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COMPUter-SYSteM LOgS  provide a glimpse into the 
states of a running system. Instrumentation occasion-
ally generates short messages that are collected in  
a system-specific log. The content and format of logs  
can vary widely from one system to another and even 
among components within a system. A printer driver 

might generate messages indicating 
that it had trouble communicating 
with the printer, while a Web server 
might record which pages were re-
quested and when.

As the content of the logs is varied, 
so are their uses. The printer log might 
be used for troubleshooting, while the 
Web-server log is used to study traffic 
patterns to maximize advertising rev-
enue. Indeed, a single log may be used 
for multiple purposes: information 
about the traffic along different net-
work paths, called flows, might help a 
user optimize network performance 
or detect a malicious intrusion; or call-
detail records can monitor who called 
whom and when, and upon further 
analysis can reveal call volume and drop 
rates within entire cities.

This article provides an overview 
of some of the most common applica-
tions of log analysis, describes some of 

the logs that might be analyzed and the 
methods of analyzing them, and eluci-
dates some of the lingering challenges. 
Log analysis is a rich field of research; 
while it is not our goal to provide a lit-
erature survey, we do intend to provide a 
clear understanding of why log analysis 
is both vital and difficult.

Many logs are intended to facilitate 
debugging. As Brian Kernighan wrote 
in Unix for Beginners in 1979, “The most 
effective debugging tool is still care-
ful thought, coupled with judiciously 
placed print statements.” Although to-
day’s programs are orders of magnitude 
more complex than those of 30 years 
ago, many people still use printf to log 
to console or local disk, and use some 
combination of manual inspection and 
regular expressions to locate specific 
messages or patterns. 

The simplest and most common use 
for a debug log is to grep for a specific 
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message. If a server operator believes 
that a program crashed because of a 
network failure, then he or she might 
try to find a “connection dropped” mes-
sage in the server logs. In many cases, it 
is difficult to figure out what to search 
for, as there is no well-defined mapping 
between log messages and observed 
symptoms. When a Web service sud-
denly becomes slow, the operator is un-
likely to see an obvious error message 
saying, “ERROR: The service latency in-
creased by 10% because bug X, on line 
Y, was triggered.” Instead, users often 
perform a search for severity keywords 
such as “error” or “failure”. Such sever-
ity levels are often used inaccurately, 
however, because a developer rarely has 
complete knowledge of how the code 
will ultimately be used.

Furthermore, red-herring messages 
(for example, “no error detected”) may 
pollute the result set with irrelevant 
events. Consider the following message 
from the BlueGene/L supercomputer:

YY-MM-DD-HH:MM:SS NULL RAS 
BGLMASTER FAILURE ciodb exit-
ed normally with exit code 0

The FAILURE severity word is unhelp-
ful, as this message may be generated 
during nonfailure scenarios such as sys-
tem maintenance.

When a developer writes the print 
statement of a log message, it is tied 
to the context of the program source 
code. The content of the message, how-
ever, often excludes this context. With-
out knowledge of the code surround-
ing the print statement or what led 
the program onto that execution path, 
some of the semantics of the message 
may be lost—that is, in the absence of 
context, log messages can be difficult 
to understand.

An additional challenge is that log 
files are typically designed to represent 
a single stream of events. Messages 
from multiple sources, however, may be 
interleaved both at runtime (from mul-
tiple threads or processes) and statically 
(from different modules of a program). 
For runtime interleaving, a thread ID 
does not solve the problem because a 
thread can be reused for independent 
tasks. There have been efforts to in-
clude message contexts automatically 
(X-Trace,4 Dapper12) or to infer them 
from message contents,15 but these can-

not completely capture the intents and 
expectations of the developer.

The static interleaving scenario is 
more challenging because different 
modules may be written by different 
developers. Thus, a single log message 
may have multiple interpretations. 
For example, a “connection lost” mes-
sage might be of great importance to 
the author of the system networking 
library, but less so for an application 
author who is shielded from the error 
by underlying abstractions. It is often 
impossible for a shared-library author 
to predict which messages will be use-
ful to users.

Logging usually implies some inter-
nal synchronization. This can compli-
cate the debugging of multithreaded 
systems by changing the thread-inter-
leaving pattern and obscuring the prob-
lem. (This is an example of a so-called 
heisenbug.) A key observation is that a 
program behaves nondeterministically 
only at certain execution points, such as 
clock interrupts and I/O. By logging all 
the nondeterministic execution points, 
you can faithfully replay the entire pro-
gram.7,14 Replay is powerful because you 
can observe anything in the program by 
modifying the instrumentation prior 
to a replay. For concurrent programs 
or those where deterministic execution 
depends on large amounts of data, how-
ever, this approach may be impractical.

Log volume can be excessive in a 
large system. For example, logging every 
acquire and release operation on a lock 
object in order to debug lock contention 
may be prohibitively expensive. This dif-
ficulty is exacerbated in multimodule 
systems, where logs are also heteroge-
neous and therefore even less amenable 
to straightforward analysis. There is an 
inherent cost to collecting, storing, sort-
ing, or indexing a large quantity of log 
messages, many of which might never 
be used. The return on investment for 
debug logging arises from its diagnostic 
power, which is difficult to measure.

Some users need aggregated or sta-
tistical information and not individual 
messages. In such cases, they can log 
only aggregated data or an approxima-
tion of aggregated data and still get a 
good estimate of the required statis-
tics. Approximation provides statisti-
cally sound estimates of metrics that 
are useful to machine-learning analy-
ses such as PCA (principal component 
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analysis) and SVM (support vector ma-
chine8). These techniques are critical 
in networked or large-scale distributed 
systems, where collecting even a single 
number from each component carries 
a heavy performance cost. This illus-
trates the potential benefits of tailoring 
instrumentation to particular analyses.

Machine-learning techniques, es-
pecially anomaly detection, are com-
monly used to discover interesting log 
messages. Machine-learning tools usu-
ally require input data as numerical 
feature vectors. It is nontrivial to convert 
free-text log messages into meaningful 
features. Recent work analyzed source 
code to extract semi-structured data 
automatically from legacy text logs and 
applied anomaly detection on features 
extracted from logs.15 On several open 
source systems and two Google produc-
tion systems, the authors were able to 
analyze billions of lines of logs, accurate-
ly detect anomalies often overlooked by 
human eyes, and visualize the results in a 
single-page decision-tree diagram.

Challenges remain in statistical 
anomaly detection. Even if some mes-
sages are abnormal in a statistical 
sense, there may be no further evi-
dence on whether these messages are 
the cause, the symptom, or simply 
innocuous. Also, statistical methods 
rely heavily on log quality, especially 
whether “important” events are logged. 
The methods themselves do not define 
what could be “important.”

Static program analysis can help dis-
cover the root cause of a specific mes-
sage by analyzing paths in the program 
that could lead to the message. Static 
analysis can also reveal ways to improve 
log quality by finding divergence points, 
from which program execution might 
enter an error path; such points are ex-
cellent candidates for logging instru-
mentation.16 Static analysis techniques 
are usually limited by the size and com-
plexity of the target system. It takes 
hours to analyze a relatively simple pro-
gram such as Apache Web Server. Heu-
ristics and domain knowledge of the 
target system usually make such analy-
ses more effective.

Performance
Log analysis can help optimize or debug 
system performance. Understanding a 
system’s performance is often related 
to understanding how the resources in 

that system are used. Some logs are the 
same as in the case of debugging, such 
as logging lock operations to debug a 
bottleneck. Some logs track the use of 
individual resources, producing a time 
series. Resource-usage statistics often 
come in the form of cumulative use per 
time period (for example, b bits trans-
mitted in the last minute). One might 
use bandwidth data to characterize net-
work or disk performance, page swaps 
to characterize memory effectiveness, 
or CPU utilization to characterize load-
balancing quality.

Like the debugging case, perfor-
mance logs must be interpreted in 
context. Two types of contexts are espe-
cially useful in performance analysis: 
the environment in which the perfor-
mance number occurs and the work-
load of the system.

Performance problems are often 
caused by interactions between compo-
nents, and to reveal these interactions 
you may have to synthesize information 
from heterogeneous logs generated by 
multiple sources. Synthesis can be chal-
lenging. In addition to heterogeneous 
log formats, components in distributed 
systems may disagree on the exact time, 
making the precise ordering of events 
across multiple components impossi-
ble to reconstruct. Also, an event that is 
benign to one component (for example, 
a log flushing to disk) might cause seri-
ous problems for another (for example, 
because of the I/O resource conten-
tion). As the component causing the 
problem is unlikely to log the event, it 
may be hard to capture this root cause. 
These are just a few of the difficulties 
that emerge.

One approach to solving this prob-
lem is to compute influence, which in-
fers relationships between components 
or groups of components by looking for 
surprising behavior that is correlated in 
time.10 For example, bursty disk writes 
might correlate in time with client com-
munication errors; a sufficiently strong 
correlation suggests some shared influ-
ence between these two parts of the sys-
tem. Influence can quantify the interac-
tion between components that produce 
heterogeneous logs, even when those 
logs are sparse, incomplete, and with-
out known semantics and even when 
the mechanism of the interaction is 
unknown. Influence has been applied 
to production systems ranging from 

autonomous vehicles such as Stanley13 
(where it helped diagnose a danger-
ous swerving bug10) to supercomputers 
such as BlueGene/L1 (where it was able 
to analyze logs from more than 100,000 
components in real time9).

Methods that trace a message or re-
quest as it is processed by the system 
are able to account for the order of 
events and the impact of workload. For 
example, requests of one type might be 
easily serviceable by cached data, while 
requests of another type might not be. 
Such tracing methods often require 
supporting instrumentation but can be 
useful for correctness debugging in ad-
dition to understanding performance.

A salient challenge in this area is the 
risk of influencing the measurements 
by the act of measuring. Extensive log-
ging that consumes resources can com-
plicate the task of accounting for how 
those resources are used in the first 
place. The more we measure, the less 
accurately we will understand the per-
formance characteristics of the system. 
Even conservative tracing mechanisms 
typically introduce unacceptable over-
head in practice.

One approach to reduce the perfor-
mance impact of logging is to sample. 
The danger is that sampling may miss 
rare events. If you have millions or even 
billions of sampled instances of the 
same program running, however, you 
may be able to maintain a low sampling 
rate while still capturing rare events.

An efficient implementation of sam-
pling techniques requires the ability to 
turn individual log sites on and off with-
out restarting execution. Older systems 
such as DTrace require statically instru-
mented log sites.2 Recent advances in 
program rewriting can be used to instru-
ment arbitrary sites in program binaries 
at runtime. One recent effort in this 
direction is Fay, a platform for the col-
lection, processing, and analysis of soft-
ware execution traces3 that allows users 
to specify the events they want to mea-
sure, formulated as queries in a declara-
tive language; Fay then inserts dynamic 
instrumentation into the running sys-
tem, aggregates the measurements, and 
provides analysis mechanisms, all spe-
cific to those queries. When applied to 
benchmark codes in a distributed sys-
tem, Fay showed single-digit percentage 
overheads. Dynamic program rewriting 
combined with sampling-based logging 
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will likely be a key solution to problems 
requiring detailed logs at scale.

security
Logs are also used for security appli-
cations, such as detecting breaches 
or misbehavior, and for performing 
postmortem inspection of security in-
cidents. Depending on the system and 
the threat model, logs of nearly any 
kind might be amenable to security 
analysis: logs related to firewalls, login 
sessions, resource utilization, system 
calls, network flows, and so on.

Intrusion detection often requires 
reconstructing sessions from logs. 
Consider an example related to in-
trusion detection—that is, detecting 
unauthorized access to a system (see 
the figure here). When a user logs 
into a machine remotely via SSH, that 
machine generates log entries corre-
sponding to the login event. On Mac 
OS X, these look like the messages as 
depicted in the accompanying figure 
(timestamp and hostname omitted) 
that show a user named user47 access-
ing the machine interactively from a 
specific IP address and port number.

Common sense says these logout 
messages match the previous login 
messages because the hexadecimal 
session numbers match (0x3551e2); 
we know the second of these lines, 
which does not include the session 
number, is part of the logout event 
only because it is sandwiched between 
the other two. There is nothing syntac-
tic about these lines that would reveal, 
a priori, that they are somehow associ-
ated with the lines generated at login, 
let alone each other.

In other words, each message is evi-
dence of multiple semantic events, in-
cluding the following: the execution of 
a particular line of code, the creation 
or destruction of an SSH session, and 
the SSH session as a whole.

A log analyst interested in security 
may then ask the deceptively simple 
question: Does this SSH session consti-
tute a security breach?

The answer may depend on a num-
ber of factors, among them: Have there 
been an abnormally large number of 
failed login attempts recently? Is the 
IP address associated with user47 fa-
miliar? Did user47 perform any sus-
picious actions while the session was 
active? Is the person with username 
user47 on vacation and thus should 
not be logging in? 

Note that only some of these ques-
tions can be answered using data in the 
logs. You can look for a large number of 
failed login attempts that precede this 
session, for example, but you cannot 
infer user47’s real identify, let alone his 
or her vacation schedule. Thus, a par-
ticular analysis works on logs that are 
commensurate with the type of attack 
they wish to detect; more generally, the 
power of an analysis is limited by the in-
formation in the logs.

Log analysis for security may be sig-
nature based, in which the user tries to 
detect specific behaviors that are known 
to be malicious; or anomaly based, 
in which the user looks for deviation 
from typical or good behavior and flags 
this as suspicious. Signature methods 
can reliably detect attacks that match 
known signatures, but are insensitive to 
attacks that do not. Anomaly methods, 
on the other hand, face the difficulty of 
setting a threshold for calling an anom-
aly suspicious: too low, and false alarms 
make the tool useless; too high, and at-
tacks might go undetected.

Security applications face the distin-
guishing challenge of an adversary. To 
avoid the notice of a log-analysis tool, 
an adversary will try to behave in such a 
way that the logs generated during the 
attack look—exactly or approximately—
the same as the logs generated during 

correct operation. An analysis cannot 
do much about incomplete logs. Devel-
opers can try to improve logging cover-
age,16 making it more difficult for adver-
saries to avoid leaving evidence of their 
activities, but this does not necessarily 
make it easier to distinguish a “healthy” 
log from a “suspicious” one.

Prediction
Log data can be used to predict and pro-
vision for the future. Predictive models 
help automate or provide insights for 
resource provisioning, capacity plan-
ning, workload management, schedul-
ing, and configuration optimization. 
From a business viewpoint, predictive 
models can guide marketing strategy, 
ad placement, or inventory management.

Some analytical models are built 
and honed for a specific system. Ex-
perts manually identify dependencies 
and relevant metrics, quantify the re-
lationships between components, and 
devise a prediction strategy. Such mod-
els are often used to build simulators 
that replay logs with anticipated work-
load perturbations or load volumes in 
order to ask what-if questions. Exam-
ples of using analytical models for per-
formance prediction exist on I/O sub-
systems, disk arrays, databases, and 
static Web servers. This approach has 
a major practical drawback, however, 
in that real systems change frequently 
and analysis techniques must keep up 
with these changes.

Although the modeling techniques 
may be common across various sys-
tems, the log data mined to build the 
model, as well as the metrics predicted, 
may differ. For example, I/O subsystem 
and operating-system instrumentation 
containing a timestamp, event type, 
CPU profile, and other per-event met-
rics can be used to drive a simulator to 
predict I/O subsystem performance. 
Traces that capture I/O request rate, 
request size, run count, queue length, 
and other attributes can be leveraged to 
build analytical models to predict disk-
array throughput.

Many analytical models are single 
tier: one model per predicted metric. In 
other scenarios a hierarchy of models is 
required to predict a single performance 
metric, based on predictions of other 
performance metrics. For example, Web 
server traces—containing timestamps, 
request type (GET vs. POST), bytes re-

The first three messages.

sshd[12109]: Accepted keyboard-interactive/pam for user47 from 
171.64.78.25 port 49153 ssh2
com.apple.SecurityServer[22]: Session 0x3551e2 created
com.apple.SecurityServer[22]: Session 0x3551e2 attributes 0x20
…
com.apple.SecurityServer[22]: Session 0x3551e2 dead
com.apple.SecurityServer[22]: Killing auth hosts
com.apple.SecurityServer[22]: Session 0x3551e2 destroyed
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quested, URI, and other fields—can be 
leveraged to predict storage response 
time, storage I/O, and server memory. 
A model to predict server response time 
under various load conditions can be 
composed of models of the storage 
metrics and server memory. As another 
example, logs tracking record accesses, 
block accesses, physical disk transfers, 
throughputs, and mean response times 
can be used to build multiple levels of 
queuing network models to predict the 
effect of physical and logical design de-
cisions on database performance.

One drawback of analytical models 
is the need for system-specific domain 
knowledge. Such models cannot be 
seamlessly ported to new versions of the 
system, let alone to other systems. As 
systems become more complex, there 
is a shift toward using statistical mod-
els of historical data to anticipate future 
workloads and performance.

Regression is the simplest statistical 
modeling technique used in prediction. 
It has been applied to performance 
counters, which measure execution 
time and memory subsystem impact. 
For example, linear regression ap-
plied to these logs was used to predict 
execution time of data-partitioning 
layouts for libraries on parallel proces-
sors, while logistic regression was used 
to predict a good set of compiler flags. 
CART (classification and regression 
trees) used traces of disk requests speci-
fying arrival time, logical block number, 
blocks requested, and read/write type to 
predict the response times of requests 
and workloads in a storage system.

Both simple regression and CART 
models can predict a single metric per 
model. Performance metrics, howev-
er, often have interdependencies that 
must each be predicted to make an in-
formed scheduling or provisioning de-
cision. Various techniques have been 
explored to predict multiple metrics 
simultaneously. One method adapts 
canonical correlation analysis to build 
a model that captures interdependen-
cies between a system’s input and per-
formance characteristics, and leverages 
the model to predict the system’s per-
formance under arbitrary input. Recent 
work used KCCA (kernel canonical cor-
relation analysis) to model a parallel 
database system and predict execution 
time, records used, disk I/Os, and other 
such metrics, given query character-

istics such as operators used and esti-
mated data cardinality.6 The same tech-
nique was adapted to model and predict 
performance of map-reduce jobs.5

Although these techniques show the 
power of statistical learning techniques 
for performance prediction, their use 
poses some challenges.

Extracting feature vectors from 
events logs is a nontrivial, yet critical, 
step that affects the effectiveness of a 
predictive model. Event logs often con-
tain non-numeric data (for example, 
categorical data), but statistical tech-
niques expect numeric input with some 
notion of distributions defined on the 
data. Converting non-numeric informa-
tion in events into meaningful numeric 
data can be tedious and requires do-
main knowledge about what the events 
represent. Thus, even given a predic-
tion, it can be difficult to identify the 
correct course of action.

Predictive models often provide a 
range of values rather than a single 
number; this range sometimes repre-
sents a confidence interval, meaning 
the true value is likely to lie within that 
interval. Whether or not to act on a pre-
diction is a decision that must weigh 
the confidence against the costs (that 
is, whether acting on a low-confidence 
prediction is better than doing noth-
ing). Acting on a prediction may depend 
on whether the log granularity matches 
the decision-making granularity. For 
example, per-query resource-utilization 
logs do not help with task-level sched-
uling decisions, as there is insufficient 
insight into the parallelism and lower-
level resource-utilization metrics.

Reporting and Profiling
Another use for log analysis is to pro-
file resource utilization, workload, 
or user behavior. Logs that record 
characteristics of tasks from a clus-
ter’s workload can be used to profile 
resource utilization at a large data 
center. The same data might be lever-
aged to understand inter-arrival times 
between jobs in a workload, as well as 
diurnal patterns.

In addition to system management, 
profiling is used for business analytics. 
For example, Web-server logs character-
ize visitors to a Web site, which can yield 
customer demographics or conversion 
and drop-off statistics. Web-log analysis 
techniques range from simple statistics 
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that capture page popularity trends to 
sophisticated time-series methods that 
describe access patterns across multi-
ple user sessions. These insights inform 
marketing initiatives, content hosting, 
and resource provisioning.

A variety of statistical techniques 
have been used for profiling and re-
porting on log data. Clustering algo-
rithms such as k-means and hierarchi-
cal clustering group similar events. 
Markov chains have been used for pat-
tern mining where temporal ordering 
is essential.

Many profiling and alerting tech-
niques require hints in the form of 
expert knowledge. For example, the k-
means clustering algorithm requires 
the user either to specify the number of 
clusters (k) or to provide example events 
that serve as seed cluster centers. Other 
techniques require heuristics for merg-
ing or partitioning clusters. Most tech-
niques rely on mathematical represen-
tations of events, and the results of the 
analysis are presented in similar terms. 
It may then be necessary to map these 
mathematical representations back 
into the original domain, though this 
can be difficult without understanding 
the log semantics.

Classifying log events is often 
challenging. To categorize system 
performance, for example, you may 
profile CPU utilization and memory 
consumption. Suppose you have a per-
formance profile for high CPU utiliza-
tion and low memory consumption, 
and a separate profile of events with 
low CPU utilization and high memory 
consumption; when an event arrives 
containing low CPU utilization and 
low memory consumption, it is un-
clear to which of the two profiles (or 
both) it should belong. If there are 
enough such events, the best choice 
might be to include a third profile. 
There is no universally applicable rule 
for how to handle events that straddle 
multiple profiles or how to create such 
profiles in the first place.

Although effective for grouping 
similar events and providing high-
level views of system behavior, pro-
files do not translate directly to op-
erationally actionable insights. The 
task of interpreting a profile and 
using it to make business decisions, to 
modify the system, or even to modify the 
analysis, usually falls to a human.

Logging infrastructures
A logging infrastructure is essential for 
supporting the variety of applications 
described here. It requires at least two 
features: log generation and log storage. 

Most general-purpose logs are unstruc-
tured text. Developers use printf and 
string concatenations to generate mes-
sages because these primitives are well 
understood and ubiquitous. This kind 
of logging has drawbacks, however. 
First, serializing variables into text is ex-
pensive (almost 80% of the total cost of 
printing a message). Second, the analy-
sis needs to parse the text message, 
which may be complicated and expensive.

On the storage side, infrastructures 
such as syslog aggregate messages 
from network sources. Splunk indexes 
unstructured text logs from syslog and 
other sources, and it performs both 
real time and historical analytics on the 
data. Chukwa archives data using Ha-
doop to take advantage of distributed 
computing infrastructure.11

Choosing the right log-storage solu-
tion involves the following trade-offs:

˲˲ Cost per terabyte (upfront and 
maintenance)

˲˲ Total capacity
˲˲ Persistence guarantees
˲˲ Write access characteristics (for ex-

ample, bandwidth and latency)
˲˲ Read access characteristics (ran-

dom access vs. sequential scan)
˲˲ Security considerations (access 

control and regulation compliance)
˲˲ Integration with existing infra-

structure
There is no one-size-fits-all policy for 

log retention. This makes choosing and 
configuring log solutions a challenge. 
Logs that are useful for business intel-
ligence are typically considered more 
important than debugging logs and 
thus are kept for a longer time. In con-
trast, most debug logs are stored for as 
long as possible but without any reten-
tion guarantee, meaning they may be 
deleted under resource pressure.

Log-storage solutions are more use-
ful when coupled with alerting and 
reporting capabilities. Such infrastruc-
tures can be leveraged for debugging, 
security, and other system-manage-
ment tasks. Various log-storage solu-
tions facilitate alerting and reporting, 
but they leave many open challenges 
pertaining to alert throttling, report ac-
celeration, and forecasting capabilities.
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conclusion
The applications and examples in 
this article demonstrate the degree 
to which system management has be-
come log-centric. Whether used for 
debugging problems or provisioning 
resources, logs contain a wealth of in-
formation that can pinpoint, or at least 
implicate, solutions.

Although log-analysis techniques 
have made much progress recently, 
several challenges remain. First, as sys-
tems become increasingly composed of 
many, often distributed, components, 
using a single log file to monitor events 
from different parts of the system is dif-
ficult. In some scenarios logs from en-
tirely different systems must be cross-
correlated for analysis. For example, 
a support organization may correlate 
phone-call logs with Web-access logs to 
track how well the online documenta-
tion for a product addresses frequently 
asked questions and how many custom-
ers concurrently search the online doc-
umentation during a support call. Inter-
leaving heterogeneous logs is seldom 
straightforward, especially when time-
stamps are not synchronized or present 
across all logs and when semantics are 
inconsistent across components.

Second, the logging process itself 
requires additional management. 
Controlling the verbosity of logging is 
important, especially in the event of 
spikes or potential adversarial behav-
ior, to manage overhead and facili-
tate analysis. The logging mechanism 
should also not be a channel to prop-
agate malicious activity. It remains a 
challenge to minimize instrumenta-
tion overhead while maximizing infor-
mation content.

A third challenge is that although 
various analytical and statistical mod-
eling techniques can mine large quan-
tities of log data, they do not always 
provide actionable insights. For exam-
ple, statistical techniques could reveal 
an anomaly in the workload or that the 
system’s CPU utilization is high but 
not explain what to do about it. The in-
terpretation of the information is sub-
jective, and whether the information 
is actionable or not depends on many 
factors. It is important to investigate 
techniques that trade off efficiency, ac-
curacy, and actionability.

There are several promising research 
directions. Since humans will likely re-

main a part of the process of interpret-
ing and acting on logs for the foresee-
able future, advances in visualization 
techniques should prove worthwhile. 

Program analysis methods, both 
static and dynamic, promise to in-
crease our ability to automatically  
characterize the interactions and cir-
cumstances that caused a particular 
sequence of log messages. Recent work 
aims to modify existing instrumenta-
tion so that logs are either more ame-
nable to various kinds of analysis or 
provide more comprehensive informa-
tion. Although such modifications are 
not always possible, insights into how 
to generate more useful logs are often 
accompanied by insights in how to 
analyze existing logs. Mechanisms to 
validate the usefulness of log messages 
would improve log quality, making log 
analysis more efficient.

As many businesses become in-
creasingly dependent on their com-
puting infrastructure—not to mention 
businesses where the computing infra-
structure or the services they provide 
are the business itself—so does the 
importance of this relationship. We 
have seen a rise in tools that try to infer 
how the system influences users: how 
latency affects purchasing decisions; 
how well click patterns describe user 
satisfaction; and how resource-sched-
uling decisions change the demand 
for such resources. Conversely, recent 
work suggests that user activity can be 
useful for system debugging. Further 
exploration of the relationships be-
tween user behavior (workload) and 
system behavior may prove useful for 
understanding what logs to use, when, 
and for what purpose.

These research directions, as well as 
better logging standards and best prac-
tices, will be instrumental in improving 
the state of the art in log analysis. 
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