models, i.e., if it is necessary to
treat different resource series, e.g., CPU and RAM, separately.

Number of Clusters
2-3 4-5 6-7 8-9 10-15 16-31 32-64

P
er

ce
nt

ag
e

of
 B

ox
es

 (
%

)

0

10

20

30

40

50

60

70
CPU-DTW

RAM-DTW

CPU-CBC

RAM-CBC

Fig. 5: Comparison of clustering results using DTW and CBC.

Since the purpose of spatial models is to use a minimum subset
of original series to accurately represent the data center, the
metrics of interest are: (i) the percent of signature series out
of the total demand series and (ii) the prediction error. In
this section we only focus on the effectiveness of the spatial
models, i.e., how close the dependent series are from the actual
time series counterparts. The overall prediction accuracy of
combining spatial models with temporal models is presented
in Section V.

1) Difference between DTW and CBC: Figure 5 compares
the distribution of the number of clusters resulting from DTW
and CBC and highlights the type of each signature series, i.e.,
CPU or RAM. For DTW, roughly 70% of boxes have only 2
to 3 clusters, and the rest have 4 to 31 clusters. In contrast,
CBC is less aggressive resulting in a higher number of clusters
and, consequently, a higher number of signature series. This
indicates a higher overhead to develop their temporal models.
Moreover, in terms of signature series types, under DTW, one
can see that both CPU and RAM roughly account for 50% of
the signature series. This is consistent across all DTW bars in
Figure 5. Instead, with CBC, most signature series are CPU
series.

2) Effectiveness of the Two-Step Approach: To better illus-
trate the benefits of time series clustering (DTW or CBC) and
stepwise regression, we compare the signature set reduction
and prediction accuracy of each step in Figure 6. Each box
represents the 25th, 50th (mid line), and 75th percentiles,
whereas the dot marks the mean and the whiskers the most
extreme data points.

Figure 6(a) shows the percent of signature series out of the
total number of series for each of the 6K physical boxes. Since
DTW is quite aggressive in reducing the number of time series,
there is almost no further reduction after applying stepwise
regression. Both steps reduce the entire set to 26%. After CBC,
the set is reduced to 82%, however stepwise regression brings
further down the number to 66%.

Considering prediction accuracy, as shown in Figure 6(b),
both DTW and CBC experience minor losses. The average

Clustering StepwiseR
at

io
 o

f S
ig

. t
o

O
rig

in
al

 (
%

)

0

20

40

60

80

100
DTW
CBC

Clustering StepwiseM
ea

n
A

bs
. P

C
T

 E
rr

or
 (

%
)

0

10

20

30

40

50

60
DTW
CBC

(a) Signature set reduction (b) Prediction error

Fig. 6: Comparison of the two steps: effectiveness of clustering
and stepwise regression.

DTW CBCR
at

io
 o

f S
ig

. t
o

O
rig

in
al

(%
)

0

20

40

60

80

100

Inter-CPU/RAM
Intra-CPU
Intra-RAM

DTW CBCM
ea

n
A

bs
. P

C
T

 E
rr

or
 (

%
)

0

20

40

60

80
Inter-CPU/RAM
Intra-CPU
Intra-RAM

(a) Signature set reduction (b) Prediction error

Fig. 7: Comparison of inter- and intra-resource models.

absolute percentage error (APE)3 from DTW is about 28%,
while the average APE for CBC is only around 20%. Since
stepwise regression almost does not affect the signature set of
DTW, one expects no obvious decrease in prediction accuracy.
This is indeed shown in the graph. Surprisingly, the same
holds true with CBC where stepwise regression reduces CBC’s
accuracy only by 1%. These results confirm the effectiveness
of stepwise regression in reducing the signature set without
degrading in prediction accuracy.

3) Inter- v.s. Intra-Resource Models: We compare the ef-
fectiveness of the proposed inter-resource models, i.e., com-
bining CPU and RAM as predictors, against the intra-resource
models, in which CPU and RAM are treated separately. In
Figure 7, we summarize the prediction errors and reduction
in the original demand series. Inter-resource models can not
only reach a lower prediction error but also a higher reduction
in the number of demand series, than intra-CPU and intra-
RAM models. We present the results in box plots. In terms of
average APEs of prediction for CBC(DTW), the inter model
is around 20%(28%), whereas the intra-CPU and intra-RAM
are 21%(26%) and 23%(31%). Again, these results are in
good agreement with our observation in Section II that inter
resource correlation is higher than intra-CPU and intra-RAM
correlations. In terms of the average number series in the
signature set for CBC(DTW), the inter model uses roughly
66%(26%) of the original series, while intra-CPU and intra-
RAM can use up to 81%(41%), 90%(45%) compared with the
original set. Overall, the inter model can greatly benefit from
the correlation across co-located resources.

3APE is defined as APE =
|Actual−Fitting|

Actual

IV. VIRTUAL RESOURCE RESIZING

Being able to accurately predict future usage enables the
very first step to actively manage usage-related tickets. Having
future usage knowledge, it is possible to develop a virtual
resource resizing policy that can effectively reduce the number
of usage tickets. The monitoring systems in modern data
centers track the resource usages at discrete windows, e.g.,
15 minutes, termed as the ticketing window, and compare
them with ticket thresholds to determine whether a ticket
needs to be issued or not. To avoid incurring overreaction to
transient loads, we set the resizing window to be greater than
the ticketing window. For the data centers considered here,
ticket resolution occurs within a day of the ticket being issued,
so setting the resizing window to one day is a reasonable
assumption. This implies that the prediction horizon of the
demand series needs to be also one day. Note that past work
has shown that the accuracy of prediction decreases as the
prediction horizon increases [7], so setting the prediction
window to such a high value makes ATM more conservative
than it can actually be. During each resizing window, ATM
devises and actuates the virtual resource allocation of co-
located VMs on boxes. The objective is to find optimal sizes
for co-located VMs to achieve the lowest number of tickets,
subject to various resource constraints at boxes. The resources
considered are: virtual CPU measured in GHz and virtual
RAM measured in GB.

There exist a large body of virtual resource allocation
studies aiming to satisfy various performance targets, e.g.,
user response time, system utilization, and fairness. Max-
min fairness [16], [17] is one of the most applied allocation
policies that tries to guarantee the performance of small VMs,
given the assumption of known demands. Our resizing problem
can be viewed similarly but with the objective to minimize
the occurrences of target utilization threshold violations. We
develop a resizing algorithm based on a rigorous optimization
formulation, which is later transformed into a multi-choice
knapsack problem (MCKP) with tunable discretization pa-
rameters. The introduction of such discretization parameters
enables us to reduce the complexity and increase the safety
margin in resource allocation. In contrast to spatial-temporal
prediction models, the resizing algorithm treats CPU and RAM
separately due to separate constraints on each resource. Hence
for simplicity, in the following we redefine the index i in Di

to be the index of a VM rather than the index of a specific
resource on a VM.

A. Ticket Optimization Formulation

We formally introduce the problem, including notations and
constraints, for resizing all co-located VMs on a single box.
The foremost important constraint is that the summation of
allocated virtual resources should be less than or equal to
the total available virtual resource, i.e.,

∑
i Ci ≤ C, where

Ci denotes the virtual capacity allocated to VM i, and C is
the total available virtual capacity at the box. The decision
variable is Ci and needs to be determined at the beginning of
the resizing horizon.

The prediction module provides all demand series values
for the entire resizing window, equal to T ticketing windows,
for VM i, Di = {Di,1, . . . Di,T }. We introduce an indicator
variable, Ii,t, when Ii,t = 1 a usage ticket occurs to VM i
at ticketing window t, because the demand exceeds a certain
threshold of the capacity, say, αCi (e.g., α = 0.6); otherwise
Ii,t = 0. We aim to minimize the total number of tickets
occurring on all co-located VMs during the resizing window.
Thus, we can write the objective function as

∑
i

∑
t Ii,t. In

summary, we can define the ticketing optimization problem
as:

(R)min
∑
i

∑
t

Ii,t (4)

s.t.
∑
i

Ci ≤ C (5)

Di,t − αCi ≤ Di,tIi,j (6)
Ii,t ∈ {0, 1} (7)

Constraint (6) ensures that Ii,t = 1, when the demand
exceeds the ticket threshold, αCi; otherwise the objective
function drives Ii,t to zero. The problem R is a classical mixed
integer linear programming (MILP), whose complexity greatly
depends on the number of integer variables, i.e., the indicator
variables Ii,t in our case. The number of indicator variables
for each box is thus the product of the number of ticketing
windows, T , and the number of VMs, M .

1) Resizing Algorithm: Instead of resorting to a standard
MILP solvers, such as CPLEX [18], we transform the original
problem into a multi-choice knapsack problem by Lemma 4.1:
the optimal size for each VM must be equal to one of the
demand values in Di or 0. The advantages of transforming
the original problem into a MCKP are twofold: (i) there exist
a large number of efficient algorithms for MCKP and (ii) it
allows for a reduction of the number of integer variables. We
elaborate on the second point after formally introducing the
transformation of the original optimization problem to MCKP.

Lemma 4.1: For VM i, the optimal size Ci∗ ∈ Di ∪
{0}, Di = {Di,1, Di,2 . . . Di,T }.

Proof: If there exists an optimal solution (Ci∗) for each
VM (i) for the resizing problem, Ci∗ has to be in one of
the three ranges: [0,min{Di}), [min{Di},max{Di}), and
[max{Di},+∞). If Ci∗ is less than min{Di}, we argue
that Ci∗ could be set to 0 and the objective function stays
unchanged while the constraints are not violated. Similarly, it
is proven that if Ci∗ is not less than max{Di}, Ci∗ can be set
to max{Di}. If Ci∗ is in [min{Di},max{Di}), sort Di in a
descending order as Di

descend = {O1, O2, ..., Op, Op+1, ...}.
Following the same reasoning, it is possible to determine that
∃ q, Ci∗ ∈ [Oq, Oq+1). In addition, setting Ci∗ equal to Oq ,
the minimum objective function can be obtained without any
constraint violation. Hence the optimal size Ci∗ is either in
Di or 0.

Based on Lemma 4.1, we can transform the original for-
mulation into a multi-choice knapsack problem, whose com-
plexity can be further simplified by reducing the number of

indicator variables. We first introduce a reduced demand set
with 0 added, denoted as D′

i, containing the unique values
of the original demands in decreasing order, D′

i,v+1 ≤ D′
i,v .

According to Lemma 4.1, one of them is the optimal capacity.
We note that D′

i,v is not the same as Di,t. The following small
example illustrates the difference. Given a specific demand
series Di = {30, 30, 40, 40, 23, 25, 60, 60, 60, 60}, its reduced
series is D′

i = {60, 40, 30, 25, 23, 0} containing only the
unique values plus 0 in descending order.

We introduce a new binary variable Yi,v , denoting that
the unique value D′

i,v is chosen to be the capacity for VM
i. The next step to reduce the problem into MCKP is to
define the number of tickets, denoted Pi,v , seen by VM i
when the value of D′

i,v is chosen as capacity, i.e., Yi,v = 1.
Following the previous example of reduced demand set, we
show an example of ticket calculation. Let us assume the
current capacity is 70 and the ticketing threshold for issuing
usage tickets is 60%. We thus know that demands greater
than 70× 60% = 42 at any ticketing window will result into
tickets. We can then obtain Pi = {0, 4, 6, 8, 9, 10}. Due to
the decreasing order of D′

i, Pi has an increasing order, i.e.,
Pi,v+1 ≥ Pi,v . The total number of tickets for a box can thus
be written as

∑
i

∑
v Yi,vPi,v and the resource constraint of

the total capacity as
∑

i

∑
v Yi,vD

′
i,v ≤ C.

In summary, we reach a multi-choice knapsack problem,
where items (in the original knapsack problem) are divided
into subgroups and exactly one item needs to be selected
from each group. Putting our problem into the context of
multi-choice problem, we have M groups of VM demands
and we need to choose exactly one demand from each group
as their capacity. The decision variables are Yi,v denoting that
a particular demand is chosen as the size for VM i, where
i ∈ [1,M] and that the number of tickets, Pi,v , can be seen
as “weights”. The transformed ticket reduction problem is:

(R′)min
∑
i

∑
v

Yi,vPi,v (8)

s.t.
∑
i

∑
v

Yi,vD
′
i,v ≤ C (9)∑

v

Yi,v = 1 (10)

Yi,v ∈ {0, 1} (11)

The formulation of problem R′ enables the introduction
of a tunable parameter, ε, which decides the discretization
of demand values. We illustrate this point using the running
example of original series Di and its reduced series D′

i. The
original formulation R has 11 integer variables (including
the 0), whereas the transformed problem R′ has only 6
integer variables. One can even further decrease the number
of binary variables in Pi by discretizing the demand values,
such as rounding off the first digit. For example using D′

i =
{60, 40, 30, 0}, where 23 and 25 are rounded up to 30. Another
point worth mentioning is that we need to update the number
of corresponding tickets too, i.e., Pi = {0, 4, 6, 10}. Rounding
up demands makes the resizing algorithm more aggressive in

allocating resources. Consequently, we formally introduce a
discretization factor, ε, which further reduces the complexity
and provides a safety margin for resource allocation. We note
that ε is only applied on the predicted series. In summary, the
initial step computes D′

i from Di using ε, and calculates their
corresponding tickets, Pi for all co-located VMs i.

To solve the MCKP problem, we resort to the so-called
minimal algorithm [19]. We illustrate the general idea in
the context of our resizing problem. The algorithm chooses
capacity candidates for each VM and shuffles around the
capacity across VMs, comparing to the available capacity and
marginal ticket reductions. For all VMs, it chooses capacity
candidates that can incur a minimum number of tickets, i.e.,
starts from the maximum values in D′

i. When there is no
sufficient capacity to achieve such allocations for all VMs,
the priority is given to the VM having the lowest marginal
ticket reduction values (MTRV). MTRV represents the addi-
tional ticket increment when reducing one unit of capacity
provisioning. Its formal definition is:

MTRV =
Pi,o − Pi,o−1

D′
i,o−1 −D′

i,o

, (12)

where o denotes the index of candidates in D′
i. The VM with

the lowest MTRV is always chosen to reduce the capacity
provision from its current candidate value to the next one in
D′

i. Note that as D′
i is in decreasing order, the next candidate

immediately implies a capacity reduction. Once the candidate
list is updated, the same process continues until the sum of all
candidates is less or equal to the available capacity.

For a practical implementation, in addition to the constraint
of total available capacity, it is also imperative to consider
the lower and upper bounds of capacity. In order to avoid
spillovers of unfinished demands from previous ticketing win-
dows, we impose a lower bound on the VM capacity size, such
that its peak usage before resizing is satisfied. Moreover, as
any VM is not able to use more resources than the available
resource amount of the underlying physical box, we introduce
the allocation upper bound based on the box resource capacity.
We can easily incorporate such lower and upper bounds into
our resizing algorithm by limiting the values in D′

i for each
VM i.

B. Results on Usage Ticket Reduction

Prior to moving on to the evaluation of the full-fledged
ATM, i.e., the combination of spatial-temporal prediction and
resizing policy, we first show how effective the proposed resiz-
ing algorithm is against existing resource allocation heuristics.
For a fair comparison, the demand inputs are based on the
original dataset described in Section II, instead of prediction.
We implement the max-min fairness algorithm [16] and a
“stingy” algorithm which only allocates the capacity according
to the lower bound, i.e., the maximum demand regardless of
the ticket threshold, often used in practice. In contrast, the
max-min algorithm starts to allocate to all VMs the demand
of the smallest VM, considering its ticket threshold, and

CPU RAM

R
ed

uc
tio

n
in

 T
ic

ke
ts

 (
%

)

-100
-80
-60
-40
-20

0
20
40
60
80

100

ATM w/o Discretizing
ATM w/ Discretizing
Stingy Algorithm
Max-min Fainess Algorithm

Fig. 8: Ticket reduction for CPU and RAM: comparing ATM,
max-min fairness, and stingy algorithms.

continues onto VMs in the increasing order of their demands
until all capacity is exhausted.

Here, we evaluate the data of April 3, 2015 across all
6K boxes and set the threshold to trigger usage tickets to
60%: i.e., every 15-minute ticketing window the monitoring
system checks if the average usage of CPU or RAM of each
VM exceeds the 60% of the allocated capacity. Figure 8
summarizes the mean ticket reduction (in percent) and its
standard deviation, when applying the proposed ATM resizing,
max-min fairness, and stingy algorithms. As expected, the
stingy algorithm is completely unaware of the ticket threshold.
On average it achieves a ticket reduction of 54% and 15%
for CPU and RAM, respectively. Max-min fairness reduces
the tickets by around 70% for both CPU and RAM. This
is still roughly 30% worse than the ATM resizing results.
Due to the nature of favoring small VMs, large VMs can
be severely punished under max-min fairness resulting in no
ticket reduction and explains the high standard deviation under
max-min fairness.

As a pleasant surprise, our resizing algorithm does excep-
tionally well. It achieves 95% and 96% usage ticket reductions
for CPU and RAM, respectively, a remarkable improvement
for both performance and cost. This is also attributed to
the fact that the systems of the original traces are equipped
with abundant resources, i.e., typically data centers are lowly
utilized [5]. By simply shuffling resources across co-located
VMs, we are able to achieve significant performance gain.
Moreover, we also eliminate the overhead of inspecting and
resolving a large number of usage tickets, a process that is
known to be expensive.

C. Actuation of Virtual Capacity

Cloud data center tenants are typically charged by the
amount of virtual resources, for example, the number of virtual
cores. Consequently, any practical sizing policy should adhere
to such a constraint, due to accounting and financial concerns.
Therefore, to enforce the virtual capacity limits decided in our
algorithm, we use the control groups (cgroups) feature of the
Linux kernel [20]. Cgroups allow to limit, account for, and
isolate resources usages of groups of processes. By placing
the processes and threads relating to each VM in a separate
cgroup, we can dynamically change the resource usage limits

for each VM. To simplify the cgroups configuration, we expose
the resource limits through a web-based API by running a
small daemon at each hypervisor. The advantage of cgroups
over directly modifying the allocated virtual VM resources is
that the latter typically requires a restart of the guest OS while
the former can be changed on-the-fly without disrupting the
VM operation. Moreover, cgroups offer a finer-grained CPU
control with an almost continuous CPU limit control rather
than the stepwise decrease/increase of virtual cores.

V. EVALUATION

We extensively evaluate ATM not only on a large number
of data center production traces but also experimentally on
a cluster running MediaWiki. We focus on presenting the
effectiveness of ATM in ticket reduction to improve system
dependability and to reduce the high cost associated with
ticket resolution. In the remaining of this section, we assume
that usage tickets related to CPU and RAM are automatically
issued when VM utilization is greater than 60%.

A. Production Systems

We focus on a subset of boxes from the data center
trace (400 boxes) which have no gaps in their traces. The
remaining box traces suffer, throughout the 7 days of the trace,
from occasional gaps with no data. We show how different
configurations of ATM can proactively reduce the number
of tickets. We engage training of the signature series for 5
days and then apply ATM and VM resizing for the following
day. We stress that this analysis is post-hoc, i.e., we can not
change the size of the actual VMs in the trace, we focus only
on the prediction accuracy and ticket reduction via ATM. On
the contrary, in the experimental evaluation on the MediaWiki
cluster presented in the Section V-B, we do also illustrate VM
resizing in a working system.

For the spatial models, we consider DTW and CBC clus-
tering techniques and set the discretization factor ε = 5.
The temporal models used for the signature series are neural
networks [7]. ATM performs the prediction of 16000 usage
series, each of which has 96 ticketing windows, with each
window being 15 minutes long. After obtaining the predicted
series, ATM triggers the resizing algorithm for every box to
determine the near optimal CPU and RAM capacity for all
co-located VMs. We note that results presented in this section
differ from Section III and IV, where only the proposed spatial
models and resizing algorithms are evaluated individually,
excluding the temporal prediction models. Here, we have the
full effect of both prediction models.

1) Prediction Errors: Figure 9 presents the CDF of the
prediction accuracy of ATM in terms of APE with different
spatial models, i.e., DTW and CBC clustering. For CPU and
RAM usage, we use the inter-resource model, i.e., signature
series are a mix of CPU and RAM. The average prediction
errors of resources usage per box are 31% and 23%, for DTW
and CBC, respectively. These are only slightly higher than the
errors without the temporal models presented in Section III.
The figure also illustrates the CDF of the mean absolute errors

Mean Abs. Percentage Error (%)
0 10 20 30 40 50 60 70 80 90 100

C
D

F

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ATM w/ DTW - All
ATM w/ DTW - Peak
ATM w/ CBC - All
ATM w/ CBC - Peak

Fig. 9: CDF of prediction accuracy of ATM on 400 production
servers: ATMCBC , ACMDTW .

for peak demands, i.e., usage higher than 60%. The average
peak errors across all boxes are 20% and 17% for DTW
and CBC, respectively. This shows that neural networks can
capture well the temporal dynamics of the signature series.
We further note that this high accuracy of temporal models
is achieved at a high computational time and long historical
data, i.e., 5 days, whereas the prediction of dependent series
via spatial models has a negligible cost. We also note that
the reduction in demand series for this subset of 400 boxes is
similar to results shown in Section III across 6K boxes.

2) Ticket Reduction: Figure 10 compares the results of
average ticket reduction using two different versions of ATM
against the max-min fairness, and stingy policies, see Sec-
tion IV. Each bars illustrate the mean and standard deviation
of ticket reduction across boxes divided into CPU and RAM
tickets. The key observations are the following. Both versions
of ATM are able to achieve a higher ticket reduction, around
60% and 70% for CPU and RAM, respectively, compared
to the other two heuristics. We like to point out that the
standard deviation is high for all four strategies indicating huge
difference across boxes. Different from the resizing results
shown in Section IV, max-min fairness shows worse reduction
results than stingy. This can be explained by the observed
high variability across the chosen 400 boxes which shows
that max-min fairness could even result in a increase of the
number of tickets for a subset of the boxes, see the range of
standard deviation. Max-min fairness favors small VMs while
dissatisfying big VMs, which results in more ticket violations
than the other policies. Another fact worth mentioning is that
both versions of ATM are able to achieve higher RAM ticket
reductions, due higher RAM provisioning compared to CPU.

B. ATM on a MediaWiki Cluster

We experimentally evaluate our ticket reduction techniques
also on a cluster running MediaWiki, a latency-sensitive 3-tier
web application composed by Apache (v2.4.7) as the applica-
tion server frontend, memcached (v1,4.14) as in-memory key-
value store, and MySQL (v5.5.40) as the database backend.
The testbed is composed of four identical physical servers.

CPU RAM

R
ed

uc
tio

n
in

 T
ic

ke
ts

 (
%

)

-100
-80
-60
-40
-20

0
20
40
60
80

100

ATM w/ DTW
ATM w/ CBC
Stingy Algorithm
Max-min Fainess Algorithm

Fig. 10: Comparing ticket reduction: ATM, max-min fairness,
and stingy resizing algorithms.

Fig. 11: MediaWiki testbed.

Each server runs Ubuntu server 14.04 LTS and is equipped
with 16 GiB of DDR3 RAM with up to 41.6 GiB/s bandwidth,
a 4-core Intel Core i7 3820 processor @ 3.6 GHz with SMT,
one 2-TB Sata III 7200 rpm hard disk, and one Gigabit
Ethernet adapter. Three servers host the VMs using QEMU-
KVM (QEMU v2.0 with KVM on Linux kernel 3.13) as
hypervisor. Each VM comprises two virtual CPUs and 4 GiB
of RAM. The forth server is used as the experiment orches-
trator and load generator. Each application tier is deployed
into a separate VM. We consider a scenario of hosting two
MediaWiki applications on these 4 physical servers, termed
as wiki-one and wiki-two, see Figure 11. For wiki-one, there
are 4 Apache servers, 2 Memcached, and 1 DB, whereas there
are only 2 Apache, 1 Memcached, and 1 DB in wiki-two.
For each wiki, we have one load balancer that distributes the
requests across the different apache front-ends. The workload
generator creates requests alternating between low and high
intensity periods, each lasting one hour.

Figure 12 illustrates the CPU usage series across all VMs
located on nodes 2, 3 and 4 against the ticketing threshold
set to 60%. The figure shows the CPU usage levels without
and with ATM resizing. One can observe that indeed resizing
is very effective in achieving CPU usage levels across time
and all VMs below the 60% threshold. The consequent ticket
reduction is dramatic: tickets drop from 49 to only 1.

Besides ticket reduction, we also show performance values
for the two wiki applications, see Figure 13. The figure plots
the the average user latencies (response times) and average

Time (hour)
0 1 2 3 4 5C

P
U

 U
S

E
D

 P
C

T
 (

%
)

0
20
40
60
80

100
Node2

Time (hour)
0 1 2 3 4 5C

P
U

 U
S

E
D

 P
C

T
 (

%
)

0
20
40
60
80

100

Time (hour)
0 1 2 3 4 5C

P
U

 U
S

E
D

 P
C

T
 (

%
)

0
20
40
60
80

100

Time (hour)
0 1 2 3 4 5C

P
U

 U
S

E
D

 P
C

T
 (

%
)

0
20
40
60
80

100

Time (hour)
0 1 2 3 4 5C

P
U

 U
S

E
D

 P
C

T
 (

%
)

0
20
40
60
80

100
Node3

Time (hour)
0 1 2 3 4 5C

P
U

 U
S

E
D

 P
C

T
 (

%
)

0
20
40
60
80

100

Time (hour)
0 1 2 3 4 5C

P
U

 U
S

E
D

 P
C

T
 (

%
)

0
20
40
60
80

100

Time (hour)
0 1 2 3 4 5C

P
U

 U
S

E
D

 P
C

T
 (

%
)

0
20
40
60
80

100

Time (hour)
0 1 2 3 4 5C

P
U

 U
S

E
D

 P
C

T
 (

%
)

0
20
40
60
80

100
Node4

Time (hour)
0 1 2 3 4 5C

P
U

 U
S

E
D

 P
C

T
 (

%
)

0
20
40
60
80

100

Time (hour)
0 1 2 3 4 5C

P
U

 U
S

E
D

 P
C

T
 (

%
)

0
20
40
60
80

100

Original
Resizing
Ticket Threshold

Fig. 12: Overtime plots of CPU utilization for VMs located
on Node 2, 3 and 4, with and without resizing.

throughput (the average number of successful served requests
per unit of time). For wiki-one, the mean response times
with resizing decrease from 20% (from 582 ms to 454 ms)
comparing to the original experiment, whereas throughputs are
maintained at almost the same levels. For wiki-two, throughput
increases by more than 20% (from 14 to 17 requests/sec) while
response time increases by 7% (from 915 ms to 979 ms). This
suggests that with ATM, the servers can fully serve the offered
load, meet good performance values, while at the same time
keeping the number of tickets to a minimum demonstrating
the ultimate goal of ATM.

VI. RELATED WORK

Ticketing systems are widely used to improve on system
dependability, e.g., slow responsiveness, failure [4], software
bugs [21], [22] and system misconfigurations [23]. Prior

Original Resizing

M
ea

n
R

T
 (

m
s)

0

160

320

480

640

800

M
ea

n
T

P
U

T
 (

re
qu

es
t/s

ec
)

0

10

20

30

40

50
RT
TPUT

Original Resizing

M
ea

n
R

T
 (

m
s)

0

240

480

720

960

1200

M
ea

n
T

P
U

T
 (

re
qu

es
t/s

ec
)

0

5

10

15

20

25
RT
TPUT

(a) wiki-one (b) wiki-two

Fig. 13: Performance comparison for wiki-one and wiki-two:
original and resized with ATM.

art in ticketing systems centers on two directions: derive
system management for software concurrency [21], database
systems [3], and distributed data-intensive systems [24] but
also to develop automatic detection systems for different
types of tickets, bugs [22] and software misconfigurations
by leveraging the rich correlation between configuration en-
tries [23]. Machine learning has been used for automating
ticket resolution recommendation [25], [26], [9]. To the best
of our knowledge, there are no proactive methodologies for
preventing ticket issuing, with the exception of models for
database reconfiguration [27]. The proposed ATM policy fills
this gap by not only deriving management insights for usage
ticket patterns, but also by developing novel prediction and
ticket avoidance strategies using VM resizing.

Time series prediction and analysis have been viewed as an
excellent way to develop proactive system management poli-
cies [28], [29]. Temporal models such as ARIMA models [10]
have been widely used to predict time series with strong sea-
sonality. Sophisticated neural network models show a strong
promise in capturing highly irregular time series at a cost of
long training overheads [30]. Time series clustering aims to
explore spatial dependency, either through their original series,
e.g., DTW [12], or extracted features [11], e.g., moments.
ATM combines spatial with temporal models to contain the
cost of neural network training and scales well for very large
numbers of time series.

Virtualization technology has become the industry standard
offering great opportunities to multiplex physical resources
over a large number of VMs. There are two ways to change
the efficiency of resource multiplex ratios: by sizing the virtual
resource capacities [31] and by dynamically consolidating
VMs [32]. While dynamically changing the degree of VM
consolidation is shown effective to take advantage of the time
variability of the workload [33], the overhead of migrating
VMs can greatly reduce its performance benefits. On the
contrary, sizing resource of co-located VMs incurs less system
overhead [31]. A central question of multiplexing resources
is how to strike a good tradeoff of fairness and performance
for workloads, e.g., latency [34] and throughput [35]. Fairness
driven policies, e.g., max-min fairness, proportional fairness,
and bottleneck resource fairness [36], have been proposed for
various systems components, including storage systems [35]
and networks [37]. The sizing algorithm proposed in ATM
differs from related work by its objective to reduce the number

of usage tickets. While max-min fairness also reduces the
number of tickets, it cannot achieve this as effectively as ATM
since ticket reduction is a side-effect rather than a main focus.

VII. CONCLUDING REMARKS

We presented ATM, a methodology to achieve efficient VM
resizing so as to reduce VM usage tickets that are issued in
production data centers. We have shown the effectiveness of
ATM in predicting usage series in production data centers by
exploiting spatial usage patterns of co-located VMs within
the same box and by using detailed prediction of a small
subset of the usage series, allowing the methodology to scale
well. This prediction drives the development of a VM resizing
policy that is shown effective on a production trace and
a working prototype. In our future work we intend to use
ATM’s prediction abilities to drive online dynamic workload
management.

ACKNOWLEDGMENT

The research presented in this paper has been supported
by NSF grant CCF-1218758, EU commission FP7 GENiC
project (Grant Agreement No.608826), and the Swiss National
Science Foundation (project 200021 141002).

REFERENCES

[1] Y. Liang, Y. Zhang et al., “Bluegene/l failure analysis and prediction
models,” in Proceedings of the 36th IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pp. 425–434. IEEE, 2006.

[2] I. Giurgiu, J. Bogojeska et al., “Analysis of labor efforts and their impact
factors to solve server incidents in datacenters,” in Proceedings of the
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pp. 424–433. IEEE, 2014.

[3] I. Giurgiu, A.-D. Almasi, and D. Wiesmann, “Do you know how
to configure your enterprise relational database to reduce incidents?”
in Proceedings of IFIP/IEEE International Symposium on Integrated
Network Management (IM), pp. 339–347. IEEE, 2015.

[4] R. Birke, I. Giurgiu et al., “Failure analysis of virtual and physical
machines: patterns, causes and characteristics,” in Proceedings of the
44th IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pp. 1–12. IEEE, 2014.

[5] R. Birke, A. Podzimek et al., “State-of-the-practice in data center virtu-
alization: toward a better understanding of VM usage,” in Proceedings
of the 43rd IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 1–12. IEEE, 2013.

[6] R. Birke, M. Bjoerkqvist et al., “(Big) data in a virtualized world:
volume, velocity, and variety in cloud datacenters,” in Proceedings of
the 12th USENIX Conference on File and Storage Technologies (FAST),
pp. 177–189. USENIX, 2014.

[7] J. Xue, F. Yan et al., “PRACTISE: robust prediction of data center time
series,” in Proceedings of the 11th International Conference on Network
and Service Management (CNSM), pp. 126–134. IEEE, 2015.

[8] MediaWiki. [Online]. Available: https://www.mediawiki.org/wiki/
MediaWiki

[9] M. M. Botezatu, J. Bogojeska et al., “Multi-view incident ticket clus-
tering for optimal ticket dispatching,” in Proceedings of the 21th ACM
International Conference on Knowledge Discovery and Data Mining
(SIGKDD), pp. 1711–1720. ACM, 2015.

[10] C. Chatfield, The analysis of time series: an introduction. CRC press,
2013.

[11] B. D. Fulcher and N. S. Jones, “Highly comparative feature-based
time-series classification,” IEEE Transactions on Knowledge and Data
Engineering, vol. 26, no. 12, pp. 3026–3037, 2014.

[12] D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series.” in KDD workshop, vol. 10, no. 16, pp. 359–370,
1994.

[13] L. Rokach and O. Maimon, “Clustering methods,” in Data mining and
knowledge discovery handbook. Springer, 2005, pp. 321–352.

[14] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and Applied
Mathematics, vol. 20, pp. 53–65, 1987.

[15] M. Kutner, C. Nachtsheim, and J. Neter, Applied Linear Regression
Models. McGraw-Hill Education, 2004.

[16] L. Tassiulas and S. Sarkar, “Maxmin fair scheduling in wireless net-
works,” in Proceedings of the 21st IEEE International Conference on
Computer Communications (INFOCOM), vol. 2, pp. 763–772. IEEE,
2002.

[17] A. Ghodsi, M. Zaharia et al., “Dominant resource fairness: fair allo-
cation of multiple resource types,” in Proceedings of the 8th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
pp. 323–336. USENIX, 2011.

[18] CPLEX Optimizer. [Online]. Available: http://www-01.ibm.com/
software/commerce/optimization/cplex-optimizer/index.html

[19] D. Pisinger, “A minimal algorithm for the multiple-choice knapsack
problem,” European Journal of Operational Research, vol. 83, no. 2,
pp. 394–410, 1995.

[20] CGROUPS. [Online]. Available: https://www.kernel.org/doc/
Documentation/cgroups/cgroups.txt

[21] S. Lu, S. Park et al., “Learning from mistakes: a comprehensive study on
real world concurrency bug characteristics,” in Proceedings of the 13th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 329–339. ACM,
2008.

[22] A. Nistor, P.-C. Chang et al., “Caramel: detecting and fixing performance
problems that have non-intrusive fixes,” in Proceedings of the 37th
International Conference on Software Engineering (ICSE), pp. 902–912.
IEEE, 2015.

[23] J. Zhang, L. Renganarayana et al., “Encore: exploiting system environ-
ment and correlation information for misconfiguration detection,” ACM
SIGPLAN Notices, vol. 49, no. 4, pp. 687–700, 2014.

[24] D. Yuan, Y. Luo et al., “Simple testing can prevent most critical failures:
an analysis of production failures in distributed data-intensive systems,”
in Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pp. 249–265. USENIX, 2014.

[25] W. Zhou, L. Tang et al., “Resolution recommendation for event tickets
in service management,” in Proceedings of IFIP/IEEE International
Symposium on Integrated Network Management (IM), pp. 287–295.
IEEE, 2015.

[26] Q. Shao, Y. Chen et al., “Easyticket: a ticket routing recommendation
engine for enterprise problem resolution,” Proceedings of the VLDB
Endowment, vol. 1, no. 2, pp. 1436–1439, 2008.

[27] I. Giurgiu, M. Botezatu, and D. Wiesmann, “Comprehensible models
for reconfiguring enterprise relational databases to avoid incidents,” in
Proceedings of the 24th ACM International Conference on Information
and Knowledge Management (CIKM), pp. 1371–1380. ACM, 2015.

[28] N. Tran and D. A. Reed, “Automatic ARIMA time series modeling for
adaptive I/O prefetching,” IEEE Transactions on Parallel Distributed
Systems, vol. 15, no. 4, pp. 362–377, 2004.

[29] Z. Zhuang, H. Ramachandra et al., “Capacity planning and head-
room analysis for taming database replication latency: experiences
with linkedin internet traffic,” in Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering (ICPE), pp. 39–
50. ACM, 2015.

[30] R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the computational
efficiency of training neural networks,” in Proceedings of the 28th
Conference on Neural Information Processing Systems (NIPS), pp. 855–
863, 2014.

[31] S. Spinner, N. Herbst et al., “Proactive memory scaling of virtualized
applications,” in Proceedings of the 8th IEEE International Conference
on Cloud Computing (CLOUD), pp. 277–284. IEEE, 2015.

[32] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines
with dynamic bandwidth demand in data centers,” in Proceedings of
the 30th IEEE International Conference on Computer Communications
(INFOCOM), pp. 71–75. IEEE, 2011.

[33] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and QoS-
aware cluster management,” in Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pp. 127–144. ACM, 2014.

[34] A. Gulati, A. Merchant, and P. J. Varman, “pClock: an arrival curve
based approach for QoS guarantees in shared storage systems,” in
Proceedings of the 33rd ACM SIGMETRICS International Conference

on Measurement and Modeling of Computer Systems, pp. 13–24. ACM,
2007.

[35] H. Wang and P. Varman, “Balancing fairness and efficiency in tiered
storage systems with bottleneck-aware allocation,” in Proceedings of
the 12th USENIX Conference on File and Storage Technologies (FAST),
pp. 229–242. USENIX, 2014.

[36] T. Bonald and J. Roberts, “Multi-resource fairness: objectives, algo-
rithms and performance,” in Proceedings of the 41st ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems, pp. 31–42. ACM, 2015.

[37] A. Sridharan and B. Krishnamachari, “Maximizing network utilization
with max–min fairness in wireless sensor networks,” Wireless Networks,
vol. 15, no. 5, pp. 585–600, 2009.

