Using Correlated Surprise to Infer Shared Influence

Adam J. Oliner, Ashutosh V. Kulkarni, and Alex Aiken
Stanford University*
Department of Computer Science
{oliner, ashutosh.kulkarni, aiken} @cs.stanford.edu

Abstract

We propose a method for identifying the sources of prob-
lems in complex production systems where, due to the pro-
hibitive costs of instrumentation, the data available for
analysis may be noisy or incomplete. In particular, we may
not have complete knowledge of all components and their
interactions. We define influences as a class of component
interactions that includes direct communication and re-
source contention. Our method infers the influences among
components in a system by looking for pairs of components
with time-correlated anomalous behavior. We summarize
the strength and directionality of shared influences using
a Structure-of-Influence Graph (SIG). This paper explains
how to construct a SIG and use it to isolate system mis-
behavior, and presents both simulations and in-depth case
studies with two autonomous vehicles and a 9024-node pro-
duction supercomputer.

1 Introduction

Consider a complex production system in which some-
thing goes wrong: a performance glitch, a strange result, or
an outright crash. How might we identify the source of the
problem? A fundamental difficulty is that the costs of in-
strumentation in production systems are often prohibitive.
Significant systems are invariably constructed from many
interacting subsystems, and we cannot expect to have mea-
surements from every component. In fact, in many systems
we will not even know of all the components or of the in-
teractions among the components we do know. This paper
is about analyzing systems as they are, generating a poten-
tially partial diagnosis from whatever data is available.

Our method requires only that some of the components in
the system are instrumented to generate timestamped mea-
surements of their behavior. The type of measurements may
depend on the type of component (e.g., a laser sensor may
be instrumented differently than a hard disk). Thus, we need

*This work was supported in part by NSF grant CCF-0915766 and the
DOE High-Performance Computer Science Fellowship.

a way to compare measurements of different components in
a uniform way. We address this issue, and the related ques-
tion of how to summarize different kinds of measurements
from a single component, by mapping all components’ be-
havior to a single dimension: surprise. That is, our method
quantifies how anomalous individual component behavior
is, as an anomaly signal, using deviation from a model of
normal component behavior. An important feature of our
anomaly signals is that they are real-valued, meaning that
the degree to which a component’s behavior is anomalous
is retained, rather than the common approach of discretizing
behavior into “normal” and “abnormal”.

When two anomaly signals are correlated, meaning that
two components tend to exhibit surprising behavior around
the same time, we say that the components share an influ-
ence. This correlation can arise from a number of interac-
tions, including direct communication and contention for a
shared resource. Not all interactions are instantaneous, SO
we use effect delays—how long it tends to take an anomaly
in one component to manifest itself in another—to establish
directionality. Correlation is a pairwise relationship and de-
lay is directional, so the most natural structure to summarize
influence is a graph. A Structure-of-Influence Graph (SIG)
encodes strong influence as an edge between components,
with optional directionality to represent a delay.

Passively collected data, if devoid of hints like “compo-
nent A sent a message to component B,” cannot be used to
infer causality: the strongest possible mathematical state-
ment is that the behavior of one component is correlated
with another. An advantage of using statistical correlation
is that it enables asking “what-if” queries, after the fact.
For example, it is easy to add a new “component” whose
anomaly signal is large around the time bad behavior was
observed. Other, real, components that share influence with
the synthetic component are likely candidates for contribu-
tors to the problem.

Our goal is to generate a structure, informed by models
of component behavior, that enables a user to more eas-
ily answer prediction and diagnosis questions. The SIG
method has several desirable properties:

e Building a SIG requires no intrusive instrumenta-
tion; no expert knowledge of the components; and no
knowledge about communication channels (e.g., the
destination of a message), shared resources, or mes-
sage content. Our method is passive and can treat com-
ponents as black boxes.

e Influence describes correlation, not causality. A key
feature of our approach is to drop the assumption that
we can observe all component interactions and focus
on the correlations among behaviors we can observe
(see Section 2).

e By working directly with a real-valued, rather than bi-
nary, anomaly signal, our method degrades gracefully
when data is noisy or incomplete.

e Our experimental results show that SIGs can detect
influence in complex systems that exhibit resource
contention, loops and bidirectional influence, time-
delayed effects, and asynchronous communication.

In this paper, we present the SIG method and work
through an example (Section 3); perform several controlled
experiments using a simulator (Section 4) to explore param-
eters like message drop rate, timing noise, and number of
intermediate components; describe the central case study of
the paper, how we took passively collected measurements
from two autonomous vehicles and built SIGs that enabled
us to identify the source of a critical bug (Section 5); and
briefly present a significantly different second example by
isolating a bug in a production supercomputer (Section 6).

2 Related Work

There is an extensive body of work on system modeling,
especially on inferring the causal or dependency structure
of distributed systems. Our method distinguishes itself from
previous work in various ways, but primarily in that we look
for influences rather than dependencies.

Dependency graphs, or some probabilistic variant (e.g.,
Bayesian networks), are frequently proposed for predic-
tion and diagnosis of computer systems. There have been
a number of recent attempts at dependency modeling in
distributed systems. Pinpoint [7, 8] and Magpie [3] track
communication dependencies with the aim of isolating the
root cause of misbehavior; they require instrumentation of
the application to tag client requests. Pip [17] aims to in-
fer causal paths and requires an explicit specification of
the expected behavior of a system. In order to determine
the causal relationships among messages, Project5 [1] and
WAPS [18] use message traces and compute dependency
paths. All of these projects compute dependencies, and
therefore cannot deal well with missing dependency infor-
mation or resource contention.

Much of this dependency modeling work requires that
the system be actively perturbed by instrumentation or by
probing [5, 6, 9, 10, 19]. Unfortunately, for many important
systems, no such modifications are possible (for reasons of
performance, administration, or cost).

Shrink [11] and SCORE [12] look for the root cause
of faults in wide-area networks using a two-level graph.
Shrink weights dependencies based on likeliness estimates.
SCORE looks for shared risk, which measures how strongly
correlated failures are across hosts. Finally, recent work by
Bahl [2] aims to infer multi-level dependency graphs that
model load-balancing and redundancy.

With few exceptions [4], in previous work events are in-
trinsically binary (i.e., happen or not). Our approach, which
abstracts components as a real-valued signal, retains strictly
more information about component behavior.

As systems grow in scale, the sparsity of instrumenta-
tion and complexity of interactions will only increase. Our
method infers a broad class of interactions using, typically,
fewer assumptions about available data than previous work.

3 The Method

This section describes how to construct and interpret a
Structure-of-Influence Graph (SIG). The construction pro-
cess consists of four steps: decide what information to use
from each component (Section 3.1), measure the system’s
behavior during actual operation as anomaly signals (Sec-
tion 3.2), compute the pairwise cross-correlation between
all components’ anomaly signals to determine the strength
and delay of correlations (Section 3.3), and construct a
SIG where the nodes are components and edges represent
the strength and delay of correlations between components
(Section 3.4). We later apply these techniques to idealized
systems (Section 4) and real systems (Sections 5 and 6).

3.1 Modeling

The choice of component models determines the seman-
tics of the anomaly signal and, consequently, of the SIG.
For example, if we model a program using the distribution
of system call sequences and model a memory chip using
ECC errors, then the relationship of these components in
the resulting SIG represents how strongly memory corrup-
tion influences program behavior, and vice versa. There is
not, therefore, a single correct choice of models; for a par-
ticular question, however, some models will produce SIGs
better suited to providing an answer.

We have found two models particularly useful in prac-
tice: one based on message timing, which is useful for sys-
tems where timing behavior is important (e.g., embedded
systems) and at least some classes of events are thoroughly
logged (see Section 5), and one based on the information

content of message terms, useful for systems where logging
is highly selective and ad hoc (see Section 6). The timing
model keeps track of past interarrival times (timestamp first-
differences) and computes how “surprising” the most recent
spacing of messages is (see Section 3.2.1); the term entropy
model looks at the distributions of message contents using
an existing method [15].

3.2 Anomaly Signal

We quantify the behavior of components in terms of
surprise: the anomaly signal A;(t) describes the extent to
which the behavior of component 5 is anomalous at time ¢.
The instantaneous value of the signal is called the anomaly
score. Let A(t) = 0 for any ¢ outside the domain of the
anomaly signal. We require that A;(t) has finite mean p;
and standard deviation o;.

The anomaly signal should usually take values close to
the mean of its distribution—this is an obvious consequence
of its intended semantics. The distance from the mean cor-
responds to the extent to which the behavior is anomalous,
so values far from the mean are more surprising than those
close to the mean.

The user defines what constitutes surprising behavior by
selecting an appropriate model. For example, one could use
deviation from average log message rate, degrees above a
threshold temperature, the divergence of a distribution of
factors from an expected distribution, or some other func-
tion of measurable, relevant signals.

3.2.1 Computing the Anomaly Signal

In this section, we discuss the mechanics of computing the
anomaly signal A;(t) for the timing model mentioned in
Section 3.1. We describe the offline version.

Let S be a discrete signal from some component, con-
sisting of a series of time (non-decreasing timestamp) and
value pairs: S = ((to, vo), (t1,v1),- - ., (ts,Vs))-

Individually, denote S(i) = (t;,v;), T(i) = t;, and
V(i) = v;. This work gives special attention to the case
when V' (4) is the first difference of the time stamps (interar-
rival times): V(i) = T'(4) — T'(i — 1) and V' (0) = ¢ (null).

To compute anomaly signals, we compare a histogram of
a recent window of behavior to the entire history of behav-
ior for a component. Let h be the (automatically) selected
bin width for the histogram (in seconds), let w be the size
of the recent history window in number of samples, and let
k = [maxvi-minvi] he the number of bins. For each bin
H(3j) in the historical histogram, count the number of ob-
servations V' (¢) such that jh < V(i) < jh+1. Let R(T(4))
be the analogous histogram computed from the previous w
samples, ending with V(7). Note that R(7'(7)) is not defined
for the samples V(1) through V(w). Let H' and R'(t) be

- - Edge threshold (g)
Arrow threshold ()|

0.6

Cross—correlation
0.2

-0.2

T T T
-200 -100 0 100 200

Delay

Figure 1. The normalized cross-correlation
between components A and B.

the corresponding probability distributions, where the count
in each bin is divided by the total mass of the histogram; H
has a mass of s — 1 and R(¢) has a mass of w.

Compute the Kullback-Leibler divergence [13] between
each recent distribution R’(¢) and the historical distribution
H', producing the anomaly signal A(t):

R'(t, k)
H'(k)

At) = Drr(R(W|[H)= > R(tk)log,
kER/(t)

Intuitively, KL-divergence is a weighted average of how
much the fraction of measurements in bin R’(¢, k) differs
from the expected fraction H (k).

After computing A ;(¢) for each component, we store the
sampled signals as an n X m matrix, where n is the number
of components and m is the number of equi-spaced times
at which we sample each anomaly signal. We then process
these matrices as described starting in Section 3.3. Observe
that, having represented the system as a set of anomaly sig-
nals, the rest of our method is system-independent.

3.3 Correlation and Delay

For each pair of components (¢, j), compute the normal-
ized cross-correlation of their anomaly signals:

A7) —] [A; (E+7) — g

003

dr. (1)

(AixAj)(t) = /

— 00

The function (A;*A;)(¢) gives the Pearson product-moment
correlation coefficient of the anomaly signals of compo-
nents ¢ and j, with an offset, or delay, of ¢ time steps; it
is the correlation of the two signals if A; were delayed rel-
ative to A; by ¢. Consider two hypothetical components, A
and B, whose cross-correlation is plotted in Figure 1. There
is a peak at £ = —100 because anomalies on A tend to ap-
pear 100 units of time before they do on B. This plot would
be represented in the SIG by an edge A — B.

The resulting n? cross-correlation functions of an n-
component system are the primary output of our analysis.
(It is worth noting that Project5 uses a form of signal corre-
lation with communication events to compute dependencies
[1].) In general, however, these correlation vectors contain

Figure 2. The Structure-of-Influence Graph
for a system that includes A and B.

too much information to present a useful view of a system;
we distill these data into simpler forms. First, we represent
two salient features of the functions (specific extrema val-
ues and positions) as two order n x n matrices: C and D.
Second, in Section 3.4, we transform these matrices into a
SIG. The SIG is often the shortest path to insights about a
system, but the underlying data is always available for in-
spection or further analysis.

We now construct the correlation matrix C and delay
matrix D from the cross-correlation functions. Consider
a particular pair of components, ¢ and j. Let d;; and d;-;-
be the offsets closest to zero, on either side, at which the
cross-correlation function is most extreme:

di; = max(argmaxt§0(|(Ai *xA;)(t)])) and
7 = min(argmax,= o (|(A; % A;)(2)])),

where argmax, f(t) is the set of t-values at which f(¢) is
maximal. (One could also select the delays furthest from
zero, if that is more appropriate for the system under study.)

Next, let c;j and cjj be the correlations observed at those

extrema: ¢;; = (A; x A;)(d;;) and cj; = (A; *Aj)(djj).

Let entry C;; of the correlation matrix be Cij and let C;
be cj; (Notice that cz'-; = ¢;;.) Similarly, let entry D;; of
the delay matrix be d;; and let D ; be d:;

3.4 Structure-of-Influence Graph (SIG)

A Structure-of-Influence Graph (SIG) is a graph G =
(V, E') with one vertex per component and edges that repre-
sent influences. Edges may be undirected, directed, or even
bidirectional, to indicate the delay(s) associated with this
influence. This section explains how to construct a SIG.

Consider the n x n matrices C and D. There is an edge
between ¢ and j if max(|C;;],|Cj;|) > e. Let o be the
threshold for making an edge directed; the type of edge is
determined as follows:

((ICij] > €) = (Dij > —a)) A((ICjs| > €) = (Dji < a))

=1—17;
(ICij| > e) A(Dy; < —av) =1 —J;
(ICjil > &) A (Dji > a) =i j;
(‘Cij|>6)/\(Dij<—Oé)/\(|Cji‘>€)/\(Dji>Oé) =1 J.

The time complexity of our method on a system with
n components, given an algorithm to compute cross-
correlation in time O(m), is O(n?m). For large systems,
we may wish to compute only a subset of the SIG: all in-
fluences involving a set of n’ << n components. This is

equivalent to filling in only specific rows and columns of C
and D and requires time O(nn'm).

Recall our example components A and B. Using the
cross-correlation of A and B, shown in Figure 1, we apply
the thresholds oo = 20 and € = 0.5 and plot a SIG. Although
|Cji| < e, we have |C;;| = 100 > ¢, so there will be an
edge between A and B. Furthermore, D;; < —a, so the
edge will be directed: A — B. Figure 2 gives a SIG for a
hypothetical system that includes A and B as components.
In subsequent sections we discuss how the values of o and
€ can be chosen or set automatically.

3.5 Interpreting a SIG

An edge in a SIG represents a strong (> ¢) influence
between two components. The absence of an edge does
not imply the absence of a shared influence, merely that
the anomalies identified by the models are not strongly
correlated—a different choice of models may yield a dif-
ferent graph. More specific interpretations arise from un-
derstanding particular models and underlying components.

A directed edge implies that an anomaly on the source
component (tail of the arrow) tends to be followed shortly
thereafter by an anomaly on the sink component (head of
the arrow). Bidirectional edges mean that influence was ob-
served in both directions, which may mean either that the
influence truly flows in both directions or that it is unclear
which directionality to assign (this situation can arise with
periodic anomalies). An undirected edge means that, to
within a threshold «, the anomalies appear to occur simul-
taneously. This happens, for instance, when a mutually in-
fluential component is causing the anomalies. Such shared
components sometimes introduce cliques into the SIG.

When used for problem isolation, the most important
piece of actionable information provided by our method is
a concise description, in the form of graph edges, of which
components seem to be involved. Further, the strength and
directionality on those edges tell the order in which to inves-
tigate those components. In a system of black boxes, which
is our model, this is the most any method can provide.

4 Controlled Experiments

In this section, we study the notion of influence and our
method for computing it under a variety of adverse condi-
tions: measurement noise, message loss, and tainted train-
ing data. We use simulation experiments on idealized sys-
tems consisting of linear chains of components. We use
chains so the results of our simulations are easy to interpret;
our method is not limited to chains, and our experiments
with real systems in subsequent sections involve much more
complex structure. Our goal is to thoroughly examine a spe-
cific question: Given a known channel of data and resource

O—=0O
O—=0O

Figure 3. The three basic structures in our
simulated systems, built from sources (“S”),
tasks (“T”), and resources (“R”).

interactions through which influence could propagate, what
is the strength (¢) of the influence inferred by our method?
Our results show that, for many realistic circumstances, in-
fluence can propagate through long chains of components,
and we can detect it.

4.1 System Components

Our simulations use three types of components: sources,
which generate data, tasks, which process data, and re-
sources, which are required by sources and tasks to perform
these actions. Pairs of sources and tasks, shown in Figure 3,
can influence each other via direct communication or via
competition over a shared resource. We study linear chains
of such structures in which the first component is a source;
that source, called the head, is designed to sometimes mis-
behave during the experiments and acts as the root cause
that we wish to find. The only input to our method is a
pair of timestamp vectors (one for the head of the chain and
one for the fail) corresponding to message sending times.
No information about simulation parameters or intermedi-
ate components is provided.

Influence can flow over a direct source-to-task or task-to-
task channel either by timing (anomalous input timing may
cause anomalous output timing, as in a producer-consumer
interaction), by semantics (tasks may take more or less time
to process uncommon messages), or both. Influence can
flow over a shared resource only through timing (e.g., the
degree of contention may influence timing); we do not sim-
ulate implicit communication through shared memory.

4.2 Component Behavior

We characterize timing behavior of components by dis-
tributions of interarrival times, which is sufficient to com-
pute anomaly signals (see Section 3.2.1). These experi-
ments use Gaussian (normal) distributions. Let 7, denote
a normally distributed random variable with mean 1 and
standard deviation o,. Fixing the mean makes the prob-
lem more difficult, because abnormal behavior does not re-
sult in consistently more or fewer messages (merely greater
variance) and because anomalous behavior looks like mea-
surement imprecision (noise).

A source generates the message 0 every 7, seconds. A
source may be blocked if any downstream component is not

ready to receive the message, in which case it waits until
all such components are ready, sends the message, and then
waits 7,, seconds before trying to generate the next mes-
sage. We consider three types of anomalous behavior at the
head node: fiming (generates a message every 7, seconds),
semantics (generates the message 1), and both.

A task begins processing a message upon receipt, taking
1o seconds for a 0 message and 77 seconds for a 1 message.
After processing, a task sends the same message to the next
component downstream. If that component is not ready, the
task is blocked. A task is ready when it is not blocked and
not processing a message.

A resource receives and processes messages; it can si-
multaneously process up to R messages for some capacity
R. A resource requires 7, seconds to process a message
and is ready to receive whenever it is processing fewer than
R messages. Resources service simultaneous requests in a
random order.

When the head or tail sends a message, as described
above, it records the time at which the message was sent;
our method computes the influence given only this pair of
timestamp lists. While real systems may exhibit more com-
plex behavior, these simple rules are enough to capture dif-
ferent classes of inputs (0 vs. 1 messages), resource con-
tention, and potential timing dependencies.

4.3 Methodology

Each experiment, resulting in a single influence value ¢,
involves two independent simulations of a chain over a time
period long enough for the head to send 10,000 messages.
The first simulation yields a trace that is used for training
(a behavior baseline), and the second, a monitoring trace, is
used to build the SIG. Except where otherwise indicated, the
training trace does not contain anomalous behavior, and the
monitoring trace contains a contiguous period of anomalous
behavior lasting 5% of the trace (500 messages).

Resources have exactly two connected components, each
with a normal average message sending rate of 1 per sec-
ond, so every resource has a capacity of R = 2. That is,
there should be little contention during normal operation.
The number of resources is denoted by #R="7; resources are
evenly distributed along the chain. Except where otherwise
noted, 0, = 0, = o9 = 0.01 and 0, = o1 = 0.1. For
the component model, the histogram bin size is h = 0.01
seconds (set automatically) and the window size is w = 500
samples (chosen to match the anomalous period).

4.4 Experiments

Baseline: We compute an influence strength baseline for
each simulation that represents the expected correlation of
anomaly signals if the head and tail were independent. For

o [a1
- 5 Timing (#R= O
=~ o | ~ %l Semantics (#R=0)|
z ° ' |& Both (#R=
5 o | + Timing (#R= 1%
g © X Semantlcs #R=1),
[| < Both (#R=1
@ o
2
u g
o e
° T T T T T T T
0.02 0.04 0.06 0.08 0.10 0.12 0.14

Anomaly Strength o, (Timing), oy (Semantics), or both (Both)

Figure 4. Behavior of the basic components:
a single task (#R=0) and a single resource
(#R=1), each with a driving source head.

Iy p—

XD
)
|
D
|
o]
|
|
|
[}
|
[»]
|
[»]
|
o

X -5 Timing (#R=0
xN -0 Semantics (#R=0)|
A Both (#R=0
+ Timing (#R= 1&
N Semantlcs =
<- Both (#

s T|m|ng (#H 2
-= Semantics (#R=2)
* Both (#R=2

Edge Strength (g)

00 02 04 06 08 1.0

T T T T T T T
2 4 6 8 10 12 14

Length of Chain

Figure 5. Contention carries timing influence
across resources and tasks pass along se-
mantic influence, even down long chains.

all experiments in this section, that baseline ranges from
0.06 to 0.1; the average for each set of experiments is plot-
ted in the figures as a dashed line. Thus, any € value above
0.1 can be considered statistically significant. This is com-
parable to the edge threshold of € = 0.15 that we use when
considering real systems (see Sections 5 and 6).

Basic Components: Figure 4 shows the strength of in-
fluence across the basic simulation components of Figure 3
for varying anomaly strengths. Tasks propagate both tim-
ing and semantic influence, while resources only propagate
timing. Tasks change semantic influence into timing influ-
ence, however, which resources can then propagate. Over-
provisioned resources do not propagate influence; resources
with adequate capacity, which we simulate, propagate tim-
ing influence. Note that we detect influence even when
anomalous behavior looks similar to normal behavior: even
during normal operation there is variation in component
behavior, and these variations may be correlated between
components.

Length and Composition: When there is more than one
component, we find that influence generally fades with in-
creasing chain length, but remains detectable (see Figure 5).
When there are no resources, however, message semantics
are passed all the way to the tail and the influence is undi-
minished. For the rest of the section, chains contain six
components; this length is long enough to exhibit interest-
ing properties and is comparable to the diameter of the au-
tonomous vehicle graphs in Section 5.

Signal Noise: Our method is robust against noisy data.
As we add more and more Gaussian noise to the timing

o rEm—w—— B S E R

e Timing (#R=0
s @ o - Timing (#R=1
T ©° \Diu 4 Timing (#R=2
5 9 | 8 + Both (#R=0
§ S o8l . \ < Both (#R=1
@ T4° “o e ;,g\//(} -Vl \»'QTTTDQBO”] #R=2
§ o | aa BNl e 88T

S O Y - SR i

o |

e T T T T T T

0.02 0.04 0.06 0.08 0.10 0.12

Standard Deviation of Measurement Noise

Figure 6. Our method degrades gracefully
when timing measurements are noisy.

S -] Uooooop
008, opPooB o
—_ %00 Op
= g - an OAOoAgA AOBDDQBR\
5 « Ant A og° B \Oé/ OBOOO 08 DDDDD o
2 8 A o A DOA 00 DDo ‘0o
B < | " AAA w0 200
S
3 A A “a AAG IN
£ « & Timing (#R=0 N 2
Yo 7o Timing (#R=1
o 7A Timing (#R=2)f -~~~ - -
° T T T T T
0.0 0.1 0.2 0.3 0.4 0.5

Message Drop Rate (as a fraction of total)

Figure 7. Our method is robust against uni-
form message loss, even at rates of 50%.

measurements, it obscures some of the influence of anoma-
lous behavior but does not mask it entirely. This is true
when noise is added to the resulting measurements (mea-
surement imprecision, as in Figure 6) or to the components
(omitted for space, but similar to Figure 6). Note that even
“normal” timing variations at the head can influence timing
at the tail.

Message Loss: For our timing model, message loss is
simply another form of noise that tends to introduce out-
liers. For example, if a component output messages at t1,
to, and t3, but the second measurement is lost, our timing
distribution will erroneously include the value 3 —%1, which
will be twice as large, on average, as most of the other mea-
surements. To make our job more difficult, we simulate the
case when our training data has no lost messages but the
monitoring data does. Figure 7 shows that our statistical
methods are not strongly sensitive to missing data.

Tainted Training: The problem of good training data
exists for every anomaly-based method. Figure 8 shows
that, as the fraction of training data that includes anoma-
lous behavior increases, influence remains easily detectable.
Tainting does not tend to introduce new correlations; exist-
ing correlations may appear less significant, as in the middle
line. Training data need only be statistically representative,
so it can include unusual periods (like startup) or bugs.

These experiments show that influence propagates
through systems in a measurable way and that our method
can detect this influence under a variety of circumstances.
Although the simulations consider a restricted class of sys-
tems, the systems we study in Sections 5 and 6 contain far
more complex structure, including asynchronous commu-
nication through shared memory, high degrees of network

8 - o [5] [] [5] o o o o o o o
— o
< o 7
£ Ol
e 2 4 TO g O = Both (#R=0
s < ou > Both (#R=1
K . - P R o.. [& Both (#R=2
k] A Ay P
8 S a A 2 a A R] Z
D
° T T T T T T
0.0 0.1 0.2 0.3 0.4 05

Fraction of Training Data Tainted (Anomalous)

Figure 8. Our ability to detect influence does
not depend on collecting clean training data.

fan-in and fan-out, loops and cycles, and potentially multi-
ple sources of anomalous behavior.

5 Stanley and Junior

DARPA launched the Grand Challenge in 2003 to stimu-
late autonomous vehicle research. The winner of the Grand
Challenge was a diesel-powered Volkswagen Touareg RS
named Stanley, an autonomous vehicle developed at Stan-
ford University [21]. Stanford’s entry in the successive con-
test, a modified 2006 Volkswagen Passat wagon named Ju-
nior, placed second in the Urban Challenge [14].

Many of the autonomous vehicles’ components run in
tight loops that output log messages at each iteration. De-
viations from normal timing behavior are rare, but, more
importantly, we expect the anomalies to correspond with se-
mantically abnormal situations. For example, if the route-
planning software takes unusually long to plot a path, the
vehicle may be in a rare driving situation (e.g., a 4-way stop
where the driver with right-of-way is not proceeding).

5.1 Stanley’s Bug

During the Grand Challenge race, Stanley suffered from
a bug that manifested itself as unexplained swerving behav-
ior. That is, the vehicle would occasionally veer around
a nonexistent obstacle. According to the Stanford Racing
Team, “as a result of these errors, Stanley slowed down a
number of times between Miles 22 and 35 [21]. The bug
forced Stanley off the road on one occasion, nearly losing
the race. We explain this bug in more detail in Section 5.6,
but, for the time being, let us suppose that all we know is
that we were surprised by Stanley’s behavior between Miles
22 and 35 of the race and that we would like to use the
method described in this paper to find an explanation.

5.2 Experiments

During the Grand Challenge and Urban Challenge races,
each vehicle was configured to record inter-process com-
munication (IPC) between software components, including
the sensors. These messages were sent to a central logging

4000

Frequency

2000

0

[T T T T 1
1.0 1.5 2.0 25 3.0 3.5

Anomaly Score

Figure 9. Anomaly signal distribution for
Stanley’s GPS_P0OS component.

©
S}

o
S}

Cross—Correlation
0.2
I

0.0

e T T T
-1500 -1000 -500 0 500 1000 1500

Delay

Figure 10. Cross-correlation of Stanley’s
PLANNER_TRAJ and LASER1 components.

server and written to disk. Only a subset of the compo-
nents generated logs. The messages indicate their source,
but not their destination; the absence of such information
means that most previous work would be inapplicable to
this data set. We sample the anomaly signals at intervals of
0.04 seconds; this sampling interval was set (automatically)
to be the smallest non-zero interarrival time on any single
component on Stanley.

Computing a SIG requires only two parameters, € and «,
neither of which need to be fixed a priori; adjusting them
to explore the impact on the resulting graph can be infor-
mative (e.g., if an entire clique becomes disconnected due
to a small decrease in €, we know that the shared influence
has roughly the same impact on all members of the clique).
For the component model, the histogram bin size(s) A is set
automatically using Sturges’ formula [20], and we use a re-
cent window size of w = 100 samples; our results are not
sensitive to this choice (details omitted for space reasons).

5.3 Anomaly Signals

For each component, we use the timing model and
computations described in Section 3.2.1 to generate an
anomaly signal. A “good” anomaly signal has low variance
when measuring a system under typical load, in accordance
with its semantics (usual behavior is not surprising behav-
ior). Often, the vehicle components generate normally dis-
tributed or exponentially distributed anomaly scores. Some-
times, as in Figure 9, the anomaly scores are bimodal,
with one cluster around typical behavior and another cluster
around anomalous behavior.

@

.
Z
‘
.

Figure 11. Known dependency structure of Stanley on the left (including only logged components)
and the automatically generated SIG on the right (with ¢ = 0.15 and o = 90). The special SWERVE

component is explained in Section 5.6.
5.4 Cross-correlation

We proceed by computing the cross-correlation between
all pairs of components within each car using a discrete ver-
sion of Equation 1. When two components do not share an
influence, the cross-correlation tends to be flat. This can
also happen when two components share an influence but
there is no consistent delay associated with it. When there
is a shared influence, we see a peak or valley in the cross-
correlation function. The more pronounced the extrema,
the stronger the inferred influence. Figure 10 gives the
cross-correlation between Stanley’s PLANNER_TRAJ and
LASER1 components. We see a peak whose magnitude
(correlation) exceeds 0.6, which is relatively large for this
system. We can already conclude that PLANNER_TRAJ and
LASERL1 likely share an influence. The strong correlation at
a small positive lag means the LASER1 anomalies tend to
precede those on PLANNER_TRAJ.

In addition to the magnitude of the correlation, we can
learn from the location of an extremum on the delay axis.
Here, we see that it occurs at a delay of, roughly, 100-200
samples (at a 0.04-second sampling interval, the delay is
around 4-8 seconds). In this case, we are looking at the
result of computing (PLANNER_TRAJ + LASER1)(t), so the
interpretation is that anomalies on PLANNER_TRAJ tend to
occur between 4-8 seconds after those on LASER1. More
important than the value, however, is the direction: the laser
anomalies precede the planner software anomalies. When
isolating the bug mentioned in Section 5.1, this turns out to
be an important piece of information.

5.5 SIGs

Using the method described in Section 3.4, we distill the
cross-correlation matrices into SIGs. We compute a statisti-
cal baseline for Stanley, similar to Section 4.4, of just under
0.15 (details omitted for space reasons). For Stanley, a SIG
with ¢ = 0.15 and a = 90 is shown on the right in Fig-
ure 11, alongside the software dependency diagram. As a
notational shorthand to reduce graph clutter, we introduce
grey boxes around sets of vertices. An arrow originating

from a box denotes a similar arrow originating from every
vertex inside the box; an arrow terminating at a box indi-
cates such an arrow terminating at every enclosed vertex.
Consequently, the directed arrow in Stanley’s SIG from the
box containing LASER* to the box containing P LANNER*
indicates that each laser component shares a time-delayed
influence with each planning software component. We ex-
plain the SWERVE component, plotted as a red rectangle, in
Section 5.6. Most of the strongest influences do not map to
stated dependencies, meaning the dependency diagram has
obscured important interactions that the SIG reveals.

The edges in the dependency diagram indicate intended
communication patterns, rather than functional dependen-
cies. In fact, Stanley had five laser sensors, not four, but one
broke shortly before the race. The downstream components
were clearly not dependent on that laser, in the sense that
they continued working. If another laser malfunctioned,
would it affect the behavior of the vehicle? The dependency
diagram is unhelpful, but in Section 5.6 we show how to
query a SIG to elucidate this kind of influence.

Even in an offline context, SIGs are dynamic. By using
only a subset of the data, such as from a particular window
of time, we can see the structure of influence particular to
that period. Furthermore, we can consider a series of such
periods to examine changes over time. A SIG for Junior
showing influence during the second race mission, relative
to the first is plotted in Figure 12. Dashed grey means the
edge is gone, thicker edges are new, and an open arrowhead
means the arrow changed. Disconnected components are
omitted. Although the component models use the entire log
as training data, we generate this graph using only data from
the first and second thirds of the Urban Challenge (called
“missions”), with edges marked to denote changes in struc-
ture. Notice that many components are disconnected in this
SIG, and thus omitted from the plots, as a consequence of
the value of €. As this parameter increases, edges vanish; as
it tends to zero, the graph becomes fully connected.

One change that stands out is the new influence between
RADARS and PASSAT EXTOUTPUT2. Further examina-
tion of the data shows several anomalies at the radar com-
ponents; a lower value of € would have shown the radars in

@ PLANNER MDFGOAL
-7 _ .
Pt A4
-

- -
SUSE L -

/’\ -

>
—<
~
APPLANIX_RMS_V1 RS
S
~
~
~
~

-

Figure 12. Dynamic changes in Junior’s SIG,
with e = 0.15 and a = 90.

aclique, but RADARS exhibited the most pronounced effect.
Many of the edges that disappeared did so because anoma-
lies during the first mission did not manifest in the second.
Studying changes in influence structure over time enables
us to discover such dynamic behaviors.

For the vehicles, physical connectivity does not change
during a race, so any changes are a consequence of which
influences we happened to observe during that period. If
we only had access to the latter half of the Grand Challenge
logs, for instance, it would have been more difficult to di-
agnose the swerving bug because there was little swerving
behavior to observe. For larger systems and longer time pe-
riods, changes in the SIG may correspond with upgrades or
physical modifications.

5.6 Swerving Bug

Starting only with the logs from the Grand Challenge
race and the knowledge that Stanley exhibited strange be-
havior between Miles 22 and 35, we show how a simple
application of our method points directly at the responsible
components.

First, we construct a synthetic component called
SWERVE, whose anomaly signal is nonzero only for a single
period that includes the time the majority of surprising be-
havior (swerving) was observed. We could refine this signal
to indicate more precisely when the bug manifested itself,
but the surprising result is that, even with this sloppy spec-
ification of the bug, our statistical method is still able to
implicate the source of the problem.

Second, we update Stanley’s SIG as though SWERVE
were just another component. The result is the graph on the
right in Figure 11. Consider the correlation values for the
seven components with which SWERVE seems to share an
influence: all four laser sensors, the two planning software
components, and the temperature sensor.

The temperature sensor is actually anti-correlated with
SWERVE. This spurious correlation is the price we pay for
our sloppy synthetic anomaly signal; it occurs because the
SWERVE anomaly signal is (carelessly) non-zero only near
the beginning of the race while the TEMP anomaly signal, it
turns out, is increasing over the course of the race.

Now there are six components that seem to be related
to the swerving, but the SIG highlights two observations
that narrow it down further: (i) directed arrows from the
lasers to the planner software mean that the laser anomalies
preceded the planner anomalies and (ii) the four lasers form
a clique, indicating that there may be another component,
influencing them all, that we are not modeling. (Recall the
discussion in Section 3.5.) Observation (i) is evident from
the SIG and Figure 10 confirmed that the planner typically
lagged behind the lasers’ misbehavior by several seconds.
Observation (ii) suggests that a component shared by the
lasers, rather than the lasers themselves, may be at fault.

According to the Stanford Racing Team, these observa-
tions would have been sufficient to quickly diagnose the
swerving bug. At the time, without access to a SIG and
working from the dependency diagrams, it took them two
months to chase down the root cause. This is a natural
consequence of how a dependency diagram is used: start at
some component near the bottom of the graph, verify that
the code is correct, move up to the parent(s), and repeat.
All of the software was working correctly, however, and un-
til they realized there were anomalies at the input end (the
opposite end from the swerving) there was little success in
making a diagnosis. The SIG would have told them to by-
pass the rest of the system and look at some component
shared by the lasers, which was the true cause.

The bug, which turned out to be a non-deterministic, im-
plicit timing dependency triggered by a buffer shared by the
laser sensors, is still not fully understood. However, the in-
formation our method provides was sufficient for the Racing
Team to avoid these issues in Junior. Indeed, this is evident
from Junior’s SIG, Figure 12, where the lasers are not influ-
encing the rest of the system as they were in Stanley. More
information on the swerving bug can be found in the journal
paper concerning Stanley [21].

6 Thunderbird Supercomputer

We briefly describe the use of SIGs to localize a non-
performance bug in a non-embedded system (the Thun-
derbird supercomputer [16]) of significantly larger scale
(n = 9024) using a component model based on the fre-
quency of terms in log messages [15] instead of timing. Ex-
cept for the different anomaly signal, the construction and
use of the SIGs is identical to the case study in Section 5;
we focus only on the new aspects of this study.

Say that Thunderbird’s administrator notices that a
particular node generates the following message and would
like to better understand it: kernel: Losing some
ticks... checking if CPU frequency
changed. For tightly integrated systems like Thunder-
bird, static dependency diagrams are dense with irrelevant
edges; meanwhile, the logs do not contain the information

about component interactions or communication patterns
necessary for computing dynamic dependencies.

Instead, we show how a simple application of our SIG
method leads to insight about the bug. Using the model
based on term frequency mentioned above [15], which in-
corporates no system-specific knowledge, we first compute
anomaly signals for all components. As with Stanley’s
swerving bug (see Section 5.1), we can easily synthesize
another anomaly signal for each node, nonzero only when
it generates this “CPU error”.

The resulting SIG contains clusters of components (both
synthetic and normal) that yield a surprising fact: when one
node generates the CPU error, other nodes tend to generate
both the CPU error and other rare messages. Furthermore,
the administrator can quickly see that these clusters corre-
spond to job scheduling groups, suggesting that a particular
workload may be triggering the bug. Indeed, it turns out
that there was a bug in the Linux kernel that would cause
it to skip interrupts under heavy network activity, leading
the kernel to erroneously believe that the clock frequency
had changed and to generate the misleading CPU error. The
SIG method shows immediately that the error shares an in-
fluence with other nodes in the same job scheduling group;
an insight that helps both isolate the cause and rule out other
avenues of investigation.

7 Contributions

In this paper, we propose using influence to characterize
the interactions among components in a system and present
a method for constructing Structure-of-Influence Graphs
(SIGs) that model the strength and temporal ordering of in-
fluence. We abstract components as anomaly signals, which
enables noise-robust modeling of heterogeneous systems.
Our simulation experiments and case studies with two au-
tonomous vehicles and a production supercomputer show
the benefits of using influence over traditional dependen-
cies and demonstrate how an understanding of influences
can equip users to better identify the sources of problems.

Acknowledgments

The authors would like to thank the following people for
their time, expertise, and data: Xuan Vi, Jon Stearley, Pe-
ter Hawkins, Randall LaViolette, Mike Montemerlo and the
rest of the Stanford Racing Team, and our reviewers.

References

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Methitacharoen. Performance debugging for distributed
systems of black boxes. In SOSP, pages 74-89, 2003.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

(13]

[14]

[15]
[16]

(17]

(18]

(19]

(20]

[21]

P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz,
and M. Zhang. Towards highly reliable enterprise network
services via inference of multi-level dependencies. In SIG-
COMM, 2007.

P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
Magpie for request extraction and workload modelling. In
OSDI, 2004.

P. C. Bates. Debugging heterogeneous distributed systems
using event-based models of behavior. ACM Transactions
on Computer Systems, 13(1):1-31, 1995.

M. Brodie, I. Rish, and S. Ma. Optimizing probe selection
for fault localization. In Intl. Workshop on Distributed Sys-
tems: Operations and Management (DSOM), October 2001.
A. Brown, G. Kar, and A. Keller. An active approach to char-
acterizing dynamic dependencies for problem determination
in a distributed environment. In /EEE IM, pages 377-390,
Seattle, WA, 2001.

M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson,
A. Fox, and E. Brewer. Path-based failure and evolution
management. In NSDI, 2004.

M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer.
Pinpoint: problem determination in large, dynamic internet
services. In DSN, June 2002.

S. Chutani and H. Nussbaumer. On the distributed fault
diagnosis of computer networks. In IEEE Symposium on
Computers and Communications, pages 71-77, Alexandria,
Egypt, June 1995.

I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly,
and A. Fox. Capturing, indexing, clustering, and retrieving
system history. In SOSP, 2005.

S. Kandula, D. Katabi, and J.-P. Vasseur. Shrink: A tool for
failure diagnosis in IP networks. In MineNet Workshop at
SIGCOMM, 2005.

R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren.
IP fault localization via risk modeling. In NSDI, pages 57—
70, 2005.

S. Kullback. The Kullback-Leibler distance. The American
Statistician, 41:340-341, 1987.

M. Montemerlo et al. Junior: The Stanford entry in the Ur-
ban Challenge. Journal of Field Robotics, 25(9):569-597,
2008.

A. J. Oliner, A. Aiken, and J. Stearley. Alert detection in
system logs. In ICDM, December 2008.

A. J. Oliner and J. Stearley. What supercomputers say: A
study of five system logs. In DSN, 2007.

P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A.
Shah, and A. Vahdat. Pip: Detecting the unexpected in dis-
tributed systems. In NSDI, 2006.

P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and
A. Vahdat. WAPS: black-box performance debugging for
wide-area systems. In WWW, 2006.

I. Rish, M. Brodie, N. Odintsova, S. Ma, and G. Grabarnik.
Real-time problem determination in distributed systems us-
ing active probing. In NOMS, 2004.

H. A. Sturges. The choice of a class interval. J. American
Statistical Association, 1926.

S. Thrun and M. Montemerlo, et al. Stanley: The robot
that won the DARPA Grand Challenge. Journal of Field
Robotics, 23(9):661-692, June 2006.

