
FeBRuARY 2012 | VoL. 55 | No. 2 | coMMunicaTions of The acM 55

COMPUter-SYSteM LOgS provide a glimpse into the
states of a running system. Instrumentation occasion-
ally generates short messages that are collected in
a system-specific log. The content and format of logs
can vary widely from one system to another and even
among components within a system. A printer driver

might generate messages indicating
that it had trouble communicating
with the printer, while a Web server
might record which pages were re-
quested and when.

As the content of the logs is varied,
so are their uses. The printer log might
be used for troubleshooting, while the
Web-server log is used to study traffic
patterns to maximize advertising rev-
enue. Indeed, a single log may be used
for multiple purposes: information
about the traffic along different net-
work paths, called flows, might help a
user optimize network performance
or detect a malicious intrusion; or call-
detail records can monitor who called
whom and when, and upon further
analysis can reveal call volume and drop
rates within entire cities.

This article provides an overview
of some of the most common applica-
tions of log analysis, describes some of

the logs that might be analyzed and the
methods of analyzing them, and eluci-
dates some of the lingering challenges.
Log analysis is a rich field of research;
while it is not our goal to provide a lit-
erature survey, we do intend to provide a
clear understanding of why log analysis
is both vital and difficult.

Many logs are intended to facilitate
debugging. As Brian Kernighan wrote
in Unix for Beginners in 1979, “The most
effective debugging tool is still care-
ful thought, coupled with judiciously
placed print statements.” Although to-
day’s programs are orders of magnitude
more complex than those of 30 years
ago, many people still use printf to log
to console or local disk, and use some
combination of manual inspection and
regular expressions to locate specific
messages or patterns.

The simplest and most common use
for a debug log is to grep for a specific

advances and
challenges in
Log analysis

Doi:10.1145/2076450.2076466

 Article development led by
 queue.acm.org

Logs contain a wealth of information to help
manage systems.

By aDaM oLineR, aRchana GanaPaThi, anD Wei Xu

56 coMMunicaTions of The acM | FeBRuARY 2012 | VoL. 55 | No. 2

practice

message. If a server operator believes
that a program crashed because of a
network failure, then he or she might
try to find a “connection dropped” mes-
sage in the server logs. In many cases, it
is difficult to figure out what to search
for, as there is no well-defined mapping
between log messages and observed
symptoms. When a Web service sud-
denly becomes slow, the operator is un-
likely to see an obvious error message
saying, “ERROR: The service latency in-
creased by 10% because bug X, on line
Y, was triggered.” Instead, users often
perform a search for severity keywords
such as “error” or “failure”. Such sever-
ity levels are often used inaccurately,
however, because a developer rarely has
complete knowledge of how the code
will ultimately be used.

Furthermore, red-herring messages
(for example, “no error detected”) may
pollute the result set with irrelevant
events. Consider the following message
from the BlueGene/L supercomputer:

YY-MM-DD-HH:MM:SS NULL RAS
BGLMASTER FAILURE ciodb exit-
ed normally with exit code 0

The FAILURE severity word is unhelp-
ful, as this message may be generated
during nonfailure scenarios such as sys-
tem maintenance.

When a developer writes the print
statement of a log message, it is tied
to the context of the program source
code. The content of the message, how-
ever, often excludes this context. With-
out knowledge of the code surround-
ing the print statement or what led
the program onto that execution path,
some of the semantics of the message
may be lost—that is, in the absence of
context, log messages can be difficult
to understand.

An additional challenge is that log
files are typically designed to represent
a single stream of events. Messages
from multiple sources, however, may be
interleaved both at runtime (from mul-
tiple threads or processes) and statically
(from different modules of a program).
For runtime interleaving, a thread ID
does not solve the problem because a
thread can be reused for independent
tasks. There have been efforts to in-
clude message contexts automatically
(X-Trace,4 Dapper12) or to infer them
from message contents,15 but these can-

not completely capture the intents and
expectations of the developer.

The static interleaving scenario is
more challenging because different
modules may be written by different
developers. Thus, a single log message
may have multiple interpretations.
For example, a “connection lost” mes-
sage might be of great importance to
the author of the system networking
library, but less so for an application
author who is shielded from the error
by underlying abstractions. It is often
impossible for a shared-library author
to predict which messages will be use-
ful to users.

Logging usually implies some inter-
nal synchronization. This can compli-
cate the debugging of multithreaded
systems by changing the thread-inter-
leaving pattern and obscuring the prob-
lem. (This is an example of a so-called
heisenbug.) A key observation is that a
program behaves nondeterministically
only at certain execution points, such as
clock interrupts and I/O. By logging all
the nondeterministic execution points,
you can faithfully replay the entire pro-
gram.7,14 Replay is powerful because you
can observe anything in the program by
modifying the instrumentation prior
to a replay. For concurrent programs
or those where deterministic execution
depends on large amounts of data, how-
ever, this approach may be impractical.

Log volume can be excessive in a
large system. For example, logging every
acquire and release operation on a lock
object in order to debug lock contention
may be prohibitively expensive. This dif-
ficulty is exacerbated in multimodule
systems, where logs are also heteroge-
neous and therefore even less amenable
to straightforward analysis. There is an
inherent cost to collecting, storing, sort-
ing, or indexing a large quantity of log
messages, many of which might never
be used. The return on investment for
debug logging arises from its diagnostic
power, which is difficult to measure.

Some users need aggregated or sta-
tistical information and not individual
messages. In such cases, they can log
only aggregated data or an approxima-
tion of aggregated data and still get a
good estimate of the required statis-
tics. Approximation provides statisti-
cally sound estimates of metrics that
are useful to machine-learning analy-
ses such as PCA (principal component

Log analysis can
help optimize
or debug system
performance.
understanding
a system’s
performance
is often related
to understanding
how the resources
in that system
are used.

practice

february 2012 | vol. 55 | no. 2 | communications of the acm 57

analysis) and SVM (support vector ma-
chine8). These techniques are critical
in networked or large-scale distributed
systems, where collecting even a single
number from each component carries
a heavy performance cost. This illus-
trates the potential benefits of tailoring
instrumentation to particular analyses.

Machine-learning techniques, es-
pecially anomaly detection, are com-
monly used to discover interesting log
messages. Machine-learning tools usu-
ally require input data as numerical
feature vectors. It is nontrivial to convert
free-text log messages into meaningful
features. Recent work analyzed source
code to extract semi-structured data
automatically from legacy text logs and
applied anomaly detection on features
extracted from logs.15 On several open
source systems and two Google produc-
tion systems, the authors were able to
analyze billions of lines of logs, accurate-
ly detect anomalies often overlooked by
human eyes, and visualize the results in a
single-page decision-tree diagram.

Challenges remain in statistical
anomaly detection. Even if some mes-
sages are abnormal in a statistical
sense, there may be no further evi-
dence on whether these messages are
the cause, the symptom, or simply
innocuous. Also, statistical methods
rely heavily on log quality, especially
whether “important” events are logged.
The methods themselves do not define
what could be “important.”

Static program analysis can help dis-
cover the root cause of a specific mes-
sage by analyzing paths in the program
that could lead to the message. Static
analysis can also reveal ways to improve
log quality by finding divergence points,
from which program execution might
enter an error path; such points are ex-
cellent candidates for logging instru-
mentation.16 Static analysis techniques
are usually limited by the size and com-
plexity of the target system. It takes
hours to analyze a relatively simple pro-
gram such as Apache Web Server. Heu-
ristics and domain knowledge of the
target system usually make such analy-
ses more effective.

Performance
Log analysis can help optimize or debug
system performance. Understanding a
system’s performance is often related
to understanding how the resources in

that system are used. Some logs are the
same as in the case of debugging, such
as logging lock operations to debug a
bottleneck. Some logs track the use of
individual resources, producing a time
series. Resource-usage statistics often
come in the form of cumulative use per
time period (for example, b bits trans-
mitted in the last minute). One might
use bandwidth data to characterize net-
work or disk performance, page swaps
to characterize memory effectiveness,
or CPU utilization to characterize load-
balancing quality.

Like the debugging case, perfor-
mance logs must be interpreted in
context. Two types of contexts are espe-
cially useful in performance analysis:
the environment in which the perfor-
mance number occurs and the work-
load of the system.

Performance problems are often
caused by interactions between compo-
nents, and to reveal these interactions
you may have to synthesize information
from heterogeneous logs generated by
multiple sources. Synthesis can be chal-
lenging. In addition to heterogeneous
log formats, components in distributed
systems may disagree on the exact time,
making the precise ordering of events
across multiple components impossi-
ble to reconstruct. Also, an event that is
benign to one component (for example,
a log flushing to disk) might cause seri-
ous problems for another (for example,
because of the I/O resource conten-
tion). As the component causing the
problem is unlikely to log the event, it
may be hard to capture this root cause.
These are just a few of the difficulties
that emerge.

One approach to solving this prob-
lem is to compute influence, which in-
fers relationships between components
or groups of components by looking for
surprising behavior that is correlated in
time.10 For example, bursty disk writes
might correlate in time with client com-
munication errors; a sufficiently strong
correlation suggests some shared influ-
ence between these two parts of the sys-
tem. Influence can quantify the interac-
tion between components that produce
heterogeneous logs, even when those
logs are sparse, incomplete, and with-
out known semantics and even when
the mechanism of the interaction is
unknown. Influence has been applied
to production systems ranging from

autonomous vehicles such as Stanley13
(where it helped diagnose a danger-
ous swerving bug10) to supercomputers
such as BlueGene/L1 (where it was able
to analyze logs from more than 100,000
components in real time9).

Methods that trace a message or re-
quest as it is processed by the system
are able to account for the order of
events and the impact of workload. For
example, requests of one type might be
easily serviceable by cached data, while
requests of another type might not be.
Such tracing methods often require
supporting instrumentation but can be
useful for correctness debugging in ad-
dition to understanding performance.

A salient challenge in this area is the
risk of influencing the measurements
by the act of measuring. Extensive log-
ging that consumes resources can com-
plicate the task of accounting for how
those resources are used in the first
place. The more we measure, the less
accurately we will understand the per-
formance characteristics of the system.
Even conservative tracing mechanisms
typically introduce unacceptable over-
head in practice.

One approach to reduce the perfor-
mance impact of logging is to sample.
The danger is that sampling may miss
rare events. If you have millions or even
billions of sampled instances of the
same program running, however, you
may be able to maintain a low sampling
rate while still capturing rare events.

An efficient implementation of sam-
pling techniques requires the ability to
turn individual log sites on and off with-
out restarting execution. Older systems
such as DTrace require statically instru-
mented log sites.2 Recent advances in
program rewriting can be used to instru-
ment arbitrary sites in program binaries
at runtime. One recent effort in this
direction is Fay, a platform for the col-
lection, processing, and analysis of soft-
ware execution traces3 that allows users
to specify the events they want to mea-
sure, formulated as queries in a declara-
tive language; Fay then inserts dynamic
instrumentation into the running sys-
tem, aggregates the measurements, and
provides analysis mechanisms, all spe-
cific to those queries. When applied to
benchmark codes in a distributed sys-
tem, Fay showed single-digit percentage
overheads. Dynamic program rewriting
combined with sampling-based logging

58 coMMunicaTions of The acM | FeBRuARY 2012 | VoL. 55 | No. 2

practice

will likely be a key solution to problems
requiring detailed logs at scale.

security
Logs are also used for security appli-
cations, such as detecting breaches
or misbehavior, and for performing
postmortem inspection of security in-
cidents. Depending on the system and
the threat model, logs of nearly any
kind might be amenable to security
analysis: logs related to firewalls, login
sessions, resource utilization, system
calls, network flows, and so on.

Intrusion detection often requires
reconstructing sessions from logs.
Consider an example related to in-
trusion detection—that is, detecting
unauthorized access to a system (see
the figure here). When a user logs
into a machine remotely via SSH, that
machine generates log entries corre-
sponding to the login event. On Mac
OS X, these look like the messages as
depicted in the accompanying figure
(timestamp and hostname omitted)
that show a user named user47 access-
ing the machine interactively from a
specific IP address and port number.

Common sense says these logout
messages match the previous login
messages because the hexadecimal
session numbers match (0x3551e2);
we know the second of these lines,
which does not include the session
number, is part of the logout event
only because it is sandwiched between
the other two. There is nothing syntac-
tic about these lines that would reveal,
a priori, that they are somehow associ-
ated with the lines generated at login,
let alone each other.

In other words, each message is evi-
dence of multiple semantic events, in-
cluding the following: the execution of
a particular line of code, the creation
or destruction of an SSH session, and
the SSH session as a whole.

A log analyst interested in security
may then ask the deceptively simple
question: Does this SSH session consti-
tute a security breach?

The answer may depend on a num-
ber of factors, among them: Have there
been an abnormally large number of
failed login attempts recently? Is the
IP address associated with user47 fa-
miliar? Did user47 perform any sus-
picious actions while the session was
active? Is the person with username
user47 on vacation and thus should
not be logging in?

Note that only some of these ques-
tions can be answered using data in the
logs. You can look for a large number of
failed login attempts that precede this
session, for example, but you cannot
infer user47’s real identify, let alone his
or her vacation schedule. Thus, a par-
ticular analysis works on logs that are
commensurate with the type of attack
they wish to detect; more generally, the
power of an analysis is limited by the in-
formation in the logs.

Log analysis for security may be sig-
nature based, in which the user tries to
detect specific behaviors that are known
to be malicious; or anomaly based,
in which the user looks for deviation
from typical or good behavior and flags
this as suspicious. Signature methods
can reliably detect attacks that match
known signatures, but are insensitive to
attacks that do not. Anomaly methods,
on the other hand, face the difficulty of
setting a threshold for calling an anom-
aly suspicious: too low, and false alarms
make the tool useless; too high, and at-
tacks might go undetected.

Security applications face the distin-
guishing challenge of an adversary. To
avoid the notice of a log-analysis tool,
an adversary will try to behave in such a
way that the logs generated during the
attack look—exactly or approximately—
the same as the logs generated during

correct operation. An analysis cannot
do much about incomplete logs. Devel-
opers can try to improve logging cover-
age,16 making it more difficult for adver-
saries to avoid leaving evidence of their
activities, but this does not necessarily
make it easier to distinguish a “healthy”
log from a “suspicious” one.

Prediction
Log data can be used to predict and pro-
vision for the future. Predictive models
help automate or provide insights for
resource provisioning, capacity plan-
ning, workload management, schedul-
ing, and configuration optimization.
From a business viewpoint, predictive
models can guide marketing strategy,
ad placement, or inventory management.

Some analytical models are built
and honed for a specific system. Ex-
perts manually identify dependencies
and relevant metrics, quantify the re-
lationships between components, and
devise a prediction strategy. Such mod-
els are often used to build simulators
that replay logs with anticipated work-
load perturbations or load volumes in
order to ask what-if questions. Exam-
ples of using analytical models for per-
formance prediction exist on I/O sub-
systems, disk arrays, databases, and
static Web servers. This approach has
a major practical drawback, however,
in that real systems change frequently
and analysis techniques must keep up
with these changes.

Although the modeling techniques
may be common across various sys-
tems, the log data mined to build the
model, as well as the metrics predicted,
may differ. For example, I/O subsystem
and operating-system instrumentation
containing a timestamp, event type,
CPU profile, and other per-event met-
rics can be used to drive a simulator to
predict I/O subsystem performance.
Traces that capture I/O request rate,
request size, run count, queue length,
and other attributes can be leveraged to
build analytical models to predict disk-
array throughput.

Many analytical models are single
tier: one model per predicted metric. In
other scenarios a hierarchy of models is
required to predict a single performance
metric, based on predictions of other
performance metrics. For example, Web
server traces—containing timestamps,
request type (GET vs. POST), bytes re-

The first three messages.

sshd[12109]: Accepted keyboard-interactive/pam for user47 from
171.64.78.25 port 49153 ssh2
com.apple.SecurityServer[22]: Session 0x3551e2 created
com.apple.SecurityServer[22]: Session 0x3551e2 attributes 0x20
…
com.apple.SecurityServer[22]: Session 0x3551e2 dead
com.apple.SecurityServer[22]: Killing auth hosts
com.apple.SecurityServer[22]: Session 0x3551e2 destroyed

practice

FeBRuARY 2012 | VoL. 55 | No. 2 | coMMunicaTions of The acM 59

quested, URI, and other fields—can be
leveraged to predict storage response
time, storage I/O, and server memory.
A model to predict server response time
under various load conditions can be
composed of models of the storage
metrics and server memory. As another
example, logs tracking record accesses,
block accesses, physical disk transfers,
throughputs, and mean response times
can be used to build multiple levels of
queuing network models to predict the
effect of physical and logical design de-
cisions on database performance.

One drawback of analytical models
is the need for system-specific domain
knowledge. Such models cannot be
seamlessly ported to new versions of the
system, let alone to other systems. As
systems become more complex, there
is a shift toward using statistical mod-
els of historical data to anticipate future
workloads and performance.

Regression is the simplest statistical
modeling technique used in prediction.
It has been applied to performance
counters, which measure execution
time and memory subsystem impact.
For example, linear regression ap-
plied to these logs was used to predict
execution time of data-partitioning
layouts for libraries on parallel proces-
sors, while logistic regression was used
to predict a good set of compiler flags.
CART (classification and regression
trees) used traces of disk requests speci-
fying arrival time, logical block number,
blocks requested, and read/write type to
predict the response times of requests
and workloads in a storage system.

Both simple regression and CART
models can predict a single metric per
model. Performance metrics, howev-
er, often have interdependencies that
must each be predicted to make an in-
formed scheduling or provisioning de-
cision. Various techniques have been
explored to predict multiple metrics
simultaneously. One method adapts
canonical correlation analysis to build
a model that captures interdependen-
cies between a system’s input and per-
formance characteristics, and leverages
the model to predict the system’s per-
formance under arbitrary input. Recent
work used KCCA (kernel canonical cor-
relation analysis) to model a parallel
database system and predict execution
time, records used, disk I/Os, and other
such metrics, given query character-

istics such as operators used and esti-
mated data cardinality.6 The same tech-
nique was adapted to model and predict
performance of map-reduce jobs.5

Although these techniques show the
power of statistical learning techniques
for performance prediction, their use
poses some challenges.

Extracting feature vectors from
events logs is a nontrivial, yet critical,
step that affects the effectiveness of a
predictive model. Event logs often con-
tain non-numeric data (for example,
categorical data), but statistical tech-
niques expect numeric input with some
notion of distributions defined on the
data. Converting non-numeric informa-
tion in events into meaningful numeric
data can be tedious and requires do-
main knowledge about what the events
represent. Thus, even given a predic-
tion, it can be difficult to identify the
correct course of action.

Predictive models often provide a
range of values rather than a single
number; this range sometimes repre-
sents a confidence interval, meaning
the true value is likely to lie within that
interval. Whether or not to act on a pre-
diction is a decision that must weigh
the confidence against the costs (that
is, whether acting on a low-confidence
prediction is better than doing noth-
ing). Acting on a prediction may depend
on whether the log granularity matches
the decision-making granularity. For
example, per-query resource-utilization
logs do not help with task-level sched-
uling decisions, as there is insufficient
insight into the parallelism and lower-
level resource-utilization metrics.

Reporting and Profiling
Another use for log analysis is to pro-
file resource utilization, workload,
or user behavior. Logs that record
characteristics of tasks from a clus-
ter’s workload can be used to profile
resource utilization at a large data
center. The same data might be lever-
aged to understand inter-arrival times
between jobs in a workload, as well as
diurnal patterns.

In addition to system management,
profiling is used for business analytics.
For example, Web-server logs character-
ize visitors to a Web site, which can yield
customer demographics or conversion
and drop-off statistics. Web-log analysis
techniques range from simple statistics

Predictive models
often provide a
range of values
rather than a
single number; this
range sometimes
represents a
confidence interval,
meaning the true
value is likely to lie
within that interval.

60 coMMunicaTions of The acM | FeBRuARY 2012 | VoL. 55 | No. 2

practice

that capture page popularity trends to
sophisticated time-series methods that
describe access patterns across multi-
ple user sessions. These insights inform
marketing initiatives, content hosting,
and resource provisioning.

A variety of statistical techniques
have been used for profiling and re-
porting on log data. Clustering algo-
rithms such as k-means and hierarchi-
cal clustering group similar events.
Markov chains have been used for pat-
tern mining where temporal ordering
is essential.

Many profiling and alerting tech-
niques require hints in the form of
expert knowledge. For example, the k-
means clustering algorithm requires
the user either to specify the number of
clusters (k) or to provide example events
that serve as seed cluster centers. Other
techniques require heuristics for merg-
ing or partitioning clusters. Most tech-
niques rely on mathematical represen-
tations of events, and the results of the
analysis are presented in similar terms.
It may then be necessary to map these
mathematical representations back
into the original domain, though this
can be difficult without understanding
the log semantics.

Classifying log events is often
challenging. To categorize system
performance, for example, you may
profile CPU utilization and memory
consumption. Suppose you have a per-
formance profile for high CPU utiliza-
tion and low memory consumption,
and a separate profile of events with
low CPU utilization and high memory
consumption; when an event arrives
containing low CPU utilization and
low memory consumption, it is un-
clear to which of the two profiles (or
both) it should belong. If there are
enough such events, the best choice
might be to include a third profile.
There is no universally applicable rule
for how to handle events that straddle
multiple profiles or how to create such
profiles in the first place.

Although effective for grouping
similar events and providing high-
level views of system behavior, pro-
files do not translate directly to op-
erationally actionable insights. The
task of interpreting a profile and
using it to make business decisions, to
modify the system, or even to modify the
analysis, usually falls to a human.

Logging infrastructures
A logging infrastructure is essential for
supporting the variety of applications
described here. It requires at least two
features: log generation and log storage.

Most general-purpose logs are unstruc-
tured text. Developers use printf and
string concatenations to generate mes-
sages because these primitives are well
understood and ubiquitous. This kind
of logging has drawbacks, however.
First, serializing variables into text is ex-
pensive (almost 80% of the total cost of
printing a message). Second, the analy-
sis needs to parse the text message,
which may be complicated and expensive.

On the storage side, infrastructures
such as syslog aggregate messages
from network sources. Splunk indexes
unstructured text logs from syslog and
other sources, and it performs both
real time and historical analytics on the
data. Chukwa archives data using Ha-
doop to take advantage of distributed
computing infrastructure.11

Choosing the right log-storage solu-
tion involves the following trade-offs:

˲˲ Cost per terabyte (upfront and
maintenance)

˲˲ Total capacity
˲˲ Persistence guarantees
˲˲ Write access characteristics (for ex-

ample, bandwidth and latency)
˲˲ Read access characteristics (ran-

dom access vs. sequential scan)
˲˲ Security considerations (access

control and regulation compliance)
˲˲ Integration with existing infra-

structure
There is no one-size-fits-all policy for

log retention. This makes choosing and
configuring log solutions a challenge.
Logs that are useful for business intel-
ligence are typically considered more
important than debugging logs and
thus are kept for a longer time. In con-
trast, most debug logs are stored for as
long as possible but without any reten-
tion guarantee, meaning they may be
deleted under resource pressure.

Log-storage solutions are more use-
ful when coupled with alerting and
reporting capabilities. Such infrastruc-
tures can be leveraged for debugging,
security, and other system-manage-
ment tasks. Various log-storage solu-
tions facilitate alerting and reporting,
but they leave many open challenges
pertaining to alert throttling, report ac-
celeration, and forecasting capabilities.

Profiles do not
translate directly
to operationally
actionable
insights. The task
of interpreting
a profile and using
it to make business
decisions, to modify
the system,
or even to modify
the analysis,
usually falls
to a human.

practice

FeBRuARY 2012 | VoL. 55 | No. 2 | coMMunicaTions of The acM 61

conclusion
The applications and examples in
this article demonstrate the degree
to which system management has be-
come log-centric. Whether used for
debugging problems or provisioning
resources, logs contain a wealth of in-
formation that can pinpoint, or at least
implicate, solutions.

Although log-analysis techniques
have made much progress recently,
several challenges remain. First, as sys-
tems become increasingly composed of
many, often distributed, components,
using a single log file to monitor events
from different parts of the system is dif-
ficult. In some scenarios logs from en-
tirely different systems must be cross-
correlated for analysis. For example,
a support organization may correlate
phone-call logs with Web-access logs to
track how well the online documenta-
tion for a product addresses frequently
asked questions and how many custom-
ers concurrently search the online doc-
umentation during a support call. Inter-
leaving heterogeneous logs is seldom
straightforward, especially when time-
stamps are not synchronized or present
across all logs and when semantics are
inconsistent across components.

Second, the logging process itself
requires additional management.
Controlling the verbosity of logging is
important, especially in the event of
spikes or potential adversarial behav-
ior, to manage overhead and facili-
tate analysis. The logging mechanism
should also not be a channel to prop-
agate malicious activity. It remains a
challenge to minimize instrumenta-
tion overhead while maximizing infor-
mation content.

A third challenge is that although
various analytical and statistical mod-
eling techniques can mine large quan-
tities of log data, they do not always
provide actionable insights. For exam-
ple, statistical techniques could reveal
an anomaly in the workload or that the
system’s CPU utilization is high but
not explain what to do about it. The in-
terpretation of the information is sub-
jective, and whether the information
is actionable or not depends on many
factors. It is important to investigate
techniques that trade off efficiency, ac-
curacy, and actionability.

There are several promising research
directions. Since humans will likely re-

main a part of the process of interpret-
ing and acting on logs for the foresee-
able future, advances in visualization
techniques should prove worthwhile.

Program analysis methods, both
static and dynamic, promise to in-
crease our ability to automatically
characterize the interactions and cir-
cumstances that caused a particular
sequence of log messages. Recent work
aims to modify existing instrumenta-
tion so that logs are either more ame-
nable to various kinds of analysis or
provide more comprehensive informa-
tion. Although such modifications are
not always possible, insights into how
to generate more useful logs are often
accompanied by insights in how to
analyze existing logs. Mechanisms to
validate the usefulness of log messages
would improve log quality, making log
analysis more efficient.

As many businesses become in-
creasingly dependent on their com-
puting infrastructure—not to mention
businesses where the computing infra-
structure or the services they provide
are the business itself—so does the
importance of this relationship. We
have seen a rise in tools that try to infer
how the system influences users: how
latency affects purchasing decisions;
how well click patterns describe user
satisfaction; and how resource-sched-
uling decisions change the demand
for such resources. Conversely, recent
work suggests that user activity can be
useful for system debugging. Further
exploration of the relationships be-
tween user behavior (workload) and
system behavior may prove useful for
understanding what logs to use, when,
and for what purpose.

These research directions, as well as
better logging standards and best prac-
tices, will be instrumental in improving
the state of the art in log analysis.

 Related articles
 on queue.acm.org

Modern Performance Monitoring
Mark Purdy
http://queue.acm.org/detail.cfm?id=1117404

network Forensics
Ben Laurie
http://queue.acm.org/detail.cfm?id=1016982

The Pathologies of Big Data
Adam Jacobs
http://queue.acm.org/detail.cfm?id=1563874

References
1. bluegene/l team. an overview of the bluegene/l

supercomputer. IEEE Supercomputing and IBM
Research Report (nov. 2002).

2. cantrill, b.m., shapiro, m.w. and leventhal, a.h.
dynamic instrumentation of production systems.
usenix 2004 annual technical conference (boston,
ma, June 2004); http://www.usenix.org/event/
usenix04/tech/general/full_papers/cantrill/cantrill.pdf.

3. erlingsson, Ú., Peinado, m., Peter, s., budiu and m.
fay: extensible distributed tracing from kernels to
clusters. in Proceedings of the 23rd ACM Symposium
on Operating Systems Principles, cascais, Portugal
(oct. 2011); http://research.google.com/pubs/
archive/37199.pdf.

4. fonseca, r., Porter, g., katz r., shenker, s. and stoica,
i. X-trace: a pervasive network-tracing framework.
Usenix Symposium on Networked Systems Design and
Implementation (cambridge, ma , apr. 2007).

5. ganapathi, a., chen, y., fox, a., katz, r. h. and
Patterson, d. a. statistics-driven workload modeling
for the cloud. workshop on self-managing database
systems at icde (2010), 87−92.

6. ganapathi, a., kuno, h. a., dayal, u., wiener, J. l.,
fox, a., Jordan, m. i. and Patterson, d. a. Predicting
multiple metrics for queries: better decisions enabled
by machine learning. International Conference on
Data Engineering (2009) 592−603.

7. gautam, a. and stoica, i. odr: output-deterministic
replay for multicore debugging. ACM Symposium on
Operating System Principles (2009), 193−206.

8. nguyen, X., huang, l. and Joseph, a. support vector
machines, data reduction, and approximate kernel
matrices. in Proceedings of the European Conference
on Machine Learning and Knowledge Discovery in
Databases (2008), 137−153.

9. oliner, a.J. and aiken, a. online detection of multi-
component interactions in production systems. in
Proceedings of the International Conference on
Dependable Systems and Networks (hong kong, 2011);
http://adam.oliner.net/files/oliner_dsn_2011.pdf.

10. oliner, a.J., kulkarni, a.V. and aiken, a. using
correlated surprise to infer shared influence. in
Proceedings of the International Conference on
Dependable Systems and Networks (chicago, il,
2010), 191−200; http://adam.oliner.net/files/oliner_
dsn_2010.pdf.

11. rabkin, a. and randy, k. chukwa: a system for reliable
large-scale log collection. USENIX Conference on
Large Installation System Administration (2010), 1−15.

12. sigelman, b., barroso, l., burrows, m., stephenson,
P., Plakal, m., beaver, d., Jaspan, s. and shanbhag,
c. dapper, a large-scale distributed systems tracing
infrastructure. google technical report; http://research.
google.com/archive/papers/dapper-2010-1.pdf.

13. thrun, s. et al. stanley: the robot that won the darPa
grand challenge. Journal of Field Robotics 23, 9
(2006), 661−692.

14. Xu, m. et al. a “flight data recorder” for enabling
full-system multiprocessor deterministic replay.
in Proceedings of the 30th annual International
Symposium on Computer Architecture (san diego, ca,
June 2003).

15. Xu, w., huang, l., fox, a., Patterson, d. and Jordan,
m. detecting large-scale system problems by
mining console logs. in Proceeding of the 22nd ACM
Symposium on Operating Systems Principles (big sky,
mt, oct. 2009).

16. yuan, d., zheng, J., Park, s., zhou, y. and savage,
s. improving software diagnosability via log
enhancement. in Proceedings of Architectural Support
for Programming Languages and Operating Systems
(newport beach, ca, mar. 2011); http://opera.ucsd.
edu/paper/asplos11-logenhancer.pdf.

Adam Oliner is a postdoctoral scholar in electrical
engineering and computer sciences at uc berkeley,
working with ion stoica and the amP (algorithms,
machine and People) lab.

Archana Ganapathi is a research engineer at splunk,
where she focuses on large-scale data analytics. she has
spent much of her research career analyzing production
datasets to model system behavior.

Wei Xu is a software engineer at google, where he works
on google’s debug logging and monitoring infrastructure.
his research interest is in cluster management and
debugging.

© 2012 acm 0001-0782/12/02 $10.00

