

# Information Gain & Decision Trees

Slides adopted from

#### **Data Mining for Business Analytics**

**Lecture 3: Supervised Segmentation** 

Stern School of Business New York University Spring 2014

## **Supervised Segmentation**

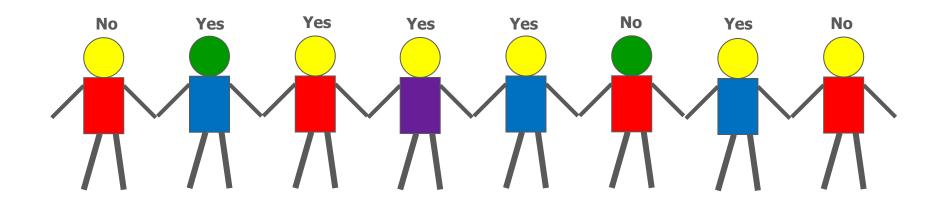
- How can we segment the population into groups that differ from each other with respect to some quantity of interest?
- Informative attributes
  - Find knowable attributes that correlate with the target of interest
    - Increase accuracy
    - Alleviate computational problems
    - E.g., tree induction

# **Supervised Segmentation**

- How can we judge whether a variable contains important information about the target variable?
  - How much?

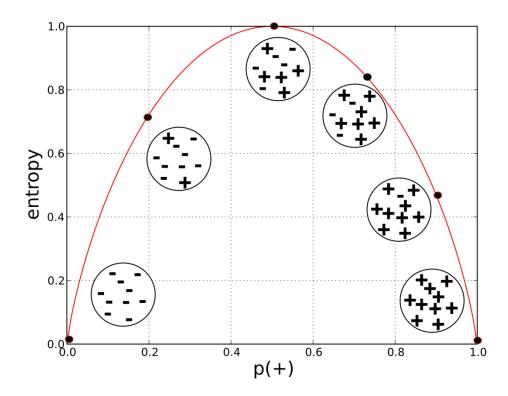
## **Selecting Informative Attributes**

Objective: Based on customer attributes, partition the customers into subgroups that are less impure – with respect to the class (i.e., such that in each group as many instances as possible belong to the same class)



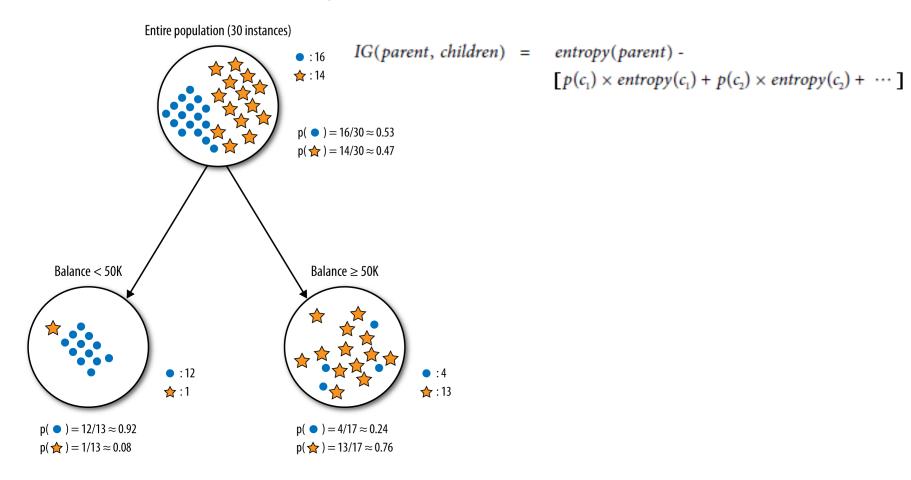
## **Selecting Informative Attributes**

- The most common splitting criterion is called information gain (IG)
  - It is based on a purity measure called entropy
    - $entropy = -p_1 \log_2(p_1) p_2 \log_2(p_2) \dots$
    - Measures the general disorder of a set

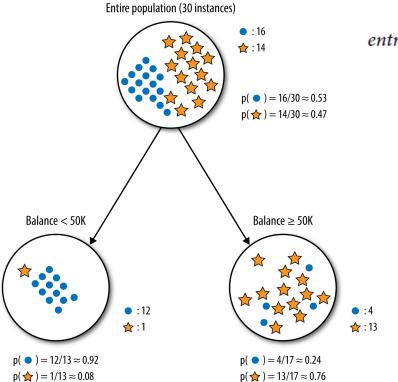


## **Information Gain**

 Information gain measures the change in entropy due to any amount of new information being added



## **Information Gain**



entropy(parent) = 
$$-[p(\bullet) \times \log_2 p(\bullet) + p(\Leftrightarrow) \times \log_2 p(\Leftrightarrow)]$$
  
 $\approx -[0.53 \times -0.9 + 0.47 \times -1.1]$   
 $\approx 0.99$  (very impure)

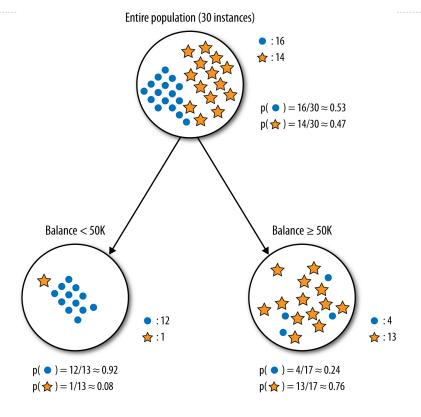
The entropy of the *left* child is:

entropy(Balance < 
$$50K$$
) =  $-[p(\bullet) \times \log_2 p(\bullet) + p(*) \times \log_2 p(*)]$   
 $\approx -[0.92 \times (-0.12) + 0.08 \times (-3.7)]$   
 $\approx 0.39$ 

The entropy of the *right* child is:

entropy(Balance 
$$\geq 50K$$
) =  $-[p(\bullet) \times \log_2 p(\bullet) + p(\bigstar) \times \log_2 p(\bigstar)]$   
  $\approx -[0.24 \times (-2.1) + 0.76 \times (-0.39)]$   
=0.79

## **Information Gain**



Relative IG = IG/entropy(parent)=0.37/0.99=0.37

## **Attribute Selection**

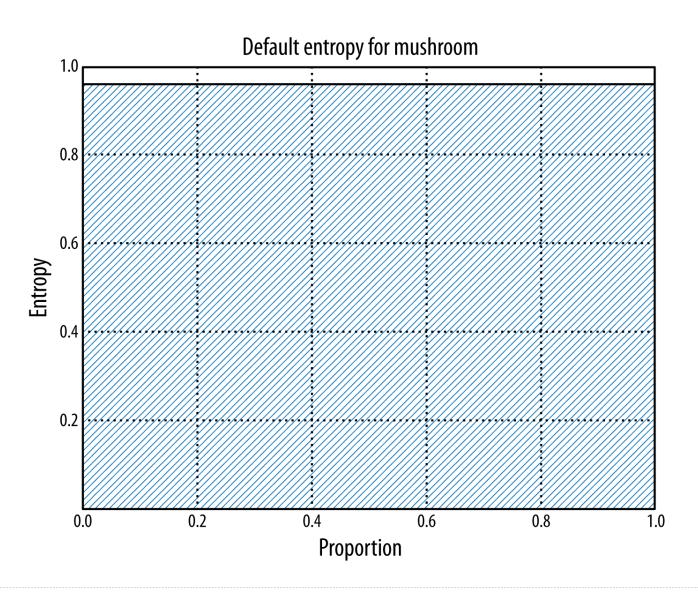
Reasons for selecting only a subset of attributes:

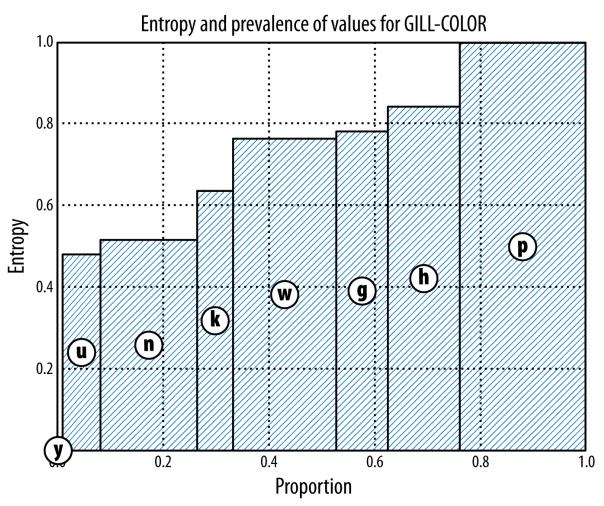
- Better insights and business understanding
- Better explanations and more tractable models
- Reduced cost
- Faster predictions
- Better predictions!
  - Over-fitting (to be continued..)

and also determining the most informative attributes.

- This dataset includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family
- Each species is identified as definitely edible, definitely poisonous, or of unknown edibility and not recommended
  - This latter class was combined with the poisonous one
- The Guide clearly states that there is no simple rule for determining the edibility of a mushroom; no rule like "leaflets three, let it be" for Poisonous Oak and Ivy

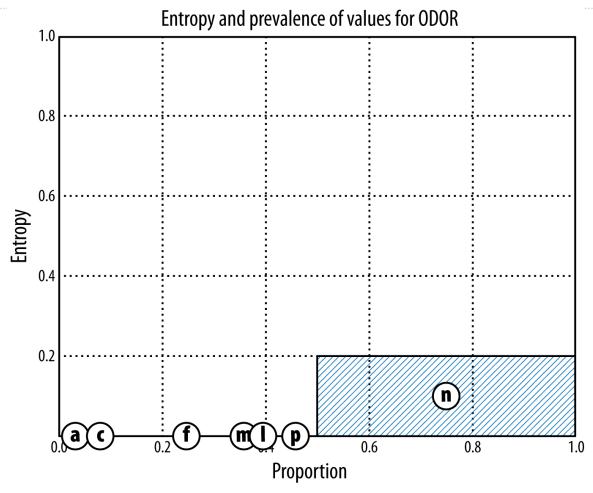
| Attribute name            | Possible values                                                                      | MUSHROOM                  |
|---------------------------|--------------------------------------------------------------------------------------|---------------------------|
| CAP-SHAPE                 | bell, conical, convex, flat, knobbed,                                                |                           |
| CAP-SURFACE               | fibrous, grooves, scaly, smooth                                                      | cap scale                 |
| CAP-COLOR                 | brown, buff, cinnamon, gray, green, pwhite, yellow                                   | gills tubes pores         |
| BRUISES?                  | yes, no                                                                              | ring                      |
| ODOR                      | almond, anise, creosote, fishy, foul, pungent, spicy                                 | stipe, stall              |
| GILL-ATTACHMENT           | attached, descending, free, notched                                                  | scales                    |
| GILL-SPACING<br>GILL-SIZE | close, crowded, distant broad, narrow                                                | volva www.infovisual.info |
| GILL-COLOR                | black, brown, buff, chocolate, gray, green, orange, pink, purple, red, white, yellow |                           |
| STALK-SHAPE               | enlarging, tapering                                                                  |                           |
| STALK-ROOT                | bulbous, club, cup, equal, rhizomorphs, rooted, missing                              |                           |
| STALK-SURFACE-ABOVE-RING  | fibrous, scaly, silky, smooth                                                        |                           |
| STALK-SURFACE-BELOW-RING  | fibrous, scaly, silky, smooth                                                        |                           |





**GILL-COLOR** 

black, brown, buff, chocolate, gray, green, orange, pink, purple, red, white, yellow



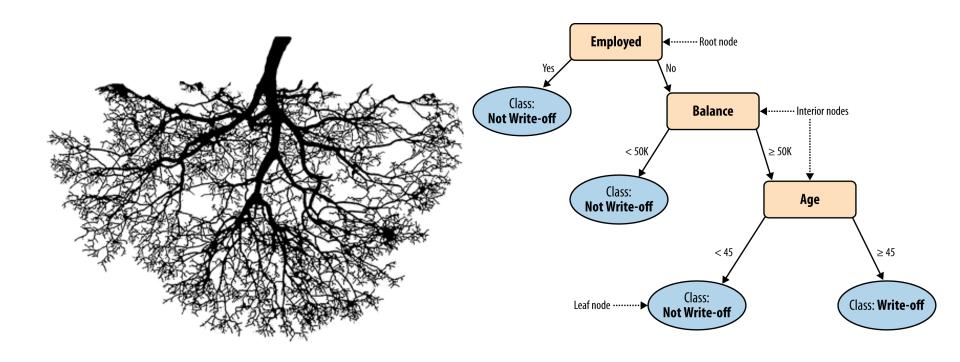
ODOR

almond, anise, creosote, fishy, foul, musty, none, pungent, spicy

## **Multivariate Supervised Segmentation**

- If we select the single variable that gives the most information gain, we create a very simple segmentation
- If we select multiple attributes each giving some information gain, how do we put them together?

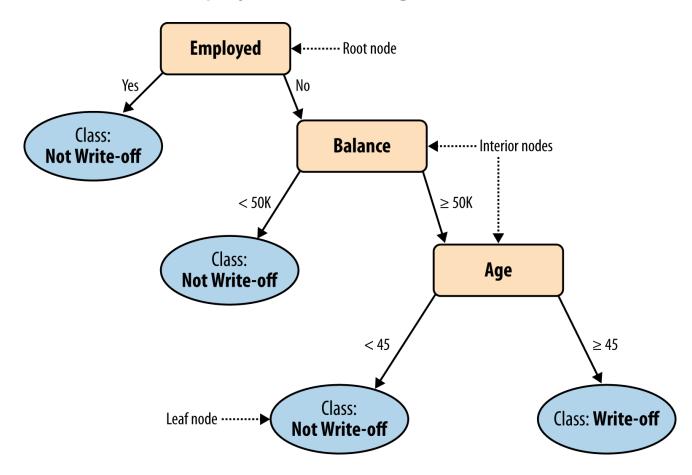
## **Tree-Structured Models**



Write-off: not to pay off their account balances. i.e., defaulting on one's phone bill or credit card balance

## **Tree-Structured Models**

- Classify 'John Doe'
  - Balance=115K, Employed=No, and Age=40



## **Tree-Structured Models: "Rules"**

- No two parents share descendants
- There are no cycles
- The branches always "point downwards"
- Every example always ends up at a leaf node with some specific class determination
  - Probability estimation trees, regression trees (to be continued..)

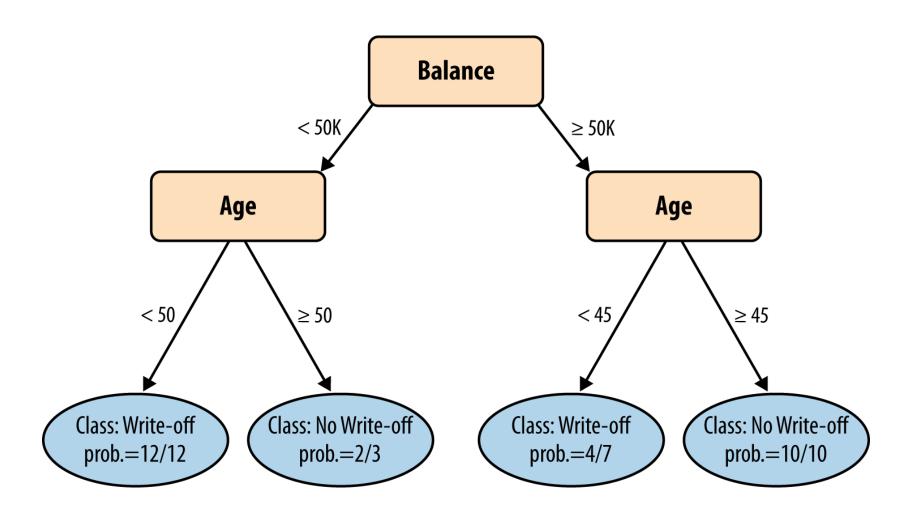
#### **Tree Induction**

- How do we create a classification tree from data?
  - divide-and-conquer approach
  - take each data subset and recursively apply attribute selection to find the best attribute to partition it
- When do we stop?
  - The nodes are pure,
  - there are no more variables, or
  - even earlier (over-fitting to be continued..)

## Why trees?

- Decision trees (DTs), or classification trees, are one of the most popular data mining tools
  - (along with linear and logistic regression)
- They are:
  - Easy to understand
  - Easy to implement
  - Easy to use
  - Computationally cheap
- Almost all data mining packages include DTs
- They have advantages for model comprehensibility, which is important for:
  - model evaluation
  - communication to non-DM-savvy stakeholders

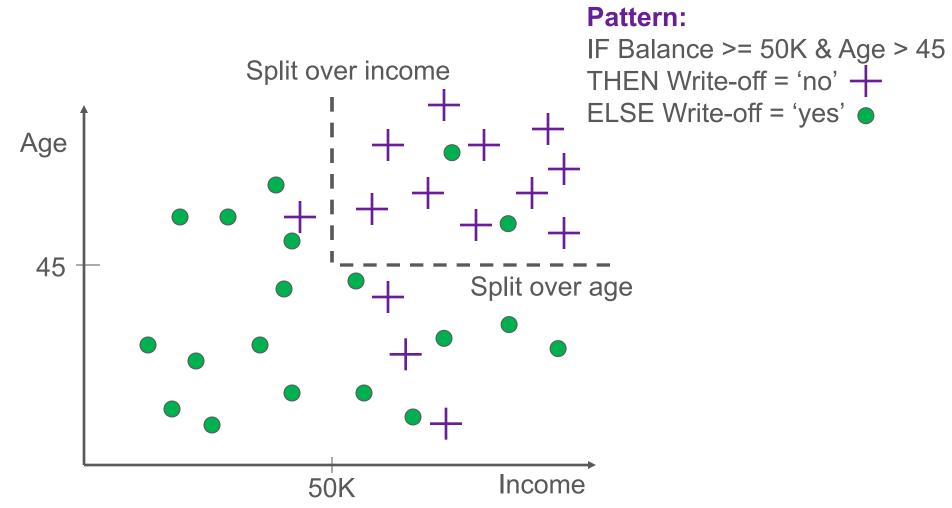
# **Visualizing Segmentations**



# **Visualizing Segmentations**



## Geometric interpretation of a model

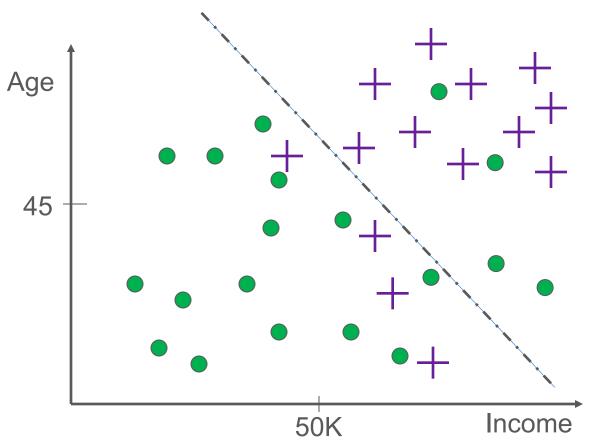




No Write-off(No default)

## Geometric interpretation of a model

What alternatives are there to partitioning this way?



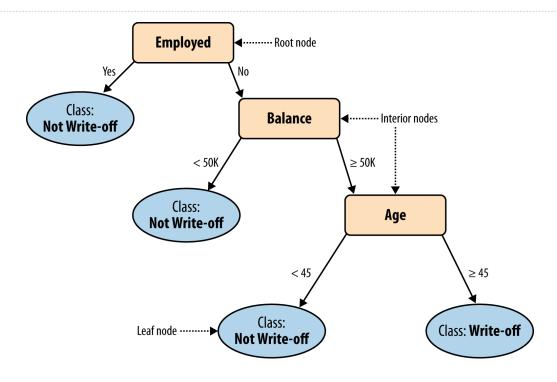
"True" boundary may not be closely approximated by a linear boundary!

- Did not buy life insurance
- **Bought life insurance**

### **Trees as Sets of Rules**

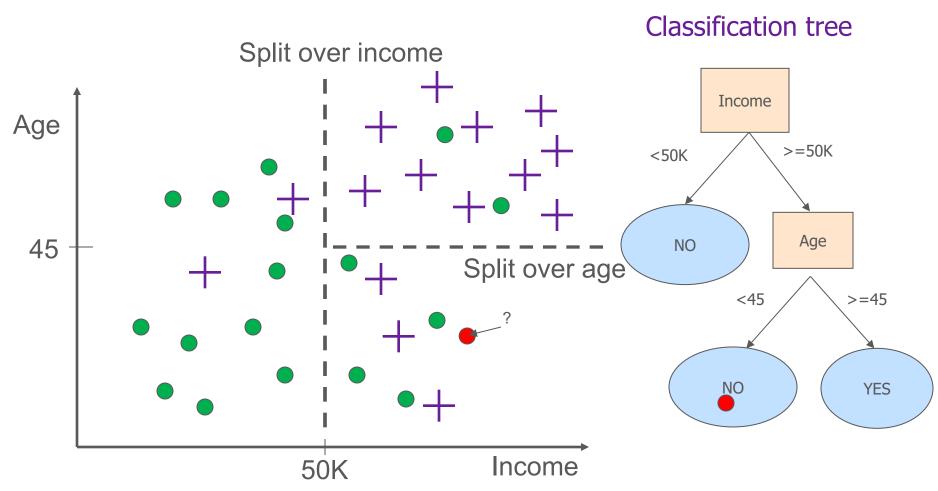
- The classification tree is equivalent to this rule set
- Each rule consists of the attribute tests along the path connected with AND

### **Trees as Sets of Rules**



- IF (Employed = Yes) THEN Class=No Write-off
- IF (Employed = No) AND (Balance < 50k) THEN Class=No Write-off
- IF (Employed = No) AND (Balance ≥ 50k) AND (Age < 45) THEN Class=No Write-off
- IF (Employed = No) AND (Balance ≥ 50k) AND (Age ≥ 45) THEN Class=Write-off

## What are we predicting?

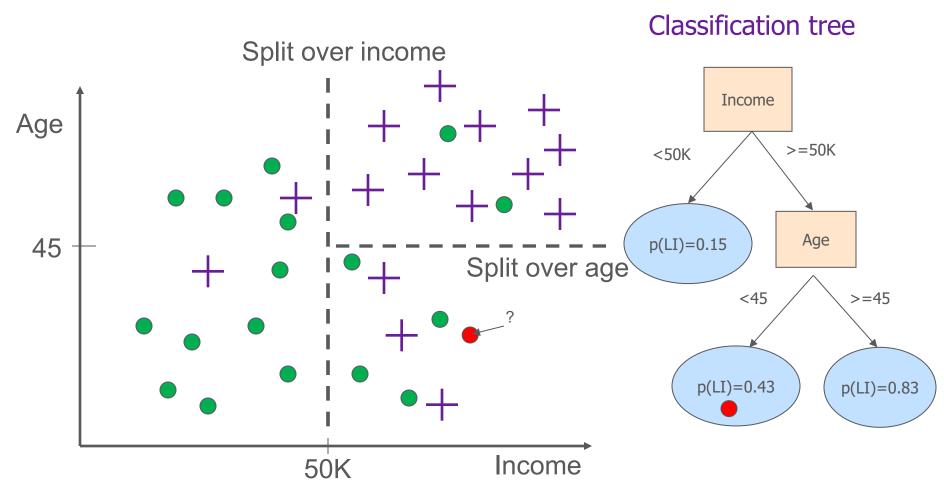


Did not buy life insurance

Bought life insurance

Interested in LI? = NO

## What are we predicting?



Did not buy life insurance

**Bought life insurance** 

• Interested in LI? = 3/7

# **Questions?**