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Lecture 1: Introduction to social media anomaly detection Overview of anomaly detection

What is Anomaly Detection?

Anomaly detection (or outlier detection)

Textbook definition: the identification of items, events or observations
which do not conform to an expected pattern or other items in a dataset.

Nice examples:
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Lecture 1: Introduction to social media anomaly detection Overview of anomaly detection

Generic Algorithm for Anomaly Detection

Given a data set D, propose a model M(D) which ”generates” the
data.

Thus if o ∈ D then let ô be prediction from M(D).

o is anomalous if ‖o− ô‖ is large.

Challenges of anomaly detection: outliers often have disproportional
impact on the estimation of M(D).
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Lecture 1: Introduction to social media anomaly detection Overview of anomaly detection

Challenges in Anomaly Detection

The reality is:

You never know what you are looking for. Anomaly detection may be more
of “an art” than “the science”.

Issues with Existing Approaches

Most existing approaches to anomaly detection suffer from a series of shortcomings:

Sensitiveness: high false alarm rate

Interpretation: statistical test results with very limited insights about the detected
anomaly

Scalability: challenging for high-dimensional streaming data
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Lecture 1: Introduction to social media anomaly detection Overview of anomaly detection

Tutorial Themes

1 Special properties of social media anomaly detection:

We will provide concrete examples of social media anomaly detection

2 State-of-art techniques in anomaly detection:

We will address the issues in existing approaches

3 Working systems and competitions:

We will share practical scenarios and lessons learned
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Lecture 1: Introduction to social media anomaly detection Types and properties of social media data

Social Media Data Types

Large-scale social media data usually consist of three data types:
structured data, unstructured texts and networks labeled (sometimes) with
temporal or/and spatial tags
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Lecture 1: Introduction to social media anomaly detection Types and properties of social media data

Examples of Social Media Anomaly Detection

Example 1: Bot detection
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Examples of Social Media Anomaly Detection

Example 2: Compromised account detection
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Lecture 1: Introduction to social media anomaly detection Types and properties of social media data

Examples of Social Media Anomaly Detection

Example 3: Group Review Spamming
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Lecture 1: Introduction to social media anomaly detection Types and properties of social media data

Examples of Social Media Anomaly Detection

Example 4: Organized Viral Campaign
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Lecture 1: Introduction to social media anomaly detection Types and properties of social media data

Examples of Social Media Anomaly Detection

Example 5: Bullying on Social Media
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Lecture 1: Introduction to social media anomaly detection Types and properties of social media data

Categorization of Social Media Anomaly Detection

Based on the anomaly type, we have

Point anomaly detection

Group anomaly detection

Based on the input format, we have

Activity-based: assume individuals are marginally independent

Graph-based: account for relational information represented by graphs

Based on the temporal factor, we have

Static information: one snapshot of the social network

Dynamic information: time series observations of the social network
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Lecture 1: Introduction to social media anomaly detection Types and properties of social media data

Challenges in Social Media Anomaly Detection

In addition to the challenges of classical anomaly detection tasks, social
media also lead to new challenges:

Heterogeneous data with rich and complex information

Beyond the typical iid assumptions

Very limited labeled examples or benchmark datasets

Varieties and dynamics in anomalies
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Lecture 1: Introduction to social media anomaly detection Anomaly detection in network data

Overview of Graph Anomaly Detection

Credits: Akoglu et al, ASONAM Tutorial
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Lecture 1: Introduction to social media anomaly detection Anomaly detection in network data

Static Plain Graph

Feature Based Anomaly:

Oddball [Akoglu et al. (2010)]

Recursive structural features
[Henderson et al. (2011)]

Community Based Anomaly:

Bipartite graphs: neighborhood
formation [Sun et al. (2005)]

Non-negative residual matrix
factorization [Tong and Lin (2011)]

Anti-social communications [Ding et al.
(2012)]
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Lecture 1: Introduction to social media anomaly detection Anomaly detection in network data

Static Attributed Graph

Substructure and subgraphs

Minimum Descriptive Length (MDL)
[Noble and Cook (2003)]

MDL and probabilistic measure [Eberle
and Holder (2007)]

Community outliers

Probabilistic models [Gao et al. (2010)]

PICS: cohesive clusters [Akoglu et al.
(2012)]
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Lecture 1: Introduction to social media anomaly detection Anomaly detection in network data

Dynamic Graph

Distance based

Graph distance: weight distance etc
[Noble and Cook (2003)]

ARIMA model [Pincombe (2005)]

Scan statistics [Park et al. (2008)]

Structure based

Eigen-space-based events [Idé and
Kashima (2004)]

GraphScope: matrix factorization [Sun
et al. (2007)]
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Lecture 1: Introduction to social media anomaly detection Anomaly detection in temporal data

Temporal Data Anomaly Detection

Point anomaly detection

Markov process

Bayes one-step Markov [Schonlau et al. (2001)]
Hybrid multi-step Markov [Ju and Vardi (2001)]

Poisson process [Ihler et al. (2006)]

Compression [Schonlau et al. (2001)]

Probabilistic suffix tree (PST) [Sun et al. (2006)]

Temporal dependence [Qiu et al. (2012)]
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Lecture 1: Introduction to social media anomaly detection Anomaly detection in temporal data

Temporal Data Anomaly Detection

Group anomaly detection

Scan statistics [Das et al. (2009); Friedland and Jensen (2007)]

Density estimation

Multinomial genre model (MGM) [Xiong et al. (2011a)]
Flexible genre model (FGM) [Xiong et al. (2011b)]
Group Latent Anomaly Detection model(GLAD) [Rose et al. (2014)]
One class support measure machine (OCSMM) [Muandet and
Schölkopf (2013)]
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Lecture 2: Recent advances in social media anomaly detection Point anomaly detection in social media

Point Anomaly Detection

Definition

Point anomaly detection aims to detect suspicious individuals, whose
behavioral patterns deviate significantly from the general public.

Eg 1: Unusual file access Eg 2: Abnormal network communication
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Outline of Point Anomaly Detection

Activity-based Point Anomaly

Graph-based Point Anomaly

Static graph

Dynamic graph
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Lecture 2: Recent advances in social media anomaly detection Point anomaly detection in social media

Activity-based Point Anomaly Detection

Statistical hypothesis testing framework:

Markov process

Bayes one-step Markov [Schonlau et al. (2001)]
Hybrid multi-step Markov [Ju and Vardi (2001)]

Poisson process [Ihler et al. (2006)]

Compression [Schonlau et al. (2001)]

Probabilistic suffix tree (PST) [Sun et al. (2006)]

Temporal dependence [Qiu et al. (2012)]

Comments

The activity sequences of each user are modeled under Markov
assumption, which may suffer from rapid explosion in the dimension of the
parameter space.

Liu & Chawla WSDM-2017 Tutorial February 5, 2017 29 / 106



Lecture 2: Recent advances in social media anomaly detection Point anomaly detection in social media

Markov Process

Application in detecting masquerades from UNIX commands usage records.

Bayes one-step Markov

Null hypothesis: one-step Markov process, the command of a user at
current time relates to his previous command
Alternative hypothesis: multinomial distribution with Dirichlet prior
Testing statistics: the Bayes factor

Hybrid multi-step Markov

Null hypothesis: hybrid Markov model
Alternative hypothesis: commands are generated from other users
Testing statistics: combined statistics of the hybrid Markov model
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Probabilistic Suffix Tree (PST)

Application in detecting outliers from a set of alphabetical sequences

Concepts

Edge → symbol in the alphabet
Node → string
Node distribution → the conditional
probability of seeing a symbol right after
the string label

0.008

(0.991, 0.009)

0.570

(0.968, 0.032)

0.066

(0.972, 0.028)

0.612

(0.5, 0.5)

0.005
(0.755, 0.245)

(0.2, 0.8)

0.003

0.320

(0.159, 0.841)

0.388

(0.606, 0.394)

0.017

(0.155, 0.845)
bb 1781

0.348

(0.612, 0.388)

Root

(0.5, 0.5)

0.023

(0.667, 0.333)

0.023

minCount = 25 (0.999, 0.001)
a 4674

b 2961

aa 2920

ba 336

ab 85

aba 20

bab 7

abb 13

bbb 836

babb 4

bbab 4

a

a

a

b

b

b

b

b

a

b

b

b

a

b

0.059
bba 153

(0.947, 0.053)

(1.0, 0)
aaa 1356

0.520
(0.333, 0.667)

baa 212
0.081

a

Pmin = 0.02

Figure 1: An example of PST and pruning it using
MinCount or Pmin. The probability distribution
vectors are shown on the top of the nodes, and the label
strings, the number of times they appear in the dataset
and their empirical probability are shown within the
nodes

The node also records a probability distribution vector
of the symbols, which corresponds to the conditional
probabilities of seeing a symbol right after the label
string in the dataset. For example, the probability
vector for the node labelled bba is (0.947,0.053). This
means the conditional probability of seeing a right after
bba (P (a|bba)) is 0.947, and seeing b right after bba
(P (b|bba)) is 0.053.

The structure of PST is similar to the classical
suffix tree (ST). However, there are some important
differences. Besides keeping a probability distribution
vector at each node, in a PST, the parent of a node is a
suffix of the node, while in a classical ST the parent of
a node is a prefix of the node.

2.1 Pruning of a PST
The size of a PST is a function of the cardinality of
the alphabet (|Σ|) and maximum memory length L. A
fully grown unchecked PST is (O(|Σ|L). Several pruning
mechanisms have to be employed to control the size of
the PST.

Bejerano and Yona [5] have proposed a two-step
mechanism to prune a PST. In the first step, an
empirical probability threshold Pmin is used to decide
whether to extend a child node. For example, at the

node labelled bb, if P (abb) ≥ Pmin, the node with
label string abb will be added to the PST under some
conditions. Otherwise, the node itself, including all its
descendants will be ignored. The formula of computing
P (abb) is listed in Table 1

In the second step, a tree depth threshold L is
employed to cut the PST. This means when the length
of the label string of a node reaches L, its children nodes
will be pruned.

Instead of using Pmin, Yang and Wang [15] sug-
gested the use of minCount for pruning a PST. For
each node, the number of times its label string appears
in the database is counted. If this number is smaller
than minCount, then the node (and therefore all its
children) are pruned.

In Figure 1 both Pmin and MinCount are shown
in each node for ease of exposition. However, it is not
necessary to keep them in the PST. The dashed and
the solid lines show examples of pruning the PST using
Pmin = 0.02 and MinCount = 25 respectively.

2.2 Computing Probabilities Using a PST
The probability associated with a sequence s over a PST
is PT (s) = PT (s1)P

T (s2|s1) . . . PT (sl|s1s2...sl−1). The
PST allows an efficient computation of these intermedi-
ate conditional probability terms.

For example let us compute PT (b|abab) from the
PST in Figure 1. The search starts from the root
and traverse along the path → b → a → b, which
is in the reverse order of string abab. The search
stops at the node with label bab, because this is the
longest suffix of abab that can be found in the PST,
and PT (b|abab) is estimated by PT (b|bab) = 0.8. Thus,
we are exploiting the short memory feature, which
occurs in sequences generated from natural sources: the
empirical probability distribution of the next symbol,
given the preceding subsequence, can be approximated
by observing no more than the last L symbols in that
subsequence [12, 5].

If the PST is pruned using minCount = 25, the
search stops at the node with label ab and PT (b|abab)
is estimated by PT (b|ab) = 0.394. The following is an
example to compute the probability of string ababb over
the PST pruned using minCount = 25.

PT (S) = PT (a)PT (b|a)PT (a|ab)PT (b|aba)PT (b|abab)
= 0.612× 0.028× 0.606× 0.032× 0.394
= 1.309 ∗ 10−4

Since the probabilities are multiplied, care must be
taken to avoid the presence of zero probability. Thus,
a smoothing procedure is employed across each node
of the PST and the probability distribution vector is

97
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Lecture 2: Recent advances in social media anomaly detection Point anomaly detection in social media

Granger Graphical Models

Basic idea: Graphical modeling using the notions of Granger causality and methods of
variable selection

Granger Causality: Cause happens prior to its effects [Granger 1969, 1980]. A time
series y is the Granger Cause of another time seres x if the past values of y are helpful
in predicting the future values of x given its own past.

Practically, we perform the following two auto-regressions:

xt =
L∑

l=1

alxt−l (1)

xt =

L∑
l=1

a′lxt−l +

L∑
l=1

b′lyt−l, (2)

If Eq. (2) is a significantly better model than Eq. (1) (by statistical signficance test), we
determine that time series y Granger causes time series x.
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Lecture 2: Recent advances in social media anomaly detection Point anomaly detection in social media

Granger Graphical Models

Lasso-Granger [Arnold et al, KDD 2007]: Given P time series x(1), . . . ,x(P ) of length T ,
we can determine the Granger relationships of x(i) by performing the penalized
auto-regression as follows:

min
{ai}

T∑
t=L+1

∥∥∥∥∥x(i)t −
P∑

j=1

β>i,jx
(j)
t,Lagged

∥∥∥∥∥
2

+ λ ‖βi‖1, (3)

where x
(j)
t,Lagged =

[
x
(j)
t−L, . . . , x

(j)
t−1

]
.

Major advantages
- Variable selection can be efficiently achieved for high-dimensional time series
- Consistency analysis [Arnold et al, KDD 2007; Bahadori and Liu, 2012]

Lasso-Granger: P[Error] = o(c′L exp(−T v)) for some 0 ≤ v < 1.
Significant test: P[Error] = o(c′

√
T − L exp(−c2(T − L)/2))

Learning is possible even when the dimension P is significantly larger than T !
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Lecture 2: Recent advances in social media anomaly detection Point anomaly detection in social media

Granger Graphical Models for Anomaly Detection

Use Granger-lasso on training data: learn the coefficient β̂i
(a)

for each variable xi
using lasso regression;

Use constrained regression on the test data to learn another sets of coefficients

β̂i
(b)

Neighborhood similarity (ε0 << ε1):∑
j∈I0

|β(b)
i,j | ≤ ε0,

∑
j∈I1

|β(b)
i,j | ≤ ε1,

Coefficient similarity: ∑
j

|β(a)
i,j − β

(b)
i,j | ≤ ε,

Anomaly score: KL-divergence

d ab
i ≡

∫
dxi p(a)(xi|Xlagged

L ) ln
p(a)(xi|Xlagged

L )

p(b)(xi|Xlagged
L )

Threshold: estimate the score distribution of training data; use 95% quantile as a
threshold
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Outline of Point Anomaly Detection

Activity-based Point Anomaly

Graph-based Point Anomaly

Static graph

Dynamic graph
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Static Graph-based Point Anomaly Detection

Represent the relational information by graphs:

Power law [Akoglu and McGlohon (2009); Akoglu et al. (2010)]

Random walk [Moonesinghe and Tan (2008); Sun et al. (2005)]

Hyper-graph [Silva and Willett (2008b,a)]

Spatial auto-correlation [Sun and Chawla (2004); Chawla and Sun
(2006)]

Comments

Consider not only the activity of individual users but also their
interactions. Relies on nodes’ feature engineering from the graph. Strong
assumptions on the graph generating process.
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Lecture 2: Recent advances in social media anomaly detection Point anomaly detection in social media

Power Law

Application in detecting anomalous nodes in subgraphs

1 Investigates the number of nodes Ni, the total weight Wi and
number of edges Ei of the egonet Gi.

2 Defines the normal neighborhoods patterns: e.g. the Egonet Density
Power Law (EDPL) pattern for Ni and Ei: Ei ∝ Nα

i , 1 ≤ α ≤ 2. ;
the Egonet Weight Power Law (EWPL) pattern for Wi and

Eβi , β ≥ 1.

3 Takes the distance-to-fitting-line as a measure to score the nodes in
the graph.

Comments

Fitting of power law and the calculation of anomaly score is
computationally efficient, easily fail if the network does not obey the
power law.
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Hyper-Graph

Definition

A hypergraph is a generalization of a graph in which an edge can connect
any number of vertices.

3

1

65

4

3

2

9

8

7

1

6
5

4

3

2

9

8

7

111111000
000101111

Fig. 1

MODELING TWO OBSERVATIONS, 111111000 AND 000101111, WITH p = 9, USING A GRAPH (TOP) AND A HYPERGRAPH

(BOTTOM). WITH THE GRAPH, REPRESENTING ONE OBSERVATION OF AN INTERACTION REQUIRES MULTIPLE EDGES. WITH

A HYPERGRAPH, ONE HYPEREDGE SUFFICES. THE HYPERGRAPH IS MORE EFFICIENT FOR STORING/REPRESENTING

OBSERVATIONS AND MORE INFORMATIVE ABOUT THE REAL STRUCTURE OF THE DATA.

II. ANOMALY DETECTION ON HYPERGRAPHS

Let H = {V , E} be a hypergraph [7] with vertex set V and hyperedge set E . Each hyperedge,
denoted x 2 E , can be represented as a binary string of length p. Bits set to 1 correspond to
vertices that participate in the hyperedge. In this setting, we may approximately equate E with
{0, 1}p, i.e. the binary hypercube of dimension p. (We say “approximately” due to the existence
of prohibited hyperedges, namely the origin, x = 0, and all x within Hamming distance 1 of the
origin, which correspond to interactions between zero or one network nodes. The impact of this
precluded set becomes negligible for very large p and is omitted from this paper for simplicity
of presentation.) This is a finite set with 2p elements. We define g(x) to be the probability mass
function (pmf) over E , evaluated at x.

Hypergraphs provide a more natural representation than graphs for multiple co-occurrence data
of the type examined in this paper. For example, one could consider using a graph to represent
co-occurrence data by having each vertex represent a network node and using weighted edges to
connect vertices associated with observed co-occurrences. As Figure 1 illustrates, using a graph
in this manner would imply connecting any pair of vertices appearing in an observation with an
edge. The edge structure of a graph is usually represented as a p⇥p symmetric adjacency matrix
with p

2
(p�1) distinct elements, so that even converting observations into a collection edge weights

could be enormously challenging computationally. As Figure 1 illustrates, two observations can
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Hyper-Graph

Application in detecting anomalous meetings in very large social networks

Define g(x) as the probability mass function of the meetings
evaluated at a hype-edge x

Define the distribution of the meetings as a two-component mixture:
g(x) = (1− π)f(x) + πµ(x), with f(x) as nominal distribution, µ(x)
as the anomalous distribution, π as the mixture parameter

µ(x): uniform distribution, f(x): nonparametric density estimator

Learn the likelihood of each observation using variational EM
algorithm

Anomalous score: model likelihood

Comments

A concise representation of complex interactions among multiple nodes,
only applies to binary relationships where an edge is either present or
missing.
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Spatial Auto-correlation

Application in detecting spatial outliers, e.g. local anomalous counties
from census data

1 Spatial neighborhood resembles the neighborhood defined in graph

2 Spatial Local Outlier Measure (SLOM): “stretched” distance between
the point and its neighbors d̃(a) and oscillating parameters β(o)

3 Use SLOM as anomalousness score to detect spatial outliers

Comments

SLOM captures the spatial autocorrelation and spatial heteroscedasticity
(non-constant variance). Local spatial statistics would suffer from the
“curse of dimensionality”.
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Outline of Point Anomaly Detection

Activity-based Point Anomaly

Graph-based Point Anomaly

Static graph

Dynamic graph
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Dynamic Graph-based Point Anomaly Detection

Three main categories [Bilgin and
Yener (2010)]:

Time series analysis of graph
data

ARIMA process (Pincombe,
2005)
graph eigenvectors (Idé and
Kashima, 2004)

GraphScope: Minimum
description length (MDL) (Sun
et al., 2007)

Window based approaches: scan
statistics (Park et al., 2008)
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Time Series Analysis

ARMA process (Pincombe, 2005)

1 Constructs a time series of changes for each graph topology distance
measures

2 Modeled each time series with an ARMA process

3 Set up a residual threshold for the goodness of model fitting for time
series.

Graph eigenvector (Idé and Kashima, 2004)

1 Define a time evolving dependency matrix from graphs

2 Extract the principal eigenvector u(t) as the “activity” vector,

3 Define the typical pattern as a linear combination of the past activity
vectors

4 Calculates the dissimilarity of the present activity vector from this
typical pattern as anomalous score
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GraphScope: Minimum Description Length

Application in detecting the change points in a stream of graph series.

Concepts

Graph segment: One or more graph snapshots;
Change point measure: the encoding cost for G(s)⋃{G(t)} as cn and
G(t) as c, If cn − co < c, the new graph is included in the current segment.

Rationale

Whether it is easier to include a new graph into the current graph segment
or to start a new graph segment. If a new graph segment is created, it is
treated as a change point.
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Minimum Description Length

1 Compute the encoding cost of including a new graph into the current
graph segment

2 Compute the encoding cost of starting a new graph segment
3 Compare the two costs and flag change point

Figure 2: Notation illustration: A graph stream with 3

graphs in 2 segments. First graph segment consisting

of G(1) and G(2) has two source partitions I
(1)
1 = {1, 2},

I
(1)
2 = {3, 4}; two destination partitions J

(1)
1 = {1}, J

(1)
2 =

{2, 3}. Second graph segment consisting of G(3) has three

source partitions I
(2)
1 = {1}, I

(2)
2 = {2, 3}, I

(2)
3 = {4}; three

destination partitions J
(2)
1 = {1}, J

(2)
2 = {2}, J

(2)
2 = {3}.

is between (i) the number of bits needed to describe the
communities (or, partitions) and their change points (or,
segments) and (ii) the number of bits needed to describe
the individual edges in the stream, given this information.

We begin by first assuming that the change-points as well
the source and destination partitions for each graph seg-
ment are given, and we show how to estimate the bit cost
to describe the individual edges (part (ii) above). Next, we
show how to incorporate the partitions and segments into
an encoding of the entire stream (part (i) above).

4.1 Graph encoding
In this paper, a graph is presented as a m-by-n binary

matrix. For example in Figure 2, G(1) is represented as

G(1) =

0

BB@

1 0 0
1 0 0
0 1 1
0 0 1

1

CCA (1)

Conceptually, we can store a given binary matrix as a bi-
nary string with length mn, along with the two integers m
and n. For example, equation 1 can be stored as 1100 0010 0011
(in column major order), along with two integers 4 and 3.

To further save space, we can adopt some standard lossless
compression scheme (such as Hu�man coding, or arithmetic
coding [8]) to encode the binary string, which formally can
be viewed as a sequence of realizations of a binomial random
variable X. The code length for that is accurately estimated
as mnH(X) where H(X) is the entropy of variable X. For

notational convenience, we also write that as mnH(G(t)).
Additionally, three integers need to be stored: the matrix
sizes m and n, and the number of ones in the matrix (i.e.,
the number of edges in the graph) denoted as |E| 1. The

1|E| is needed for computing the probability of ones or ze-
ros, which is required for several encoding scheme such as
Hu�man coding

cost for storing three integers is log⇥|E|+log⇥m+log⇥n bits,
where log⇥is the universal code length for an integer2. Notice
that this scheme can be extended to a sequence of graphs in
a segment.

More generally, if the random variable X can take values
from the set M , with size |M | (a multinomial distribution),
the entropy of X is

H(X) = �P
x⇤M p(x) log p(x).

where p(x) is the probability that X = x. Moreover, the
maximum of H(X) is log |M | when p(x)= 1

|M| for all x ⌦ M

(pure random, most di⌅cult to compress); the minimum is
0 when p(x) = 1 for a particular x ⌦ M (deterministic and
constant, easiest to compress). For the binomial case, if all
symbols are all 0 or all 1 in the string, we do not have to
store anything because by knowing the number of ones in
the string and the sizes of matrix, the receiver is already
able to decode the data completely.

With this observation in mind, the goal is to organize the
matrix (graph) into some homogeneous sub-matrices with
low entropy and compress them separately, as we will de-
scribe next.

4.2 Graph Segment encoding
Given a graph stream segment G(s) and its partition as-

signments, we can precisely compute the cost for transmit-
ting the segment as two parts: 1) Partition encoding cost:
the model complexity for partition assignments, 2) Graph
encoding cost: the actual code for the graph segment.

Partition encoding cost
The description complexity for transmitting the partition
assignments for graph segment G(s) consists of the following
terms:

First, we need to send the number of source and destina-
tion nodes m and n using log⇥m+log⇥n bits. Note that, this
term is constant, which has no e�ect on the choice of final
partitions.

Second, we shall send the number of source and destina-
tion partitions which is log⇥ks + log⇥⌘s.

Third, we shall send the source and destination partition
assignments. To exploit the non-uniformity across parti-
tions, the encoding cost is mH(P ) + nH(Q) where P is a

multinomial random variable with the probability pi =
m

(s)
i

m

and m
(s)
i is the size of i-th source partition 1 ⌃ i ⌃ ks).

Similarly, Q is another multinomial random variable with

qi =
n
(s)
i
n

and n
(s)
i is the size of i-th destination partition,

1 ⌃ i ⌃ ⌘s.
For example in Figure 2, the partition sizes for first seg-

ment G(1) are m
(1)
1 = m

(1)
2 = 2, n

(1)
1 = 1, and n

(1)
2 = 2; the

partition assignments for G(1) costs �4( 2
4

log( 2
4
)+ 2

4
log( 2

4
))�

3( 1
3

log( 1
3
) + 2

3
log( 2

3
)) bits.

In summary, the partition encoding cost for graph seg-
ment G(s) is

C(s)
p := log⇥m + log⇥n + log⇥ks + log⇥⌘s + (2)

mH(P ) + nH(Q)

2To encode a positive integer x, we need log⇥x � log2 x +
log2 log2 x + . . ., where only the positive terms are retained
and this is the optimal length, if the range of x is un-
known [19]
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Lecture 2: Recent advances in social media anomaly detection Point anomaly detection in social media

Window based approach

Scan statistics

Slide a small window over local regions, computing certain local statistic
for each window. The supremum or maximum of these locality statistics is
known as the scan statistic.

Scan region: closed kth-order neighborhood of vertex v in graph
D = (V,E): Nk[v;D] = {w ∈ V (D) : d(v, w) ≤ k}. where d(v, w) is the
minimum directed path length from v to w in D.
Locality statistics: any digraph invariant Ψk(v) of the scan region. For
instance, the out degree of the digraph can be one such invariant locality
statistics.

Comments

An intuitively appealing method to evaluate dynamic graph patterns, need
to pre-specify a window width before one looks at the data.
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Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

Outline

1 Lecture 1: Introduction to social media anomaly detection

2 Lecture 2: Recent advances in social media anomaly detection
Point anomaly detection in social media
Group anomaly detection in social media
Fake news detection
Applications and systems
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Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

Group Anomaly Detection

Definition

Group anomaly or “collective anomaly” detection in social network aims to
discover groups of participants that collectively behave anomalously
Chandola et al. (2007).

The problem is challenging because

We do not know beforehand any members of a malicious group;
The members of anomalous groups may change over time;
Usually no anomaly can be detected when we examine individual
member.

Liu & Chawla WSDM-2017 Tutorial February 5, 2017 49 / 106



Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

Activity-based Group Anomaly Detection

Scan statistics [Das et al. (2009)]

Density estimation

Multinomial genre model (MGM) [Xiong et al. (2011a)]
Flexible genre model (FGM) [Xiong et al. (2011b)]
Group Latent Anomaly Detection model(GLAD) Rose et al. (2014)
One class support measure machine (OCSMM) [Muandet and
Schölkopf (2013)]
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Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

Density Estimation

MGM

Model groups as a mixture of Gaussian distributions with different mixture
rates following the paradigm of latent models

FGM

Extend MGM to with more flexibility in the generation of topic
distributions

GLAD

Infer the group membership and roles of each user automatically

OCSMM

Generalize one-class support vector machine (OCSVM), compute the
kernel of Gaussian distributions and apply SVM in a probability measure
space.
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Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

Multinomial Genre Model (MGM)

Assumptions:

Groups are pre-computed
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Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

Flexible Genre Model (FGM)

Assumptions:

Groups are pre-computed

Flexible Genre Model (FGM)

For each group:

1 Draw a genre
1, 2, . . . , T 3 ym ∼M(π)

2 Draw topic distribution for
ym : SK 3 θm ∼ Dir(αym

)
3 Draw K topics {βmk ∼
P (βmk|νk)}k=1,2,...,K

4 For each point in group:

1 Draw topic membership:
zmn ∼M(θn)

2 Generate point
xm,n ∈ P (xm,n|βm,zm,n)

α

zmn

xmn

N

θm

T

π

η
K

ym

β

M
K

Model Parameters

M(π) - Multinomial

Each genre - Dirichlet

Topic generators P (.|ν)-
Gaussian Inverse Wishart

Point generators
P (xn|βk) - Multivariate
Gaussian
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Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

Flexible Genre Model (FGM)

Inference and Learning Parameters

Approximate inference of latent variables (Gibbs Sampling)

Use samples to learn parameters (Single step Monte Carlo EM)

Anomaly Detection

Point based anomaly score:

Infer the topics ({βm,k}Kk=1)
Compute negative log likelihood for all βm,k w.r.t. ηk
Rationale: If group contains anomalous points then corresponding
topics will have low probability under η

Distribution based anomaly score:

Infer the topic distribution θm
Compute negative log likelihood w.r.t. α
Rationale: An anomalous group will be unlikely to be generated from
any genre
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Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

GLAD: Joint Models for Activity and Networks

Group latent anomaly detection model(GLAD) [Rose et al. (2014)]

Concept of Role:

1 Latent component in node features

2 Similar to an article topic

Modeling Principal: A group is modeled as a mixture of roles, with same
of roles but different role mixture rate

Definition of Group Anomaly

Group anomaly has a role mixture rate pattern that does not conform to
the majority of other groups.
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Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

Group Latent Anomaly Detection (GLAD0)

π p Gpaα Rpa Xpa

zp→q zp←q

Ypq

θm

βk

N ×N

M

ApN

K

B

πp ∝ Dirichlet(α),
Gp ∝ Multinomial(πp),
Rp ∝ Categorical(θGp),
Zp→q ∝ Multinomial(πp),
Zp←q ∝ Multinomial(πp),
Yp,q ∝ Bernouli(BZp→,Zp←q),
Xp ∝ Multinomial(βRp)

High computational cost

Loose connection of
MMSB and LDA
components via the
shared group
membership
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Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

Group Latent Anomaly Detection (GLAD)

A more computationally efficient model design

𝜋𝑝 𝑅𝑝𝐺𝑝𝛼

𝜃
𝑀

𝑌𝑝,𝑞𝐵 𝑋𝑝 𝛽
𝐾𝑁𝑁2

𝑁

πp ∝ Dirichlet(α), Gp ∝ Multinomial(πp), Rp ∝ Categorical(θGp),
Yp,q ∝ Bernouli(BGp,Gq), Xp ∝ Multinomial(βRp)
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Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

Dynamic extension of GLAD (d-GLAD)

G
(1)
p Y

(1)
p,q

R
(1)
p X

(1)
p

B

✓(1)✓0

�

G
(2)
p Y

(2)
p,q

R
(2)
p X

(2)
p

B

✓(2)

�

G
(t)
p Y

(t)
p,q

R
(t)
p X

(t)
p

B

✓(t)

�

⇡p

↵

N

N

M

K

N

N

M

K

N

N

M

K

N

1

Temporal evolution of the role mixture rate for each group is modeled as a
series of multivariate Gaussian distributions: θtm ∝ Gaussian(θt−1m , σ)
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Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

Procedure

Use BIC to
decide # of
groups and
# of roles

Learn
GLAD /

d-GLAD to
infer role
mixture

rates

Rank
groups with

respect
to the

anomaly
score

Perform
significant
test and

raise alarms

Calculate Anomaly Score

GLAD : expected likelihood of role distribution
AnomalyScoreGLAD ∝

∑
p∈GEq[p(Rp|θ)]

d-GLAD : change of role mixture rate over time
AnomalyScored-GLAD ∝ ‖θt−1m − θtm‖2

Liu & Chawla WSDM-2017 Tutorial February 5, 2017 59 / 106



Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

One Class Support Vector Machines

Kernel Methods

Without'groups'there'are'no'
visible'outliers'

The'Red'group'is'an'outlier'

How do we determine outlier groups ? Clearly Higher-Order Statistics are
required. We will use Kernel Mean Embedding (KME) to form
Higher-Order Statistics
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Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

Smallest enclosing hypersphere problem

Given a set of point S = {x1, x2, . . . , xn} ∈ Rd. Find the smallest
hypersphere that encloses S.

min
R,c

R2 (4)

subject to ‖xi − c‖22 ≤ R2 ∀i = 1, . . . n (5)

Standard Approach through Lagrangian multiplier
L(c,R, λ) = R2 +

∑n
i=1 λi[

∥∥xi − c‖2 −R2
]

Optimizing L yields:∑n
i=1 λi = 1 and c =

∑n
i λixi
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Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

Working in Dual Space

One can work entirely in the dual space.

In fact, the Lagrangian can be expressed as

L(c,R, λ) =

n∑
i=1

λi < xi, xi > −
n∑

i,j=1

λiλj < xi, xj >

Or if we generalize to a positive-semidefinite kernel k then

L(c,R, λ) =

n∑
i=1

λik(xi, xi)−
n∑

i,j=1

λiλjk(xi, xj)

Solve the dual optimization problem to estimate λ∗.
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Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

Detecting Outliers

To determine whether a new entity x is an outlier with respect to the
set S, test if

g(x) =

〈
x,

n∑
i=1

λixi

〉
−R2 > 0

i.e.,

g(x) = 〈x, x〉 − 2
∑
i∈sv

λi 〈x, xi〉+
n∑

i,j=1

〈xi, xj〉 −R2 > 0

or with a kernel k

g(x) = k(x, x)− 2
∑
i∈sv

λik(x, xi) +

n∑
i,j=1

k(xi, xj)−R2 > 0
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Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

Kernel Mean Embedding for Group Outlier Detection
[Muandet et. al.]

Let P be a group of points {x1, . . . xn}.
Let φ be the kernel for P , i.e., all matrices of the form φ(xi, xj) are
positive semidefinite (non-negative eigenvalues).
The Hilbert Space associated with φ is the closed linear space of
{φ(., x)|x ∈ Rd}. This is known as the reproducing kernel hilbert
space (RKHS).
The distribution can be represented via the kernel mean in RKHS:
1
n

∑n
=1 φ(., xi).

For certain φ (Gaussian kernel), the mapping is injective one-to-one.
Let P1 = {x1, . . . , xn1} and and P2 = {y1, . . . , yn2} are two groups of
size n1 and n2 then form a dot product between the two groups as

1

n1n2

n1∑
i=1

n2∑
j=1

φ(xi, yj)
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Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

Static Graph-based Group Anomaly Detection

Graph-based group anomaly detection techniques seek to jointly utilize
these observations and detect anomalous groups in a unified framework.

Minimum description length (MDL) [Chakrabarti (2004); Lin and
Chalupsky (2003); Rattigan and Jensen (2005)]

Anomalous substructure [Noble and Cook (2003); Eberle and Holder
(2007)]

Tensor decomposition [Maruhashi et al. (2011)]
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Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

Anomalous Substructure

Given a labeled graph, each node as a label identifying its type

1 Start with a list holding 1-vertex substructures for each unique vertex
label.

2 Modify the list by generating, extending, deleting or inserting vertices
and edges.

3 Count the number of occurrences for substructures

4 Define a score for a substructure S in a graph G as
F2 = Size(S) ·Occurrences(S,G), which is simply the product of
the total number of nodes within a substructure and its occurrences.
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Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

Tensor Decomposition

Given an M-mode tensor X of size I1 × I2 × · · · × IM ,

1 Performs CP decomposition of the tensor of rank R as

X ≈∑R
r=1 λr(a

(1)
r × · · · a(M)

r ), where {a(i)r } are rank-1 eigenscore
vectors.

2 Transform the eigenscore vector plot (absolute value of eigenscore vs.
attribute index) into the eigenscore histogram (absolute value of
eigenscore vs. frequency count)

3 Conduct spike detection on the histogram.

Comment

Capture the complex structure in heterogeneous networks. But tensor
decomposition problem itself can be NP-hard to solve.

Liu & Chawla WSDM-2017 Tutorial February 5, 2017 67 / 106



Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

Dynamic Graph-based Group Anomaly Detection

Evolving networks can also provide insights into the temporal changes of
groups. Detecting anomalously groups in dynamic graphs is more
challenging, as the group structures are not fixed and the unusual patterns
in the group can also change.

Bipartite graph [Friedland and Jensen (2007); Liu et al. (2008)]

t-partite graph [Xu et al. (2007); Kim and Han (2009)]

Counting process [Heard et al. (2010)]
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Lecture 2: Recent advances in social media anomaly detection Group anomaly detection in social media

Bipartite graph

Application in finding corporate tribes
Given bipartite graph G = (R

⋃
A,E), R = {ri}: the entity

representatives, A = {aj} : attributes, E: edges with time annotation.

1 List the co-worker relationships in the graph for every pair
fij = (ri, rj)

2 Create a new graph H = (R,F ), where F = {fij} is annotated with
individuals attribute and history information.

3 Define a significance score for each edge, which measures the
significance or the anomalousness of shared jobs.

4 Identify significant edges and computing the significance score c for
each of them.

5 Pick a threshold d for the scores and prune all the edges fij for
cij < d.

6 Flag the connected components in the remaining graph as anomalous
groups.
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Lecture 2: Recent advances in social media anomaly detection Fake news detection

Outline

1 Lecture 1: Introduction to social media anomaly detection

2 Lecture 2: Recent advances in social media anomaly detection
Point anomaly detection in social media
Group anomaly detection in social media
Fake news detection
Applications and systems
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Lecture 2: Recent advances in social media anomaly detection Fake news detection

Fake news
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Lecture 2: Recent advances in social media anomaly detection Fake news detection

Fake news is interesting

Misinformation can affect public opinion

German government: ”We are dealing with a phenomenon of a
dimension that we have not seen before”

Bots pollute with fake activity

Normal people also participate

NYT reported on a college graduate who started writing fake stories for
fun and calculated that he earned ”about 1, 000 an hour in web
advertising revenue” 1

https://www.theguardian.com/world/2017/jan/09/germany-investigating-spread-fake-news-online-russia-election
https://www.nytimes.com/2017/01/18/us/fake-news-hillary-clinton-cameron-harris

https://www.nytimes.com/2017/01/18/us/fake-news-hillary-clinton-cameron-harris
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Lecture 2: Recent advances in social media anomaly detection Fake news detection

Fake news is challenging

Curators are often sophisticated:

Maintained by real people

Distributed among many sources

Buy users to give (fake) promotion

Further,

Definition is not clear

No clear tell-tale signs
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Lecture 2: Recent advances in social media anomaly detection Fake news detection

What is fake news?

The ”right” definition of fake news is not clear.
1 Story that is not true

Urban legends, satire, bad reporting (journalistic mistakes)
Fully false or contains false statements?
e.g. The Onion

2 An opinion expressed for financial gain
Propaganda, click-bait
Can be gibberish or related to true events
e.g. Chinese government has been cited for buying ’fake’ supporters

3 A biased story

Reporting of personal opinion of a news story

4 Opposing viewpoint

5 A story that is malicious and not true

Some have tried to distinguish using ”false” vs. ”fake” vs. ”falsehood” vs.
”rumor”, and so on...
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What is fake news?

[Rubin et al. (2015)] proposed a classification into three types:

1 Serious fabrication: tabloids, click-bait

2 Large-scale hoax: deceptive, malicious

3 Humorous fakes: satire

Historically existing work has focused on (1), but now there is renewed
interest in (2).
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Lecture 2: Recent advances in social media anomaly detection Fake news detection

Existing Approaches

Existing approaches are most naturally group by the information used.

Text Graph Activity

http://www.businessinsider.com/google-algorithm-change-fake-news-rankbrain-2016-12
https://medium.com/@d1gi/the-election2016-micro-propaganda-machine-383449cc1fba#.x7qo60x0x

The Bursty Dynamics of the Twitter Information Network, Myers et al
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Lecture 2: Recent advances in social media anomaly detection Fake news detection

Text-based

These methods utilize linguistic properties to try to detect fake news.
Extract some textual features and apply your favorite classifier.

Stance detection [Ferreira and Vlachos (2016)]
Detect a mismatch in between the headline and body text
for, against, observing
Logistic regression

Credibility ranking of tweets [Gupta et al. (2014)]
Number of words, URLs, hashtags, emojis
Presence of swear words, pronouns
Use SVM-Rank with features.
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Lecture 2: Recent advances in social media anomaly detection Fake news detection

Graph-based

The assumption is that fake news or users have a different connectivity
than normal users.

How fast does a rumor spreads over a graph [Friggeri et al. (2014)]

Which nodes/edges help fake news propagate [Karsai et al. (2013)]
Fake news have different structural connectivity [Giasemidis et al.
(2016)]

Triangles
Favoritism (retweeting the same set of users)
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Activity-based

The information extracted captures the amount of activity occurring
throughout time, for example, the number of retweets.

Poisson process

Measure the number of retweets/shares over time [Bessi (2017)]

Cluster based on activity

Colluding users will interact with similar items are similar times [Cao
et al. (2014)]
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Mixture

These approaches combined structural, textual, temporal features.

Apply feature selection with classification/clustering [Kwon et al.
(2017), Giasemidis et al. (2016)]

Feed into (recurrent) neural network [Ma et al. (2016)]

Identify areas of connectivity with textually conflicting viewpoints [Jin
et.al 2016]
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We are just beginning

Fake news detection, particularly in the political context, is open and
interesting...

Microsoft sponsoring a panel “CONVERSATIONS: Proposition: We
Can Solve The Fake News Problem”

Fake news challenge (http://www.fakenewschallenge.org/)

Most of the work is focused on post-facto approaches for fake news
identification, what about prediction and prevention?
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Outline

1 Lecture 1: Introduction to social media anomaly detection

2 Lecture 2: Recent advances in social media anomaly detection
Point anomaly detection in social media
Group anomaly detection in social media
Fake news detection
Applications and systems
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Example 1: Detecting Bots on Twitter

Bot detection: simple examples versus difficult examples
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DARPA Bot Detection Challenge

Purpose

Provide a high fidelity, simulated environment to evaluate the
effectiveness of their strategies for identifying actors in an automated
influence operation on Twitter

Data

Simulated real-time feed of Twitter data via API

The data is pulled from an actual influence challenge that took place
in December 2014 and January 2015

Evaluation

Accuracy and speed of identifying all the social bots in the dataset
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Lecture 2: Recent advances in social media anomaly detection Applications and systems

PacSocial Influence Challenge Design

Two teams created and launched bots during the 4-week challenge. Teams
were permitted to:

A number of freedoms in order to authentically simulate an actual
influence operation.

Run any amount of bots to inhibit the spread of anti-vaccine content
through the Twitter network.

Update and change the behavior of bots during the course of the
competition.
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Data Description

User information and the tweets:Approximately 7K users including
bots and target network users

Follower/friendship relationship: 4 weekly sequential series of
snapshots of the network topology
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Scoring: Accuracy and Speed

Accuracy

+1pt for every hit, -0.25pt for a false positive

Speed

Once a team identifies all the bots in the network, the team will be
awarded +1 point for each day remaining in the competition
Example: Team X finding all the bots five days before the end of the
competition receives +5 points.

Other requirement

No limit on the number of guesses
Teams are ranked on their aggregate net points
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Performance

Timeline:

Results:

Contact: Aram Galstyan (USC/ISI)
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USC Team Solutions

Temporal features/statistics

Inter-tweet time distribution for users

Entropy based methods

Reaction time for retweets/mentions

Temporal anomalies in retweeting behavior

Transfer entropy methods with tweet times

Follower/mention/retweet graph

Calculate node centrality (Pagerank, etc)

Analyze reciprocity relationships between friends/followers

Analyze correlation between node centrality and activity measures

Liu & Chawla WSDM-2017 Tutorial February 5, 2017 89 / 106



Lecture 2: Recent advances in social media anomaly detection Applications and systems

USC Team Solutions

Combined text/network analysis

Decompose #hashtag/user matrix to find topics/user groups

LDA and other topic models

Content Transfer

Sentiment analysis

Classify tweet sentiment as pro vs. anti-vaccination

Use unsupervised methods based on dictionaries

supervised by manually labeling some of the tweets

Classify user sentiment as pro vs. anti-vaccination
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Cluster-based Outlier Detection

Compute a list of simple features (22 total), such as

Main API source
Average tweeting activity (number of tweets per day)
Number of mentioned users /number of tweets
Ratio of mentioned tweets/retweets

Perform cluster-based outlier detection

Conduct the outlier-resistant clustering via NMF
Outliers that are difficult to assign to any cluster
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Aggregation
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Lessons Learned

Ensemble learning for unsupervised problems is challenging: How to
best aggregate results from various methods?

Current influence bots are, well, dumb with very limited NLP
capabilities: Human-orchestrated campaigns are a more serious
concern
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Example 2: IBM ADAMS System

Architecture:

Contact: Ching-yung Lin (IBM Research)
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Feature Extraction

Whom does s/he talk to?

What kind of roles does s/he play?

What does s/he talk about?

What is his/her opinion for a particular topic?
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Learning Algorithm

Scenario 1: No labels

Density (LOF, LOCI])
Density Change (MALICE [He+ 2007])
Cluster-based algorithm

Scenario 2: One-class Labels

One-class SVM
LPU Learning [Liu+ 2003]

Scenario 3: Two-class Labels

Cost-sensitive learning [Chawla 2009]
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Ensemble and Visualization

Ensemble:

Visualization:
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Summary

Social media anomaly detection is an important and challenging task

There are many existing work in related areas but the unique
properties also raise new challenges

Emerging topics

Bot detection
Compromised account detection
Yelp fake reviews
Uber fake ride
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