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Open Question:

What can be learned from 
data?
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Image Recognition:

If it looks like a duck

Activity Recognition:

Swims like a duck

Audio Recognition:

Quacks like a duck
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Final breakthrough, 358 years after its conjecture:
“It was so indescribably beautiful; it was so simple and 
so elegant. I couldn’t understand how I’d missed it and 
I just stared at it in disbelief for twenty minutes. Then 
during the day I walked around the department, and 
I’d keep coming back to my desk looking to see if it 
was still there. It was still there. I couldn’t contain 
myself, I was so excited. It was the most important 
moment of my working life. Nothing I ever do again 
will mean as much."
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The promise of
Deep Learning

The promise of
Deep Reinforcement Learning
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Types of Deep Learning

[81, 165]

Supervised 
Learning

Unsupervised 
Learning

Semi-Supervised
Learning Reinforcement

Learning

https://selfdrivingcars.mit.edu/references
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Philosophical Motivation for Reinforcement Learning

Takeaway from Supervised Learning:

Neural networks are great at memorization and not (yet) great at 
reasoning.

Hope for Reinforcement Learning: 

Brute-force propagation of outcomes to knowledge about states 
and actions. This is a kind of brute-force “reasoning”.

https://selfdrivingcars.mit.edu/references
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Agent and Environment

• At each step the agent:
• Executes action

• Receives observation (new state)

• Receives reward

• The environment:
• Receives action

• Emits observation (new state)

• Emits reward

[80]

https://selfdrivingcars.mit.edu/references
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Examples of Reinforcement Learning

Reinforcement learning is a general-purpose framework for decision-making:

• An agent operates in an environment: Atari Breakout

• An agent has the capacity to act

• Each action influences the agent’s future state

• Success is measured by a reward signal

• Goal is to select actions to maximize future reward

[85]

https://selfdrivingcars.mit.edu/references
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Examples of Reinforcement Learning

Cart-Pole Balancing

• Goal — Balance the pole on top of a moving cart

• State — Pole angle, angular speed. Cart position, horizontal velocity.

• Actions — horizontal force to the cart

• Reward — 1 at each time step if the pole is upright

[166]

https://selfdrivingcars.mit.edu/references
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Examples of Reinforcement Learning

Doom

• Goal — Eliminate all opponents

• State — Raw game pixels of the game

• Actions — Up, Down, Left, Right etc

• Reward — Positive when eliminating an opponent, 
negative when the agent is eliminated

[166]

https://selfdrivingcars.mit.edu/references
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Examples of Reinforcement Learning

Bin Packing

• Goal - Pick a device from a box and put it into a container

• State - Raw pixels of the real world

• Actions - Possible actions of the robot

• Reward - Positive when placing a device successfully, negative otherwise

[166]

https://selfdrivingcars.mit.edu/references
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Examples of Reinforcement Learning

Human Life

• Goal - Survival? Happiness? 

• State - Sight. Hearing. Taste. Smell. Touch.

• Actions - Think. Move. 

• Reward – Homeostasis?

https://selfdrivingcars.mit.edu/references


Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Key Takeaways for Real-World Impact

• Deep Learning:
• Fun part: Good algorithms that learn from data.

• Hard part: Huge amounts of representative data.

• Deep Reinforcement Learning:
• Fun part: Good algorithms that learn from data.

• Hard part: Defining a useful state space, action space, and reward.

• Hardest part: Getting meaningful data for the above formalization.

https://selfdrivingcars.mit.edu/references
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Markov Decision Process

[84]

𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, … , 𝑠𝑛−1, 𝑎𝑛−1, 𝑟𝑛, 𝑠𝑛

state

action

reward

Terminal state

https://selfdrivingcars.mit.edu/references
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Major Components of an RL Agent

An RL agent may include one or more of these components:

• Policy: agent’s behavior function

• Value function: how good is each state and/or action

• Model: agent’s representation of the  environment

𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, … , 𝑠𝑛−1, 𝑎𝑛−1, 𝑟𝑛, 𝑠𝑛

state

action

reward

Terminal state

https://selfdrivingcars.mit.edu/references
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actions: UP, DOWN, LEFT, RIGHT

When actions are stochastic:

UP

80% move UP

10% move LEFT

10% move RIGHT

Robot in a Room

+1

-1

START

• reward +1 at [4,3], -1 at [4,2]

• reward -0.04 for each step

• what’s the strategy to achieve max reward?

• what if the actions were deterministic?
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Is this a solution?

+1

-1

• only if actions deterministic
• not in this case (actions are stochastic)

• solution/policy
• mapping from each state to an action

actions: UP, DOWN, LEFT, RIGHT

When actions are stochastic:

UP

80% move UP

10% move LEFT

10% move RIGHT
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Optimal policy

+1

-1

actions: UP, DOWN, LEFT, RIGHT

When actions are stochastic:

UP

80% move UP

10% move LEFT

10% move RIGHT
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Reward for each step -2

+1

-1
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Reward for each step: -0.1

+1

-1
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Reward for each step: -0.04

+1

-1



Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Reward for each step: -0.01

+1

-1
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Reward for each step: +0.01

+1

-1
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Value Function

• Future reward 𝑅 = 𝑟1   + 𝑟2  + 𝑟3  + ⋯ + 𝑟𝑛

𝑅𝑡 = 𝑟𝑡 + 𝑟𝑡+1 + 𝑟𝑡+2 + ⋯ + 𝑟𝑛

• Discounted future reward (environment is stochastic)

𝑅𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1  + 𝛾2𝑟𝑡+2 + ⋯ + 𝛾𝑛−𝑡𝑟𝑛
= 𝑟𝑡 + 𝛾(𝑟𝑡+1  + 𝛾(𝑟𝑡+2  + ⋯))
= 𝑟𝑡 + 𝛾𝑅𝑡+1

• A good strategy for an agent would be to always choose 
an action that maximizes the (discounted) future reward

References: [84]
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Q-Learning

• State-action value function: Q(s,a)
• Expected return when starting in s,

performing a, and following 

• Q-Learning: Use any policy to estimate Q that maximizes future reward:
• Q directly approximates Q* (Bellman optimality equation)

• Independent of the policy being followed

• Only requirement: keep updating each (s,a) pair

s

a

s’

r

New State Old State Reward

Learning Rate Discount Factor
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Exploration vs Exploitation

• Deterministic/greedy policy won’t explore all actions
• Don’t know anything about the environment at the beginning

• Need to try all actions to find the optimal one

• ε-greedy policy
• With probability 1-ε perform the optimal/greedy action, otherwise random action

• Slowly move it towards greedy policy: ε -> 0
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Q-Learning: Value Iteration

References: [84]

A1 A2 A3 A4

S1 +1 +2 -1 0

S2 +2 0 +1 -2

S3 -1 +1 0 -2

S4 -2 0 +1 +1
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Q-Learning: Representation Matters

• In practice, Value Iteration is impractical
• Very limited states/actions

• Cannot generalize to unobserved states

• Think about the Breakout game
• State: screen pixels

• Image size: 𝟖𝟒 × 𝟖𝟒 (resized)

• Consecutive 4 images

• Grayscale with 256 gray levels

𝟐𝟓𝟔𝟖𝟒×𝟖𝟒×𝟒 rows in the Q-table!

References: [83, 84]
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Philosophical Motivation for Deep Reinforcement Learning

Takeaway from Supervised Learning:

Neural networks are great at memorization and not (yet) great at 
reasoning.

Hope for Reinforcement Learning: 

Brute-force propagation of outcomes to knowledge about states 
and actions. This is a kind of brute-force “reasoning”.

Hope for Deep Learning + Reinforcement Learning:

General purpose artificial intelligence through efficient 
generalizable learning of the optimal thing to do given a 
formalized set of actions and states (possibly huge).

https://selfdrivingcars.mit.edu/references


Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Deep Learning is Representation Learning
(aka Feature Learning)

[20]

Deep
Learning

Representation
Learning

Machine
Learning

Artificial
Intelligence

Intelligence: Ability to accomplish complex goals.

Understanding: Ability to turn complex information to into simple, useful information.

https://selfdrivingcars.mit.edu/references
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DQN: Deep Q-Learning

[83]

Use a function (with parameters) 
to approximate the Q-function

• Linear
• Non-linear: Q-Network

https://selfdrivingcars.mit.edu/references
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Deep Q-Network (DQN): Atari

[83]

Mnih et al. "Playing atari with deep reinforcement learning." 2013.

https://selfdrivingcars.mit.edu/references
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DQN and Double DQN (DDQN)

• Loss function (squared error):

[83]

predictiontarget

• DQN: same network for both Q

• DDQN: separate network for each Q
• Helps reduce bias introduced by the inaccuracies of 

Q network at the beginning of training

https://selfdrivingcars.mit.edu/references
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DQN Tricks

• Experience Replay
• Stores experiences (actions, state transitions, and rewards) and creates 

mini-batches from them for the training process

• Fixed Target Network
• Error calculation includes the target function depends on network 

parameters and thus changes quickly. Updating it only every 1,000 
steps increases stability of training process.

• Reward Clipping
• To standardize rewards across games by setting all positive rewards to 

+1 and all negative to -1.

• Skipping Frames
• Skip every 4 frames to take action

[83, 167]

https://selfdrivingcars.mit.edu/references
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DQN Tricks

• Experience Replay
• Stores experiences (actions, state transitions, and rewards) and creates 

mini-batches from them for the training process

• Fixed Target Network
• Error calculation includes the target function depends on network 

parameters and thus changes quickly. Updating it only every 1,000 
steps increases stability of training process.

[83, 167]

https://selfdrivingcars.mit.edu/references
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Deep Q-Learning Algorithm

[83, 167]

https://selfdrivingcars.mit.edu/references
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Atari Breakout

[85]

After
120 Minutes

of Training

After
10 Minutes
of Training

After
240 Minutes

of Training

https://selfdrivingcars.mit.edu/references
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DQN Results in Atari

[83]

https://selfdrivingcars.mit.edu/references
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Policy Gradients (PG)

• DQN (off-policy): Approximate Q and infer optimal policy

• PG (on-policy): Directly optimize policy space

[63]

Good illustrative explanation:

http://karpathy.github.io/2016/05/31/rl/

“Deep Reinforcement Learning:

Pong from Pixels”

Policy Network

https://selfdrivingcars.mit.edu/references
http://karpathy.github.io/2016/05/31/rl/
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Policy Gradients – Training

[63, 204]

• REINFORCE (aka Actor-Critic): Policy gradient that increases probability of 
good actions and decreases probability of bad action:

• Policy network is the “actor”

• Rt is the “critic”

https://selfdrivingcars.mit.edu/references
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Policy Gradients (PG)

• Pros vs DQN:
• Able to deal with more complex Q function

• Faster convergence

• Since Policy Gradients model probabilities of actions, it is capable of
learning stochastic policies, while DQN can’t.

• Cons:
• Needs more data

[63]

https://selfdrivingcars.mit.edu/references
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Game of Go

[170]

https://selfdrivingcars.mit.edu/references
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AlphaGo (2016) Beat Top Human at Go

[83]

https://selfdrivingcars.mit.edu/references
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AlphaGo Zero (2017): Beats AlphaGo

[149]

https://selfdrivingcars.mit.edu/references
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AlphaGo Zero Approach

[170]

• Same as the best before: Monte Carlo Tree Search (MCTS)
• Balance exploitation/exploration (going deep on promising positions or 

exploring new underplayed positions)

• Use a neural network as “intuition” for which positions to 
expand as part of MCTS (same as AlphaGo)

https://selfdrivingcars.mit.edu/references
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AlphaGo Zero Approach

[170]

• Same as the best before: Monte Carlo Tree Search (MCTS)
• Balance exploitation/exploration (going deep on promising positions or 

exploring new underplayed positions)

• Use a neural network as “intuition” for which positions to 
expand as part of MCTS (same as AlphaGo)

• “Tricks”
• Use MCTS intelligent look-ahead (instead of human games) to improve 

value estimates of play options

• Multi-task learning: “two-headed” network that outputs (1) move 
probability and (2) probability of winning.

• Updated architecture: use residual networks

https://selfdrivingcars.mit.edu/references
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DeepStack first to beat professional poker players (2017)
(in heads-up poker)

[150]

https://selfdrivingcars.mit.edu/references
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To date, for most successful robots operating in the real world:

Deep RL is not involved
(to the best of our knowledge)

https://selfdrivingcars.mit.edu/references
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Unexpected Local Pockets of High Reward

[63, 64]

https://selfdrivingcars.mit.edu/references
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AI Safety
Risk (and thus Human Life) Part of the Loss Function

https://selfdrivingcars.mit.edu/references
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DeepTraffic: Deep Reinforcement Learning Competition

https://selfdrivingcars.mit.edu/deeptraffic

https://selfdrivingcars.mit.edu/references



