
Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Deep Reinforcement Learning
Lex Fridman

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Open Question:

What can be learned from
data?

Environment

Sensors

Sensor Data

Feature Extraction

Machine Learning

Reasoning

Knowledge

Effector

Planning

Action

Representation

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Environment

Sensors

Sensor Data

Feature Extraction

Machine Learning

Reasoning

Knowledge

Effector

Planning

Action

Representation

References: [132]

Lidar
Camera

(Visible, Infrared)
Radar

Stereo Camera Microphone

GPS

IMU
Networking

(Wired, Wireless)

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Environment

Sensors

Sensor Data

Feature Extraction

Machine Learning

Reasoning

Knowledge

Effector

Planning

Action

Representation

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Environment

Sensors

Sensor Data

Feature Extraction

Machine Learning

Reasoning

Knowledge

Effector

Planning

Action

Representation

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Environment

Sensors

Sensor Data

Feature Extraction

Machine Learning

Reasoning

Knowledge

Effector

Planning

Action

Representation

Image Recognition:

If it looks like a duck

Activity Recognition:

Swims like a duck

Audio Recognition:

Quacks like a duck

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Environment

Sensors

Sensor Data

Feature Extraction

Machine Learning

Reasoning

Knowledge

Effector

Planning

Action

Representation

Final breakthrough, 358 years after its conjecture:
“It was so indescribably beautiful; it was so simple and
so elegant. I couldn’t understand how I’d missed it and
I just stared at it in disbelief for twenty minutes. Then
during the day I walked around the department, and
I’d keep coming back to my desk looking to see if it
was still there. It was still there. I couldn’t contain
myself, I was so excited. It was the most important
moment of my working life. Nothing I ever do again
will mean as much."

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Environment

Sensors

Sensor Data

Feature Extraction

Machine Learning

Reasoning

Knowledge

Effector

Planning

Action

Representation

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Environment

Sensors

Sensor Data

Feature Extraction

Machine Learning

Reasoning

Knowledge

Effector

Planning

Action

Representation

References: [133]

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Environment

Sensors

Sensor Data

Feature Extraction

Machine Learning

Reasoning

Knowledge

Effector

Planning

Action

Representation

The promise of
Deep Learning

The promise of
Deep Reinforcement Learning

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Types of Deep Learning

[81, 165]

Supervised
Learning

Unsupervised
Learning

Semi-Supervised
Learning Reinforcement

Learning

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Philosophical Motivation for Reinforcement Learning

Takeaway from Supervised Learning:

Neural networks are great at memorization and not (yet) great at
reasoning.

Hope for Reinforcement Learning:

Brute-force propagation of outcomes to knowledge about states
and actions. This is a kind of brute-force “reasoning”.

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Agent and Environment

• At each step the agent:
• Executes action

• Receives observation (new state)

• Receives reward

• The environment:
• Receives action

• Emits observation (new state)

• Emits reward

[80]

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Examples of Reinforcement Learning

Reinforcement learning is a general-purpose framework for decision-making:

• An agent operates in an environment: Atari Breakout

• An agent has the capacity to act

• Each action influences the agent’s future state

• Success is measured by a reward signal

• Goal is to select actions to maximize future reward

[85]

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Examples of Reinforcement Learning

Cart-Pole Balancing

• Goal — Balance the pole on top of a moving cart

• State — Pole angle, angular speed. Cart position, horizontal velocity.

• Actions — horizontal force to the cart

• Reward — 1 at each time step if the pole is upright

[166]

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Examples of Reinforcement Learning

Doom

• Goal — Eliminate all opponents

• State — Raw game pixels of the game

• Actions — Up, Down, Left, Right etc

• Reward — Positive when eliminating an opponent,
negative when the agent is eliminated

[166]

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Examples of Reinforcement Learning

Bin Packing

• Goal - Pick a device from a box and put it into a container

• State - Raw pixels of the real world

• Actions - Possible actions of the robot

• Reward - Positive when placing a device successfully, negative otherwise

[166]

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Examples of Reinforcement Learning

Human Life

• Goal - Survival? Happiness?

• State - Sight. Hearing. Taste. Smell. Touch.

• Actions - Think. Move.

• Reward – Homeostasis?

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Key Takeaways for Real-World Impact

• Deep Learning:
• Fun part: Good algorithms that learn from data.

• Hard part: Huge amounts of representative data.

• Deep Reinforcement Learning:
• Fun part: Good algorithms that learn from data.

• Hard part: Defining a useful state space, action space, and reward.

• Hardest part: Getting meaningful data for the above formalization.

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Markov Decision Process

[84]

𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, … , 𝑠𝑛−1, 𝑎𝑛−1, 𝑟𝑛, 𝑠𝑛

state

action

reward

Terminal state

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Major Components of an RL Agent

An RL agent may include one or more of these components:

• Policy: agent’s behavior function

• Value function: how good is each state and/or action

• Model: agent’s representation of the environment

𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, … , 𝑠𝑛−1, 𝑎𝑛−1, 𝑟𝑛, 𝑠𝑛

state

action

reward

Terminal state

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

actions: UP, DOWN, LEFT, RIGHT

When actions are stochastic:

UP

80% move UP

10% move LEFT

10% move RIGHT

Robot in a Room

+1

-1

START

• reward +1 at [4,3], -1 at [4,2]

• reward -0.04 for each step

• what’s the strategy to achieve max reward?

• what if the actions were deterministic?

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Is this a solution?

+1

-1

• only if actions deterministic
• not in this case (actions are stochastic)

• solution/policy
• mapping from each state to an action

actions: UP, DOWN, LEFT, RIGHT

When actions are stochastic:

UP

80% move UP

10% move LEFT

10% move RIGHT

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Optimal policy

+1

-1

actions: UP, DOWN, LEFT, RIGHT

When actions are stochastic:

UP

80% move UP

10% move LEFT

10% move RIGHT

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Reward for each step -2

+1

-1

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Reward for each step: -0.1

+1

-1

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Reward for each step: -0.04

+1

-1

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Reward for each step: -0.01

+1

-1

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Reward for each step: +0.01

+1

-1

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Value Function

• Future reward 𝑅 = 𝑟1 + 𝑟2 + 𝑟3 + ⋯ + 𝑟𝑛

𝑅𝑡 = 𝑟𝑡 + 𝑟𝑡+1 + 𝑟𝑡+2 + ⋯ + 𝑟𝑛

• Discounted future reward (environment is stochastic)

𝑅𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯ + 𝛾𝑛−𝑡𝑟𝑛
= 𝑟𝑡 + 𝛾(𝑟𝑡+1 + 𝛾(𝑟𝑡+2 + ⋯))
= 𝑟𝑡 + 𝛾𝑅𝑡+1

• A good strategy for an agent would be to always choose
an action that maximizes the (discounted) future reward

References: [84]

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Q-Learning

• State-action value function: Q(s,a)
• Expected return when starting in s,

performing a, and following

• Q-Learning: Use any policy to estimate Q that maximizes future reward:
• Q directly approximates Q* (Bellman optimality equation)

• Independent of the policy being followed

• Only requirement: keep updating each (s,a) pair

s

a

s’

r

New State Old State Reward

Learning Rate Discount Factor

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Exploration vs Exploitation

• Deterministic/greedy policy won’t explore all actions
• Don’t know anything about the environment at the beginning

• Need to try all actions to find the optimal one

• ε-greedy policy
• With probability 1-ε perform the optimal/greedy action, otherwise random action

• Slowly move it towards greedy policy: ε -> 0

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Q-Learning: Value Iteration

References: [84]

A1 A2 A3 A4

S1 +1 +2 -1 0

S2 +2 0 +1 -2

S3 -1 +1 0 -2

S4 -2 0 +1 +1

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

Q-Learning: Representation Matters

• In practice, Value Iteration is impractical
• Very limited states/actions

• Cannot generalize to unobserved states

• Think about the Breakout game
• State: screen pixels

• Image size: 𝟖𝟒 × 𝟖𝟒 (resized)

• Consecutive 4 images

• Grayscale with 256 gray levels

𝟐𝟓𝟔𝟖𝟒×𝟖𝟒×𝟒 rows in the Q-table!

References: [83, 84]

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Philosophical Motivation for Deep Reinforcement Learning

Takeaway from Supervised Learning:

Neural networks are great at memorization and not (yet) great at
reasoning.

Hope for Reinforcement Learning:

Brute-force propagation of outcomes to knowledge about states
and actions. This is a kind of brute-force “reasoning”.

Hope for Deep Learning + Reinforcement Learning:

General purpose artificial intelligence through efficient
generalizable learning of the optimal thing to do given a
formalized set of actions and states (possibly huge).

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Deep Learning is Representation Learning
(aka Feature Learning)

[20]

Deep
Learning

Representation
Learning

Machine
Learning

Artificial
Intelligence

Intelligence: Ability to accomplish complex goals.

Understanding: Ability to turn complex information to into simple, useful information.

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

DQN: Deep Q-Learning

[83]

Use a function (with parameters)
to approximate the Q-function

• Linear
• Non-linear: Q-Network

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Deep Q-Network (DQN): Atari

[83]

Mnih et al. "Playing atari with deep reinforcement learning." 2013.

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

DQN and Double DQN (DDQN)

• Loss function (squared error):

[83]

predictiontarget

• DQN: same network for both Q

• DDQN: separate network for each Q
• Helps reduce bias introduced by the inaccuracies of

Q network at the beginning of training

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

DQN Tricks

• Experience Replay
• Stores experiences (actions, state transitions, and rewards) and creates

mini-batches from them for the training process

• Fixed Target Network
• Error calculation includes the target function depends on network

parameters and thus changes quickly. Updating it only every 1,000
steps increases stability of training process.

• Reward Clipping
• To standardize rewards across games by setting all positive rewards to

+1 and all negative to -1.

• Skipping Frames
• Skip every 4 frames to take action

[83, 167]

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

DQN Tricks

• Experience Replay
• Stores experiences (actions, state transitions, and rewards) and creates

mini-batches from them for the training process

• Fixed Target Network
• Error calculation includes the target function depends on network

parameters and thus changes quickly. Updating it only every 1,000
steps increases stability of training process.

[83, 167]

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Deep Q-Learning Algorithm

[83, 167]

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Atari Breakout

[85]

After
120 Minutes

of Training

After
10 Minutes
of Training

After
240 Minutes

of Training

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

DQN Results in Atari

[83]

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Policy Gradients (PG)

• DQN (off-policy): Approximate Q and infer optimal policy

• PG (on-policy): Directly optimize policy space

[63]

Good illustrative explanation:

http://karpathy.github.io/2016/05/31/rl/

“Deep Reinforcement Learning:

Pong from Pixels”

Policy Network

https://selfdrivingcars.mit.edu/references
http://karpathy.github.io/2016/05/31/rl/

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Policy Gradients – Training

[63, 204]

• REINFORCE (aka Actor-Critic): Policy gradient that increases probability of
good actions and decreases probability of bad action:

• Policy network is the “actor”

• Rt is the “critic”

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Policy Gradients (PG)

• Pros vs DQN:
• Able to deal with more complex Q function

• Faster convergence

• Since Policy Gradients model probabilities of actions, it is capable of
learning stochastic policies, while DQN can’t.

• Cons:
• Needs more data

[63]

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Game of Go

[170]

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

AlphaGo (2016) Beat Top Human at Go

[83]

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

AlphaGo Zero (2017): Beats AlphaGo

[149]

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

AlphaGo Zero Approach

[170]

• Same as the best before: Monte Carlo Tree Search (MCTS)
• Balance exploitation/exploration (going deep on promising positions or

exploring new underplayed positions)

• Use a neural network as “intuition” for which positions to
expand as part of MCTS (same as AlphaGo)

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

AlphaGo Zero Approach

[170]

• Same as the best before: Monte Carlo Tree Search (MCTS)
• Balance exploitation/exploration (going deep on promising positions or

exploring new underplayed positions)

• Use a neural network as “intuition” for which positions to
expand as part of MCTS (same as AlphaGo)

• “Tricks”
• Use MCTS intelligent look-ahead (instead of human games) to improve

value estimates of play options

• Multi-task learning: “two-headed” network that outputs (1) move
probability and (2) probability of winning.

• Updated architecture: use residual networks

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

DeepStack first to beat professional poker players (2017)
(in heads-up poker)

[150]

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

To date, for most successful robots operating in the real world:

Deep RL is not involved
(to the best of our knowledge)

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

Unexpected Local Pockets of High Reward

[63, 64]

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

AI Safety
Risk (and thus Human Life) Part of the Loss Function

https://selfdrivingcars.mit.edu/references

Lex Fridman:
fridman@mit.edu

January
2018

Course 6.S191:
Intro to Deep Learning

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

DeepTraffic: Deep Reinforcement Learning Competition

https://selfdrivingcars.mit.edu/deeptraffic

https://selfdrivingcars.mit.edu/references

