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Abstract
Localizing the sources of performance problems in large enterprise
networks is extremely challenging. Dependencies are numerous,
complex and inherently multi-level, spanning hardware and soft-
ware components across the network and the computing infrastruc-
ture. To exploit these dependencies for fast, accurate problem lo-
calization, we introduce an Inference Graph model, which is well-
adapted to user-perceptible problems rooted in conditions giving
rise to both partial service degradation and hard faults. Further, we
introduce the Sherlock system to discover Inference Graphs in the
operational enterprise, infer critical attributes, and then leverage the
result to automatically detect and localize problems. To illuminate
strengths and limitations of the approach, we provide results from a
prototype deployment in a large enterprise network, as well as from
testbed emulations and simulations. In particular, we find that tak-
ing into account multi-level structure leads to a 30% improvement
in fault localization, as compared to two-level approaches.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions

Keywords
Network & service management, dependencies, fault localization,
probabilistic inference

1. INTRODUCTION
Using a network-based service can be a frustrating experience,

marked by appearances of familiar hourglass or beachball icons,
with little reliable indication of where the problem lies, and even
less on how it might be mitigated. Even inside the network of a
single enterprise, where traffic does not need to cross the open In-
ternet, user-perceptible service degradations are rampant. Consider
Figure 1, which shows the distribution of time required for clients
to fetch the home page from a major webserver in a large enterprise
network including tens of thousands of network elements and over
400,000 hosts. The distribution comes from a data set of 18 thou-
sand samples from 23 instrumented clients over a period 24 days.
The second mode of the distribution represents user-perceptible
lags of 3 to 10+ seconds, and 13% of the requests experience this
unacceptable performance. This problem persists because current
network and service monitoring tools are blind to the complex set
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Figure 1: The response time of a major internal webserver
when fetching the home page. The times are clearly bi-modal,
with 13% of the requests taking 10x longer than normal and re-
sulting in user-perceptible lags. We define the first mode in re-
sponse time as indicating the service is up and the second mode
as indicating the service is troubled.

of dependencies across systems and networks in the enterprise,
needed for root cause analysis.
Conventional management systems treat each service, which we

define as an (IPaddr, port) pair, as being either up or down. This
naive model hides the kinds of performance failures shown in Fig-
ure 1. In this paper, we model service availability as a 3-state value:
a service is upwhen its response time is normal; it is downwhen re-
quests result in either an error status code or no response at all; and
it is troubled when responses fall significantly outside of normal
response times. Our definition of troubled status includes the par-
ticularly challenging cases where only a subset of service requests
are performing poorly.
This paper describes the Sherlock system that aims to give IT

administrators the tools they need to localize performance prob-
lems and hard failures that affect an end-user. Sherlock (1) detects
the existence of faults and performance problems by monitoring
the response time of services; (2) determines the set of components
that could be responsible; and (3) localizes the problem to the most
likely component.
We faced three main challenges in creating Sherlock. First, both

performance and hard faults can stem from problems anywhere
in the IT infrastructure, i.e., a service, a router, or a link. Adding
complexity to the problem, even simple requests like fetching a
webpage involve multiple services: DNS servers, authentication
servers, webservers, and the backend SQL databases that hold the
webpage data. Problems at any of these can affect the success or
failure of the request, but the dependencies among components in
IT systems are typically not recorded anywhere, and they evolve
continually as systems grow or new applications are added. As a
result, Sherlock must be able to automatically discover the set of
components involved in the processing of requests. Second, the



failover and load-balancing techniques commonly used in enter-
prise networks make determining the responsible component even
harder, since the set of components involved may change from re-
quest to request. Sherlock’s analysis must take these mechanisms
into account. Third, given the large size of enterprise networks, the
challenges above must be met in manner that remains tractable even
with hundreds of thousands of elements.
Sherlock meets these challenges in the following ways: First,

software agents running on each host analyze the packets that the
host sends and receives to determine the set of services on which
the host depends. Sherlock automatically assembles an Inference
Graph that captures the dependencies between all components of
the IT infrastructure by combining together these individual views
of dependency. Our algorithm uses information provided by one
host to fill in any gaps in the information provided by another. Sher-
lock then augments the Inference Graph with information about
the routers and links used to carry packets between hosts, and so
encodes in a single model all the components that could affect a re-
quest. Second, our Inference Graph model includes primitives that
capture the behavior of load-balancers and failover mechanisms.
Operators must identify where these mechanisms are used man-
ually or via heuristics (Section 4.2), but localization is then au-
tomatic. Third, we developed Ferret, an algorithm that efficiently
localizes faults in enterprise-scale networks using the Inference
Graph and measurements of service response times made by the
agents.
We deliberately targeted Sherlock at localizing significant prob-

lems that affect the users of the IT infrastructure, hence our focus
on performance as well as hard faults and our use of response time
as an indicator for performance faults. Current systems overwhelm
operators with meaningless alerts (the current management system
in our organization generates 15,000 alerts a day, and they are al-
most universally ignored as so few prove significant). In contrast,
Sherlock does not report problems that do not directly affect users.
For example, Sherlock will not even detect that a server has a high
CPU utilization unless requests are delayed as a result.
Sherlock aims for problem localization, which falls short in gen-

eral of full problem diagnosis. For example, Sherlock can deter-
mine that a SQL server is overloaded, but not that the overload
stems from a missing index. Yet, operational experience indicates
that problem diagnosis and resolution often rapidly follows prob-
lem localization. Indeed, it is not uncommon that IT administrators
are aware of suspicious, faulty or troubled states of a tremendous
number of components along with associated methods of mitiga-
tion or repair, but, lacking localization, are unaware of which, if
any, of these troubled components explain a high impact outage. If
a server returns incorrect information (e.g., a DNS server returns
the wrong IP address), Sherlock may help by detecting a change in
the dependencies among the components but it might not directly
localize the fault to the DNS server. Finally, we have not evaluated
Sherlock on systems that deliberately and frequently change their
dependencies and cannot predict its performance on such systems.
However, measurements indicate that the vast majority of enter-
prise applications do not fall into this class [2].
To the best of our knowledge, Sherlock is the first system that

localizes performance failures across network and services in a
timely manner without requiring modifications to existing appli-
cations and network components. The contributions of this paper
include our formulation of the Inference Graph and our algorithms
for computing it for an entire IT infrastructure based on observa-
tions of the packets that hosts send and receive. Unlike previous
work, our Inference Graph is both multi-level (in order to represent
the multiple level of dependencies found in IT infrastructure) and

3-state (so we can determine whether components are up, down,
or experiencing a performance fault and troubled). This paper also
contributes extensions to prior work that optimize fault localization
and adapt it for our three-state and multi-level Inference Graph. We
extensively evaluate the effectiveness of each of Sherlock’s compo-
nents individually, and describe our results of deploying Sherlock
in both a testbed and a large and complex enterprise network.

2. RELATEDWORK
Today, enterprises use sophisticated commercial tools, such as

EMC’s SMARTS [21], HP Openview [13], IBM Tivoli [19], or Mi-
crosoft Operations Manager [10]. In practice, these systems have
proven inadequate for finding the causes of performance problems
as they treat servers and routers as independent boxes — each pro-
ducing its own stream of SNMP counters, syslog messages, and
alerts. Fundamentally, these box-centric measures are poor predic-
tors of the end-to-end response time that users ultimately care about
— it’s not clear what CPU load on a server means users are un-
happy, so it is hard to set a threshold that alerts only when users
are impacted. For example, over a 10-day period our organization’s
well-run systems generated two thousand alerts for 160 servers that
might be sick. Another 18 K alerts were divided among 194 differ-
ent alert types coming from 877 different servers, each of which
could potentially affect user performance (e.g., 6 alerts for a server
CPU utilization over 90%; 8 for low memory causing a service to
stop). Investigating all the potentially serious alerts is simply im-
practical, especially when many had no effect on a user. Sherlock
complements existing tools by detecting and localizing the prob-
lems that affect users.
Significant recent research has led to methods for detailed de-

bugging of service problems in distributed systems. Many of these
systems also extract the dependencies between components, but are
different in character from Sherlock. Magpie [3], FUSE [5] and
Pinpoint [4], instrument middleware on every host to track requests
as they flow through the system. They then diagnose faults by corre-
lating components with failed requests. Project5 [1] andWAP5 [16]
record packet traces at each host and use message correlation algo-
rithms to resolve which incoming packet triggered which outgo-
ing packet. These projects all target the debugging and profiling of
individual applications, so determining exactly which message is
caused by another message is critically important. In contrast, Sher-
lock combines measurements of the many applications running on
an IT infrastructure to localize problems. We also show that, for
fault localization, co-occurrence of packets is a reasonable indica-
tor of dependency between accesses to two remote machines, and
that valid graphs can be computed with only 1,000 samples and 20
clients (Section 6.1).
There is a large body of prior work tackling fault localization

at the network layer, especially for large ISPs. In particular, BAD-
ABING [18] and Tulip [9] measure per-path characteristics, such
as loss rate and latency, to identify problems that impact user-
perceptible performance. These methods (and many commercial
products as well) use active probing to pinpoint faulty IP links.
Sherlock instead uses a passive correlation approach to localize
failed network components.
Machine learning methods have been widely discussed for fault

management. Pearl [15] describes a graph model for Bayesian
networks. Sherlock uses similar graph models to build Inference
Graphs. Rish et. al. [17] combines active probing and dependency
graph modeling for fault diagnosis in a network of routers and end
hosts, but they do not describe how the graph model might be au-
tomatically constructed. Unlike Sherlock, their method does not
model failover servers or load balancers, which are common in en-



Figure 2: Snippet of a partial Inference Graph that expresses
the dependencies involved in accessing a file share. Dotted boxes
represent physical components and software, dashed boxes de-
note external observations and ovals stand-in for unmodeled or
external factors.
terprise networks. Shrink [6] and SCORE [7] make seminal con-
tributions in modeling the network as a two-level graph and using
the model to find the most likely root causes of faults in wide-area
networks. In SCORE, dependencies are encoded as a set and fault-
localization becomes minimal set cover. Shrink introduces novel
algorithmic concepts in inference of most likely root causes, taking
probabilities describing strengths of dependencies into account. In
Sherlock, we leverage these concepts, while extending them to deal
with multi-level dependencies and with more complex operators
that capture load-balancing and failover mechanisms. We compare
the accuracy of our fault-localization algorithm with Shrink and
SCORE in Section 6.

3. THE Inference Graph MODEL
We first describe our new model, called the Inference Graph,

for representing the complex dependencies in an enterprise net-
work. The Inference Graph forms the core of our Sherlock system.
We then present our algorithm, called Ferret, that uses the model
to probabilistically infer the faulty or malfunctioning components
given real-world observations. We explain the details of how Sher-
lock constructs the Inference Graph, computes the required proba-
bilities, and performs fault localization later in Section 4.

3.1 The Inference Graph
The Inference Graph is a labeled, directed graph that provides a

unified view of the dependencies in an enterprise network, spanning
services and network components. Figure 2 depicts a portion of the
Inference Graph when a user accesses a network file share. The
structure of dependence is inherently multi-level. The access to the
file depends on contacting the Kerberos server for authentication,
which in turn depends on the Kerberos server itself, as well as the
routers and switches on the path from the user’s machine to the
Kerberos server. A problem could occur anywhere in this chain of
dependencies. The challenge is to find the right level of abstraction
to model these dependencies in a framework that can be feasibly
automated.
Formally, nodes in this graph are of three types. First, root-cause

nodes correspond to physical components whose failure can cause
an end-user to experience failures. The granularity of root-cause
nodes in Sherlock is a computer (a machine with an IP address),

a service (IP address, port), a router, or an IP link, although the
model is extensible to root causes at a finer granularity. Second,
observation nodes represent accesses to network services whose
performance can be measured by Sherlock. There is a separate ob-
servation node for every client that accesses any such network ser-
vice. The observation nodes model a user’s experience when using
services on the enterprise network. Finally, meta-nodes act as glue
between the root-cause nodes and the observation nodes. In this pa-
per we present three types of meta-nodes, noisy-max, selector and
failover. These nodes model the dependencies between root causes
and observations; the latter two are needed to model load-balancers
and failover redundancy, respectively (described in detail in Sec-
tion 3.1.1).
The state of each node in the Inference Graph is expressed by

a three-tuple: (Pup, Ptroubled, Pdown). Pup denotes the probabil-
ity that the node is working normally. Pdown is the probability
that the node has experienced a fail-stop failure, such as when a
server is down or a link is broken. Finally, Ptroubled is the prob-
ability that a node is troubled, which corresponds to the boxed
area in Figure 1, where services, physical servers or links con-
tinue to function but users perceive poor performance. The sum of
Pup +Ptroubled +Pdown = 1. We note that the state of root-cause
nodes is independent of any other nodes in the Inference Graph,
while the state of observation nodes can be uniquely determined
from the state of its ancestors.
An edge from node A to node B in the Inference Graph encodes

the dependency that node A has to be in the up state for node B to
be up. Not all dependencies are equal in strength. For example, a
client cannot retrieve a file from a file server if the path to that file
server is down. However, the client might still be able to retrieve
the file even when the DNS server is down, if the file server’s name
to IP address mapping is found in the client’s local DNS cache. Fur-
thermore, the client may need to authenticate more (or less) often
than resolving the server’s name. To capture varying strengths in
dependencies, edges in a Inference Graph are labeled with a de-
pendency probability. A larger dependency probability indicates
stronger dependency.
Finally, every Inference Graph has two special root-cause nodes

– always troubled (AT) and always down (AD) – to model exter-
nal factors not part of our model that might cause a user-perceived
failure. The state of AT is set to (0, 1, 0) and that of AD is set to
(0, 0, 1). We add an edge from these nodes to all the observation
nodes, and describe how we assign probabilities to these edges in
Section 4.
To illustrate these concepts we revisit Figure 2, which shows a

portion of the Inference Graph that models a user fetching a file
from a network file server. The user activity of “fetching a file” is
encoded as an observation node (dashed box) in the figure because
Sherlock can measure the response time for this action. Fetching a
file requires the user to perform three actions: (i) authenticate itself
to the system, (ii) resolve the DNS name of the file server and (iii)
access the file server. These actions themselves depend on other ac-
tions to succeed. Therefore, we model them as meta-nodes, and add
edges from each of them to the observation node of “fetching a file.”
We describe our method of computing the dependency probability
for these edges in Section 4.1. Since the client is configured with
both a primary and secondary DNS server (DNS1 and DNS2), we
introduce a failover meta-node. Finally, note that this snippet shows
a single client and a single observation. When other clients access
the same servers or use the same routers/links as those shown here,
their observation nodes will be connected to the same root cause
nodes as those shown to create the complete Inference Graph.
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Figure 3: Truth Table for the noisy-max meta-node when a
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Figure 4: Truth Table for the selector meta-node. A child node
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1-d. The values in the lower triangle are omitted for clarity.

3.1.1 Propagation of State with Meta-Nodes
A crucial aspect of a probabilistic model is how the state of par-

ent nodes governs the state of a child node. For example, suppose
a child has two parents, A and B; the state of parent A is (.8, .2, 0),
which means its probability of being up is 0.8, troubled is 0.2 and
down is 0, and the state of parent B is (.5, .2, .3). What, then, is the
state of the child? While edge labels encode the strength of depen-
dency, the nature of the dependency is encoded in the meta-node.
Formally, the meta-node describes the state of the child node given
the state of its parent nodes.
Noisy-MaxMeta-Nodes are the simplest and most common meta-
node. Max implies that if any of the parents are in the down state,
then the child is down. If no parent is down and any parent is trou-
bled, then the child is troubled. If all parents are up, then the child
is up. Noisy implies that unless a parent’s dependency probability
is 1.0, there is some chance the child will be up even if the parent
is down. Formally, if the weight of a parent’s edge is d, then with
probability (1� d) the child is not affected by that parent.
Figure 3 presents a truth table for noisy-max when a child has

two parents. Each entry in the truth table is the state of the child
(i.e., its probability of being up, troubled and down) when parent1
and parent2 have states as per the column and row label respec-
tively.1 As an example, the second row and third column of the truth
table shows the probability of the child being troubled, given that
parent1 is down and parent2 is troubled: P(Child=Troubled | Par-
ent1=Down, Parent2=Troubled) = (1 � d1) ⇤ d2. To explain, the
child will be down unless parent1’s state is masked by noise (prob
1� d1). Further, if both parents are masked by noise, the child will
be up. Hence the child is in troubled state only when parent1 is
drowned out by noise and parent2 is not.
Selector Meta-Nodes are used to model load balancing scenar-
ios. For example, a Network Load Balancer (NLB) in front of two
servers hashes the client’s requests and distributes requests evenly
to the two servers. An NLB cannot be modeled using a noisy-max
meta-node because the client would depend on each server with a
probability of 0.5, since half the requests go to each server. Using
a noisy-max meta-node will assign the client a 25% chance of be-
ing up even when both the servers are down, which is obviously
incorrect. We use the selector meta-node to model NLB Servers
1A (0, 1, 0) state for parent1 means it is troubled.
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Figure 5: Truth Table for the failover meta-node encodes the
dependence that the child primarily contacts parent1, and fails
over to parent2 when parent1 does not respond.

and Equal Cost Multipath (ECMP) routing. ECMP is a commonly-
used technique in enterprise networks where routers send packets
to a destination along several paths. The path is selected based on a
hash of the source and destination addresses in the packet. We use a
selector meta-node when we can determine the set of ECMP paths
available, but not which path a host’s packets will use.
The truth table for the selector meta-node is shown in Figure 4,

and it expresses the fact the child is making a selection. For exam-
ple, while the child may choose each of the parents with probability
50%, the selector meta-node forces the child to have a zero proba-
bility of being up when both its parents are down (first number in
the Down,Down entry).
Failover Meta-Nodes capture the failover mechanism commonly
used in enterprise servers. Failover is a redundancy technique
where clients access primary production servers and failover to
backup servers when the primary server is inaccessible. In our net-
work, DNS, WINS, Authentication and DHCP servers all employ
failover. Failover cannot be modeled by either the noisy-max or
selector meta-nodes, since the probability of accessing the backup
server depends on the failure of the primary server.
The truth table for the failover meta-node is shown in Figure 5.

As long as the primary server is up or troubled, the child is not
affected by the state of the secondary server. When the primary
server is in the down state, the child is still up if the secondary
server is up.

3.1.2 Time to Propagate State
A common concern with probabilistic meta-nodes is that com-

puting the probability density for a child with n parents can take
O(3n) time for a three-state model in the general case.2 However,
the majority of the nodes in our Inference Graph with more than
one parent are noisy-max meta-nodes. For these nodes, we have
developed the following equations that reduce the computation to
O(n) time.

P(child up) =
j

(1� dj) ⇤ (ptrouble
j + pdown

j ) + pup
j

1� P(child down) =
j

1� pdown
j + (1� dj) ⇤ pdown

j

P(child troubled) = 1� (P(child up)+ P(child down))

where pj is the j’th parent, (pup
j , ptrouble

j , pdown
j ) is its probability

distribution, and dj is its dependency probability. The first equation
implies that a child is up only when it does not depend on any
parents that are not up. The second equation implies that a child is
down unless every one of its parents are either not down or the child
does not depend on them when they are down.
2The naive way to compute the probability of the child’s state re-
quires computing all 3n entries in the truth-table and summing the
appropriate entries.



The computational cost for selector and failover meta-nodes is
still exponential, O(3n), for a node with n parents. However, in
our experience, these two types of meta-nodes have no more than 6
parents, and hence do not add a significant computation burden.

3.2 Fault Localization on the Inference Graph
We now present our algorithm, Ferret, that uses the Inference

Graph to localize the cause of a network or service problem. We
define an assignment-vector to be an assignment of state to every
root-cause node in the Inference Graph where the root-cause node
has probability 1 of being either up, troubled, or down. The vector
might specify, for example, that link1 is troubled, server2 is down
and all the other root-cause nodes are up. The problem of localizing
a fault is then equivalent to finding the assignment-vector that best
explains the observations measured by the clients.
Ferret takes as input the Inference Graph and the measurements

(e.g., response times) associated with the observation nodes. Ferret
outputs a ranked list of assignment vectors ordered by a confidence
value that represents how well they explain the observations. For
example, Ferret could output that server1 is troubled and other
root-cause nodes are up with a confidence of 90%, link2 is down
and other root-cause nodes are up with 5% confidence, and so on.
For any assignment-vector, Ferret can compute a score for how

well that vector explains the observations. Ferret first sets the root
causes to the states specified in the assignment-vector and then uses
the state-propagation techniques described in the previous section
to propagate probabilities downwards until they reach the observa-
tion nodes. Then, for each observation node, it computes a score
based on how well the probabilities in the state of the observation
node agree with the statistical evidence derived from the measure-
ments associated with this observation node. Section 4 provides the
details of how we compute this score.
How can we search through all possible assignment vectors to

determine the vector with the highest score? There are 3r vectors
given r root-causes, and applying the procedure just described to
evaluate the score for each assignment vector would be infeasi-
ble. Existing solutions to this problem in machine learning liter-
ature, such as loopy belief propagation [12], do not scale to the
Inference Graph sizes encountered in enterprise networks. Approx-
imate localization algorithms used in prior work, such as Shrink [6]
and SCORE [7], are significantly more efficient. However, they are
based on two-level, two-state graph models, and hence do not work
on the Inference Graph, which is multi-level, multi-state and in-
cludes meta-nodes to model various artifacts of an enterprise net-
work. The results in Section 6 clarify how Ferret compares with
these algorithms.
Ferret uses an approximate localization algorithm that builds on

an observation that was also made by Shrink [6].

OBSERVATION 3.1. It is very likely that at any point in time
only a few root-cause nodes are troubled or down.

In large enterprises, there are problems all the time, but they are
usually not ubiquitous.3 We exploit this observation by not evaluat-
ing all 3r assignment vectors. Instead, Ferret evaluates assignments
that have no more than k root-cause nodes that are either troubled
or down. Thus, Ferret first evaluates 2 ⇤ r vectors in which exactly
one root-cause is troubled or down, next 2 ⇤ 2 ⇤ r

2 vectors where
exactly two root-causes are troubled or down, and so on. Given k,
Ferret evaluates at most (2 ⇤ r)k assignment vectors. Further, it is
easy to prove that the approximation error of Ferret, that is, the

3There are important cases where this observation might not hold,
such as rapid malware infection and propagation.

probability that Ferret does not arrive at the correct solution (the
same solution attained using the brute-force, exponential approach)
decreases exponentially with k and becomes vanishingly small for
k = 4 onwards [6]. Pseudo-code for the Ferret algorithm is shown
in Algorithm 1.

Algorithm 1 Ferret{Observations O, Inference Graph G, Int X}
Candidates (up|trouble|down) assignments to root causes

with at most k abnormal at any time
ListX  {} . List of top X Assignment-Vectors
for Ra 2 Candidates do . For each Assignment-Vector

Assign States to all Root-Causes in G as per Ra.
Score(Ra) 1 . Initialize Score
for Node n 2 G do . Breadth-first traversal of G

Compute P(n) given P(parents of n) . Propagate
end for
for Node n 2 GO do . Scoring Observation Nodes

s P( Evidence at n | prob. density of n) . How well
does Ra explain observation at n?

Score(Ra) Score(Ra) ⇤ s . Total Score
end for
Include Ra in ListX if Score(Ra) is in top X assignment

vectors
end for
return ListX

Ferret uses another practical observation to speed up its compu-
tation.

OBSERVATION 3.2. Since a root-cause is assigned to be up in
most assignment vectors, the evaluation of an assignment vector
only requires re-evaluation of states at the descendants of root-
cause nodes that are not up.

Therefore, Ferret preprocesses the Inference Graph by assigning all
root-causes to be up and propagating this state through to the ob-
servation nodes. To evaluate an assignment vector, Ferret needs to
re-compute only the nodes that are descendants of root-cause nodes
marked troubled or down in the assignment vector. After comput-
ing the score for an assignment vector, Ferret simply rolls back to
the pre-processed state with all root-causes in the up state. As there
are never more than k root-cause nodes that change state out of
the hundreds of root-cause nodes in our Inference Graphs, this re-
duces Ferret’s time to localize by roughly two orders of magnitude
without sacrificing accuracy.
In the studies presented in this paper, we use the Ferret algorithm

exactly as described above. However, the inference algorithm can
be easily extended to leverage whatever domain knowledge is avail-
able. For example, if prior probabilities on the failure rates of com-
ponents are known (e.g., links in enterprise networks may have a
much higher chance of being congested than down [14]), then Fer-
ret can sort the assignment vectors by their prior probability and
evaluate in order of decreasing likelihood to speed up inference.

4. THE SHERLOCK SYSTEM
Now that we have explained the Inference Graph model and Fer-

ret fault localization algorithm, we describe the Sherlock system
that actually constructs the Inference Graph for an enterprise net-
work and uses it to localize faults. Sherlock consists of a central-
ized Inference Engine and distributed Sherlock Agents. Sherlock
requires no changes to routers, applications, or middleware used in
the enterprise. It uses a three-step process to localize faults in the
enterprise network, illustrated in Figure 6.
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Figure 6: Sherlock Solution Overview

First, Sherlock computes a service-level dependency graph
(SLDG) that describes the services on which each client and ser-
vice depends. Each Sherlock agent is responsible for monitoring
the packets sent and received by one or more hosts. The agent may
run on the host itself, or it may obtain packet traces via sniffing
a nearby link or router. From these traces, the agent computes the
dependencies between the services with which its host(s) commu-
nicates and the response time distributions for each service (Sec-
tion 4.1). This information is then relayed to the inference engine as
described in Section 5, where the engine aggregates the dependen-
cies between services computed by each agent to form the SLDG.
The SLDG is relatively stable, changing when new hosts or applica-
tions are added to the network, and we expect it will be recomputed
daily or weekly.
Second, the inference engine combines the SLDG with the net-

work topology to compute a unified Inference Graph over all ser-
vices in which the operator is interested and across all Sherlock
agents (Section 4.2). This step can be repeated as often as needed
to capture changes in the network.
Third, the inference engine runs Ferret over the response time

observations reported by the agents and the Inference Graph to
identify the root-cause node(s) responsible for any problem ob-
served. This step is executed whenever agents observe large re-
sponse times.

4.1 Discovering Service-Level Dependencies
Each Sherlock agent is responsible for computing the depen-

dency between the services its host accesses. We define the depen-
dency probability of a host on service A when accessing service
B as the probability the host needs to communicate with service
A before it can successfully communicate with service B. A value
of 1 indicates a strong dependency, where the host machine always
contacts service A before contacting B. For example, a client will
visit a web server soon after receiving a response from DNS server
providing the web server’s IP address, so the dependency probabil-
ity of using DNS when visiting a web server will be greater than 0.
Due to caching, however, the probability may be less than 1.
Because we define services in terms of IP addresses and ports,

Sherlock does not rely on parsing application-specific headers. It
could be easily extended to use a finer-grain notion of a service if
such parsers were available.

4.1.1 Computing the Dependency Probability
Sherlock computes the dependency between services by leverag-

ing the observation that if accessing service B depends on service
A, then packets exchanged with A and B are likely to co-occur.
Using this observation, we approximate the dependency proba-

bility of a host on service A when accessing service B as the con-
ditional probability of accessing service A within a short interval,
called the dependency interval, prior to accessing service B. We
compute the conditional probability as the number of times in the
packet trace that an access to service A precedes an access to ser-

vice B within the dependency interval.
There is a tension in choosing the value of the dependency in-

terval which is well known in machine learning [8]. Too large an
interval will introduce false dependencies on services that are ac-
cessed with a high frequency, while too small an interval will miss
some true dependencies.
The Sherlock agents use a simple approach that works well in

practice. The dependency interval is fixed at 10 ms, which in our
experience discovers most of the dependencies. The agents then
apply a simple heuristic to eliminate false positives due to chance
co-occurrence. They first calculate the average interval, I , between
accesses to the same service and estimate the likelihood of “chance
co-occurrence” as (10ms)/I . They then retain only the dependen-
cies where the dependency probability is much greater than the
likelihood of chance co-occurrence.
Our heuristic for computing dependency works best when a re-

sponse from serviceA precedes a request to serviceB. But without
deep packet inspection, it is not possible to explicitly identify the
requests and responses in streams of packets going back and forth
between the host and A and the host and B. In practice, we have
found it is sufficient to group together a contiguous sequence of
packets to a service as a single access to the service. In Section 6.1,
we show that this simple approximation produces reasonably accu-
rate service-level dependency graphs.

4.1.2 Aggregating Probabilities Across Clients
All agents periodically submit the dependency probabilities they

measure to the inference engine. However, because some services
are accessed infrequently, a single host may not have enough sam-
ples to compute an accurate probability. Fortunately, many clients
in an enterprise network have similar host, software and network
configurations (e.g. clients in the same subnet) and are likely to
have similar dependencies. Therefore, the inference engine aggre-
gates the probabilities of similar clients to obtain more accurate
estimates of the dependencies between services.
Aggregation also provides another mechanism to eliminate false

dependencies – for example, a client making a large number of
requests to the proxy server will appear to be dependent on the
proxy server for all the services it accesses. To eliminate these
false dependencies, the inference engine calculates the mean and
standard deviation of each dependency probability. It then excludes
clients with a probability more than five standard deviations from
the mean. Section 6.1 evaluates the effectiveness of this aggrega-
tion.

4.2 Constructing the Inference Graph
Here we describe how the Inference Engine combines dependen-

cies between services reported by the Sherlock agents with network
topology information to construct a unified Inference Graph.
For each service S, the inference engine first creates a noisy-

max meta-node to represent the service. It then creates an obser-
vation node for each client reporting response time observations of
that service and makes the service meta-node a parent of the ob-
servation node. The engine then examines the service dependency
information of these clients to identify the set of services DS that
the clients are dependent on when accessing S. The engine then re-
curses, expanding each service inDS . Once all service meta-nodes
have been created, for each of these nodes the inference engine
creates a root-cause node to represent the host on which the service
runs and makes this root-cause a parent of the meta-node.
The inference engine then adds network topology information

to the Inference Graph by using traceroute results reported by the
agents. For each path between hosts in the Inference Graph, it adds



a noisy-max meta node to represent the path and root-cause nodes
to represent every router and link on the path. It then adds each of
these root-causes as parents of the path meta-node.
Optionally, the operators can tell the inference engine where load

balancing or redundancy techniques are used in their network, and
the engine will update the Inference Graphs, drawing on the ap-
propriate specialized meta-node. Adapting the local environment
to the configuration language of the inference engine can also be
done with scripting. For example, in our network the load-balanced
web servers for a site follow a naming convention and are called
sitename* (e.g., msw01, msw02). Our script looks for this pat-
tern and replaces the default meta-nodes with selector meta-nodes.
Similarly, the agent examines its host’s DNS configuration using
ipconfig to identify where to place a failover meta-node to model
the primary/secondary relationship between its name resolvers.
Finally, the inference engine assigns probabilities to the edges

in the Inference Graph. The service-level dependency probabili-
ties are directly copied onto corresponding edges in the Inference
Graph. The special nodes always troubled and always down are
connected to observation nodes with a probability of 0.001, which
implies that 1 in 1000 failures are caused by a component not in our
model. Edges between a router and a path meta-node use a proba-
bility of 0.9999, which implies that there is a 1-in-10,000 chance
that our network topology or traceroutes are incorrect and the router
is not actually on the path. In our experience, Sherlock’s results are
not sensitive to the precise setting of these parameters (Section 6.2).

4.3 Fault Localization Using Ferret
As described in Section 3.2, Ferret uses a scoring function to

compute how well an assignment vector being evaluated matches
external evidence. A scoring function takes as input the probability
distribution of the observation node and the external evidence for
this node and returns a value between zero and one. A higher value
indicates a better match. The score for an assignment vector is the
product of scores for individual observations.
The scoring function for the case when an observation node re-

turns an error or receives no response is simple – the score is equal
to the probability of the observation node being down. For exam-
ple, if the assignment vector correctly predicts that the observation
node has a high probability of being down, its score will be high.
The scoring function for the case when an observation node

returns a response time is computed as follows. The Sher-
lock agent tracks the history of response times and fits two
Gaussian distributions to the historical data, namely Gaussianup

and Gaussiantroubled. For example, the distribution in Fig-
ure 1 would be modeled by Gaussianup with a mean response
time of 200 ms and Gaussiantroubled with a mean response
time of 2 s. If the observation node returns a response time t,
the score of an assignment vector that predicts the observation
node state to be (pup, ptroubled, pdown) is computed as pup ⇤
Prob(t|Gaussianup) + ptroubled ⇤ Prob(t|Gaussiantroubled).
In other words, if the response time t is well explained by the
Gaussianup and the assignment vector correctly predicts that the
observation node has a high probability of being up, the assignment
vector will have a high score.
When Ferret produces a ranked list of assignment vectors for

a set of observations, it uses a statistical test to determine if the
prediction is sufficiently meaningful to deserve attention. For a set
of observations, Ferret computes the score that these observations
would arise even if all root causes were up – this is the score of
the null hypothesis. Over time, the inference engine obtains the
distribution of Score(best prediction) � Score(null hypothesis).
If the score difference between the prediction and the null hypoth-
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Figure 7: The components of the Sherlock Agent, with arrows
showing the flow of information. Block arrows show the inter-
actions with the inference engine, which are described in the
text.

esis exceeds the median of the above distribution by more than one
standard deviation, the prediction is considered significant.

5. IMPLEMENTATION
We have implemented the Sherlock Agent, shown in Figure 7,

as a user-level service (daemon) in Windows XP. The agent ob-
serves ongoing traffic from its host machine, watches for faults,
and continuously updates a local version of the service-level depen-
dency graph. The agent uses a WinPcap [20]-based sniffer to cap-
ture packets. We augmented the sniffer in several ways to efficiently
sniff high volumes of data–even at an offered load of 800 Mbps,
the sniffer misses less than 1% of packets. Agents learn the net-
work topology by periodically running traceroutes to the hosts that
appear in the local version of the service-level dependency graph.
Sherlock would easily accommodate layer-2 topology as well, if it
were available. The Agent uses an RPC-style mechanism to com-
municate with the inference engine. Both agent and inference en-
gine use role-based authentication to validate incoming messages.
The choice of a centralized inference engine makes it easier

to aggregate information, but raises scalability concerns about
CPU and bandwidth limitations. Back-of-the-envelope calculations
show that both requirements are feasible even for large enterprise
networks. An Sherlock Agent sends 100B observation reports once
every 300s. The inference engine polls each agent for its service-
level dependency graph once every 3600s, and for most hosts in
the network this graph is less than 40 KB. Even for an extremely
large enterprise network with 105 Sherlock Agents, this results in
an aggregate bandwidth of about 10 Mbps.
The computational complexity of fault localization scales lin-

early with graph size, so we believe it is feasible even in large
networks. Specifically, computational complexity is proportional to
the number of root causes in the inference graph⇥ the graph depth.
Graph depth depends on the complexity of network applications,
but is less than 10 for all the applications we have studied.

6. EVALUATION
We evaluated our techniques by deploying the Sherlock system

in a portion of our organization’s enterprise network shown in Fig-
ure 8. We monitored 40 servers, 34 routers, 54 IP links and 2 LANs
for 3 weeks. Out of approximately 1,500 clients connected to the 2
LANs, we deployed Sherlock agents on 23 of them. In addition to
observing ongoing traffic, these agents periodically send requests
to the web- and file-servers, mimicking user behavior by browsing
webpages, launching searches, and fetching files. We also installed
packet sniffers at R1 and 5 routers in the datacenter, enabling us to
conduct experiments as if Agents were present on all clients and
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Figure 8: Topology of the production network on which Sher-
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Figure 9: Inferred service dependency graphs for clients access-
ing the main web portal and the sales website. There is signifi-
cant overlap in their dependencies.

servers connected to these routers. These servers include our or-
ganization’s internal web portal, sales website, a major file server,
and servers that provide name-resolution and authentication ser-
vices. Traffic from the clients to the data center was spread across
four disjoint paths using Equal Cost Multi-Path routing (ECMP).
In addition to the field deployment, we use both a testbed and

simulations to evaluate our techniques in controlled environments
(Section 6.2). The testbed and simulations enable us to study Fer-
ret’s sensitivity to errors in the Inference Graphs and compare
its effectiveness with prior fault localization techniques, including
Shrink [6] and SCORE [7].

6.1 Discovering Service Dependencies
We now evaluate Sherlock’s algorithm for discovering service-

level dependencies and quantify the amount of data and time re-
quired for stable results. We carefully examined the service-level
dependency graphs computed by Sherlock for fifteen production
web and file servers in our organization, and we corroborated the
correctness and completeness of these dependencies with our sys-
tem administrators. Below, we show the dependency graphs for two
typical web servers and one file server, and we highlight the lessons
we learned.
Figure 9 shows the service-level dependency graphs for vis-

iting our organization’s main web portal and sales website. Ar-
rows point from servers that provide essential services to servers
or activities that depend on these services. Edges are annotated
with weights which represent the strength of the dependencies.
Two things are worth noting. First, clients depend on name lookup
servers (DNS, WINS), authentication servers (Domain Controller),
and proxy servers to access either of these websites. Clients must
communicate with the authentication servers to validate certificates

Clients Access FileServer
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FileServerD

DNS

WINS

DC
9.9%

4.6%
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7.9%
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Figure 10: Inferred service dependency graph for clients ac-
cessing a file server.
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Figure 11: Dependency probabilities for accessing the web por-
tal converge to stable values as the inference engine receives
more samples from clients.

that control access and use the proxy servers to retrieve external
pages that are embedded in the websites’ pages. Second, both web-
sites also share substantial portions of their back-end dependencies.
The same search server crawls both websites and generates indexes
that are used by the websites to answer client queries. The pres-
ence of such overlap in production environments bodes well for our
techniques, as it means Sherlock can construct succinct Inference
Graphs and Ferret can localize faults with fewer observations.
Figure 10 shows the dependency graph for visiting a major file

server. As before, clients depend on DNS, WINS, Domain Con-
troller (DC), and proxy servers to access the file server. Inter-
estingly, clients actually depend on four different file servers –
FileServerA-FileServerD to access the main file server. It turns out
that the name of the main file server is just the root name of a
distributed file system. The actual files are stored on several file
servers, each of which is responsible for a portion of the name
space. The client requests are sent to the file servers based on the
location of the clients and the requested files.
To summarize, our observations are three-fold. First, there is sig-

nificant variety in service-level dependencies – some servers redi-
rect a majority of their requests while others exclusively serve the
requests locally. Second, even when two services appear to have
similar dependencies, there are differences in the strength of the
dependencies. For instance, clients may heavily depend on domain
controllers to access certain web servers which contain lots of sen-
sitive information, but this does not apply to accessing the web por-
tal. Finally, dependencies change over the time – we have seen con-
tent move across machines from one building to another. Hence, we
conclude that an automated algorithm for inferring dependencies is
necessary and useful.
Impact of number of samples: Section 4.1 describes how Sher-
lock computes service-level dependency graphs by aggregating the
results from multiple clients. In this section we examine how many
samples are required to produce stable probability estimates. Fig-
ure 11 shows how dependency probabilities for clients accessing
the web portal converge as the algorithm uses more samples. We
show the probabilities for a set of true dependencies and the one
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false dependency with the largest probabilities among false depen-
dencies. Note that the probabilities of the four true dependencies
(DC, DNS, WINS, and proxy) quickly exceed those of the false
dependency, even with only 200 samples. At about 4,000 samples,
the probabilities of all the true dependencies converge to their fi-
nal values. The Inference Engine normally receives this number of
samples in a few hours during a regular day. Once converged, we
find the service-level dependencies are stable over several days to
a couple of weeks.
Impact of number of clients: Figure 12 shows how dependency
probabilities for clients accessing the web portal converge as Sher-
lock aggregates samples from more clients. We show probabilities
for the same set of dependencies as before. Not surprisingly, when
we aggregate the results from very few clients, the false depen-
dency has a higher probability than some of the true dependen-
cies. Aggregating over even 20 clients reduces the false dependency
probability to a trivial value, showing the importance of aggrega-
tion in eliminating false positives.

6.2 Localizing Faults in Enterprise Network
We now turn our attention to Ferret, the fault localization algo-

rithm. We evaluate Ferret’s ability to localize faults in an enterprise
network and its sensitivity to errors in the inference graph. We also
compare it with prior work.
We begin with a simple but illustrative example where we in-

ject faults in our testbed (Figure 13). The testbed has three web
servers, one in each of the two LANs and one in the data center.
It also has an SQL backend server and supporting DNS and au-
thentication servers (AD). WebServer1 only serves local content
and WebServer2 serves content stored in the SQL database. Note
that the testbed shares routers and links with the production enter-
prise network, so there is substantial real background traffic. We
use packet droppers and rate shapers along with CPU and disk load
generators to create scenarios where any desired subset of clients,

C1-1 fetches 
pages from WS1

C1-1 fetches 
pages from WS2

C1-1 ↔ WS1 C1-1 ↔ WS2 WS2 ↔ SQL
C1-1 ↔ resolves
name with DNS1

C1-1 ↔ gets 
certs from AD

WS1 DNS1AD SQLWS2LAN2LAN1 R1C1-1

Service 
Deps

Server & 
Network 
Deps

Figure 14: Inference graph for client C1�1 accessing
WebServer1 (WS1) and WebServer2 (WS2). For clarity, we
elide the probability on edges, the specialized (failover) meta-
node for DNS1 and DNS2, and the activities of other clients.

servers, routers, and links in the testbed appear as failed or over-
loaded. Specifically, an overloaded link drops 5% of packets at ran-
dom and an overloaded server has high CPU and disk utilization.
Figure 14 shows the inference graph constructed by Sherlock,

with some details omitted for clarity. The arrows at the bottom-
level are the service-level dependencies inferred by our depen-
dency discovery algorithm. For example, to fetch a web page from
WebServer2, client C1�1 has to communicate with DNS1 for name
resolution and AD for certificates. WebServer2, in turn, retrieves
the content from the SQL database. Sherlock builds the complete
inference graph from the service-level dependencies as described
in Section 4.2.
Unlike traditional threshold-based fault detection algorithms,

Ferret localizes faults by correlating observations from multiple
vantage points. To give a concrete example, if WebServer1 is over-
loaded, traditional approaches would rely on instrumentation at the
server to raise an alert once the CPU or disk utilization passes a
certain threshold. In contrast, Ferret relies on the clients’ obser-
vations of WebServer1’s performance. Since clients do not expe-
rience problems accessing WebServer2, Ferret can exclude LAN1,
LAN2 and router R1 from the potentially faulty candidates, which
leaves WebServer1 as the only candidate to blame. Ferret formal-
izes this reasoning process into a probabilistic correlation algorithm
(described in Section 3.2) and produces a list of suspects ranked by
their likelihood of being the root cause. In the above case, the top
two root cause suspects areWebServer1 with a likelihood of 99.9%
and RouterR1 with a likelihood of 9.0*10�9%. Ferret successfully
identifies the right root cause while the likelihood of the second best
candidate is negligibly small.
Ferret can also deal with multiple simultaneous failures. To il-

lustrate this, we created a scenario where bothWebServer1 and one
of the clients C1�3 were overloaded at the same time. In this case,
the top two candidates identified by Ferret areWebServer1 \ C1�3

with a likelihood of 97.8% and WebServer1 with a likelihood of
1.6%. WebServer1 appears by itself as the second best candidate
since failure of that one component explains most of the poor per-
formance seen by clients, and the problemsC1�3 reports with other
services might be noise.
Ferret’s fault localization capability is also affected by the

number of vantage points. For example, in the testbed where
WebServer2 only serves content in the SQL database, Ferret can-
not distinguish between congestion in WebServer2 and congestion
in the database. Observations from other clients whose activities
depend on the database but notWebServer2, would resolve the am-
biguity.
Ferret’s ability to correctly localize failures depends on having

observations from roughly the same time period that exercise all
paths in the Inference Graph. To estimate the number of observa-
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tions available, we measured the average number of unique clients
that access a server during time windows of various sizes. We do
this for the 128 most popular servers in our organization using time
window lengths varying from 1 second to 105 seconds (roughly
3 hours). The data for Figure 15 were collected over a 24-hour pe-
riod during a normal business day. It shows that there are many
unique clients that access the same server in the same time window.
For instance, in a time window of 10 seconds, at least 70 unique
clients access every one of the top 20 servers. Given that there are
only 4 unique paths to the data center and 4-6 DNS/WINS servers,
we believe that accesses to the top 20 servers alone provide enough
observations to localize faults occurring at most locations in the
network. Accesses to less popular services leverage this informa-
tion, and need only provide enough observations to localize faults
in unshared components.

6.2.1 Evaluation of Field Deployment
We now report results from deploying Sherlock in our organiza-

tion’s production network. We construct the Inference Graph using
the algorithm described in Section 4.2. The resulting graph contains
2,565 nodes and 358 components that can fail independently.
Figure 16 shows the results of running the Sherlock system over

a 5-day period. Each Y-axis value represents one component, e.g. a
server, a client, a link, or a router, in the inference graph and the X-
axis is time. A dot indicates a component is in the troubled or down
state at a given time. During the 5 days, Ferret found 1,029 in-
stances of performance problems. In each instance, Ferret returned
a list of components ranked by their likelihood of being the root
cause. This figure illustrates how Sherlock helps network managers

Figure 17: 5-minute averages of link utilization reported by
SNMP. Oscillations around 14:00 correspond to observed per-
formance issue.

by highlighting the components that cause user-perceived faults.
By Ferret’s computations, 87% of the problems were caused by

only 16 components (out of the 358 components that can fail inde-
pendently). We were able to corroborate the 3 most notable prob-
lems marked in the figure with external evidence. The Server1 in-
cident was caused by a front-end web server with intermittent but
recurring performance issues. In the Server2 incident, another web
server was having problems accessing its SQL backend. The third
incident was due to recurring congestion on a link between R1 and
the rest of the enterprise network. In Figure 16, when Ferret is un-
able to determine a single root cause due to lack of information,
it will provide a list of most likely suspects. For example in the
Server1 incident, there are 4 dots which represent the web server,
the last links to and from the web server, and the router to which
the web server is directly connected.
Sherlock can also discover problems that might be overlooked

by using traditional threshold-based techniques. For instance, in the
Server2 incident, both the web server and SQL backend were func-
tioning normally and traditional threshold-based techniques would
not raise any alerts. Only requests requiring interaction between the
web server and the SQL backend experience poor performance, but
this is caught is by Sherlock.
In a fourth incident, some clients were experiencing intermittent

poor performance when accessing a web server in the data center
while other clients did not report any problem. Ferret identified a
suspect link on the path to the data center that was shared by only
those clients that experienced poor performance. Figure 17 shows
the MRTG [11] data describing the bandwidth utilization of the
congested link. Ferret’s conclusion on when the link was troubled
matches the spikes in link utilization between 12:15 and 17:30.
However, an SNMP-based solution would have trouble detecting
this performance incident. First, the spikes in the link utilization
are always less than 40% of the link capacity. This is common with
SNMP counters, since those values are 5-minute averages of the
actual utilization and may not reflect instantaneous high link uti-
lization. Second, the 60% utilization at 11:00 and 18:00 did not
lead to any user-perceived problems, so there is no threshold set-
ting that catches the problem while avoiding false alarms. Finally,
due to scalability issues, administrators are unable to collect rele-
vant SNMP information from all the links that might run into con-
gestion.

6.2.2 Comparing Sherlock with Prior Approaches
Sherlock differs from prior fault localization approaches in its

use of multi-level inference graph instead of two-level bipartite
graph, and its use of probabilistic dependencies. Comparing Sher-
lock with prior approaches allows us to evaluate the impact of these
design decisions.
To perform the comparison, we need a large set of observations

for which the actual root causes of the problems are known. Be-
cause it is infeasible to create such a set of observations using a
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testbed, we conduct experiments with simulations. We first cre-
ated a topology and its corresponding inference graph that exactly
matches that of the production network. Then we randomly set the
state of each root cause to be troubled or down and perform a prob-
abilistic walk through the inference graph to determine the state of
all the observation nodes. Repeating this process 1,000 times pro-
duced 1,000 sets of observations for which we know the actual root
causes. We then compare different techniques on their ability to
identify the correct root cause given the 1,000 observation sets.
Figure 18 shows that by using multi-level inference graphs, Fer-

ret is able to correctly identify up to 32% more faults than Shrink,
which uses two-level bipartite graphs. Figure 9 and Figure 14 show
that multi-level dependencies do exist in real systems, and repre-
senting this type of dependency using bipartite graphs does lose im-
portant information. SCORE [7] uses a deterministic dependency
model in which a dependency either exists or not. For example,
the caching of names makes DNS a weak dependency. If such
weak dependencies are included, the SCORE model causes many
false-positives, yet excluding these dependencies results in false-
negatives.

6.2.3 Time to Localize Faults
We now study how long it takes Ferret to localize faults in large

enterprise networks. In the following simulations, we use a topol-
ogy which is the same as the one in our field deployment. We then
add more clients and servers to the topology and use the measure-
ment results in Figure 15 to determine the number of unique clients
that would access a server in a given time window. The experi-
ments were run on an AMD Athlon 1.8GHz machine with 1.5GB
of RAM. Figure 19 shows that the time it takes to localize injected
faults grows almost linearly with the number of nodes in the Infer-
ence Graph. The running time of Ferret is always less than 4 ms
times the number of nodes in the Inference Graph. With an Infer-
ence Graph of 500,000 nodes that contains 2,300 clients and 70
servers, it takes Ferret about 24 minutes to localize an injected
fault. Note that Ferret is easily parallelizable (see pseudo-code in
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Figure 20: Impact of errors in inference graph on Ferret’s abil-
ity to localizing faults.

Algorithm 1) and implementing it on a cluster would significantly
reduce the running time.

6.2.4 Impact of Errors in Inference Graph
Sometimes, errors are unavoidable when constructing inference

graphs. For example, service-level dependency graphs might con-
tain false positives or false negatives. Traceroutes might also report
the wrong intermediate routers. To understand how sensitive Ferret
is to errors in inference graphs, we compare the results of Ferret on
correct inference graphs with those on perturbed inference graphs.
We deliberately introduce four types of perturbation into in-

ference graphs: First, for each observation node in the inference
graph, we randomly add a new parent. Second, for each observation
node, we randomly swap one of its parents with a different node.
Third, for each edge in the inference graph, we randomly change
its weight. Fourth, for each network-level path, we randomly add
an extra hop or permute its intermediate hops. The first three types
of perturbation correspond to errors in service-level dependency
graphs and the last type corresponds to errors in traceroutes.
We use the same inference graph as the one in the field deploy-

ment and perturb it in the ways that are described above. Figure 20
shows how Ferret behaves in the presence of each type of pertur-
bation. Each point in the figure represents the average of 1,000 ex-
periments. Note that Ferret is reasonably robust to all four types of
errors. Even when half the paths/nodes/weights are perturbed, Fer-
ret correctly localizes faults in 74.3% of the cases. Perturbing the
edge weights seems to have the least impact while permuting the
paths seems to be most harmful.

6.2.5 Modeling Redundancy Techniques
Specialized meta-nodes have important roles modeling load-

balancing and redundancy, such as ECMP, NLB, and failover. With-
out these nodes, the fault localization algorithm may come up with
unreasonable explanations for observations reported by clients. To
evaluate the impact specialized meta-nodes, we again used the
same inference graph as the one in the field deployment. We cre-
ated 24 failure scenarios where the root cause of each of the fail-
ures is a component connected to a specialized meta-node (e.g. a
primary DNS server or an ECMP path). We then used Ferret to
localize these failures both on inference graphs using specialized
meta-nodes and on inference graphs using noisy-max meta-nodes
instead of specialized meta-nodes.
In 14 cases where the root cause was a secondary server or a

backup path, there is no difference between the two approaches. In
the remaining 10 cases where a primary server or path failed, Fer-
ret correctly identified the root cause in all 10 of the cases when
using specialized meta-nodes. In contrast, when not using special-
ized meta-nodes Ferret identified the wrong root cause in 4 cases.



6.3 Summary of Results
The key points of our evaluations are:

• First, we corroborated the inferred service-level dependency
graphs of fifteen servers with our administrators and found them
to be mostly correct except for a few false-positives. Our algo-
rithm is able to discover service dependencies in a few hours
during a normal business day.

• Second, service dependencies vary widely from one server to
another and the inference graph of an enterprise network may
contain hundreds to thousands of nodes, justifying the need for
an automatic approach.

• Third, in a field deployment we show that the Sherlock system
is effective at identifying performance problems and narrowing
down the root-cause to a small number of suspects. Over a five
day period, Sherlock identified over 1,029 performance prob-
lems in the network, and narrowed down more than 87% of the
blames to just 16 root causes out of the 350 potential ones. We
also validated the three most significant outages with external
evidence. Further, Sherlock can help localize faults that may be
overlooked by using existing approaches.

• Finally, our simulations show that Sherlock is robust to noise in
the Inference Graph and its multi-level probabilistic model helps
localize faults more accurately than prior approaches that use a
two-level probabilistic model.

7. DISCUSSION
To save money and datacenter space, many enterprises are con-

solidating multiple servers onto a single piece of hardware via vir-
tual machines (VMs). We expect Sherlock techniques to be unaf-
fected by this trend, as most VM technologies (e.g. Xen, VMware,
VSS) assign each virtual server its own IP address, with the host
machine implementing a virtual Ethernet switch or IP router that
multiplexes the VMs to the single physical network interface. To
all the algorithms described in this paper, each VM appears as a
separate host, with the hosts joined together by a network element.
One source of failures that we have not modeled is the software

running on hosts. For example, if a buggy patch were installed on
the hosts in a network, it could cause correlated failures among the
hosts. Unless the inference graph models this shared dependency
on the patch, then blame for the failures will be incorrectly placed
on some component that is widely shared (e.g., the DNS service).
Extending our inference graph to these common failure modes will
be an important next step.
Using Sherlock as a research tool, we are now conducting a lon-

gitudinal study of the distributed applications used by our organi-
zation to determine how many different types of applications ex-
ist, whose dependencies we can automatically extract, and whose
we cannot. We expect to find convoluted systems and protocols for
which Sherlock will not be able to extract the correct dependency
graph. However, we are hopeful as this paper has shown Sherlock’s
success on variety of common application types.

8. CONCLUSIONS
In this paper we describe Sherlock, a system that helps IT admin-

istrators localize performance problems across network and ser-
vices in a timely manner without requiring modifications to existing
applications and network components.
In realizing Sherlock, we make three important technical con-

tributions: (1) We introduce a multi-level probabilistic inference
model that captures the large sets of relationships between hetero-
geneous network components in enterprise networks. (2) We devise
techniques to automate the construction of the inference graph by

using packet traces, traceroute measurements, and network config-
uration files. (3) We describe an algorithm that uses an Inference
Graph to localize the root cause of the network or service problem.
We evaluate our algorithms and mechanisms via testbeds, simu-

lations and field deployment in a large enterprise network. Our key
findings are: (1) service dependencies are complicated and con-
tinuously evolving over time thus justifying a need for automatic
approaches to discovering them. (2) Our service dependency infer-
ence algorithm is able to successfully discover dependencies for
a wide variety of unmodified services in a timely manner, (3) our
fault localization algorithm shows great promise in that it narrows
down the root cause of the performance problem to a small num-
ber of suspects helping IT administrators in their constant quest to
track down frequent user complaints, and finally, (4) comparisons
to other state-of-art techniques show that our fault localization al-
gorithm is robust to noise and it localizes performance problems
more quickly and accurately.
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