Random Forests

Based on slides by Oznur Tastan et.al
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* Integrate results of multiple learning approaches to

~&f‘ “Two heads are better than one.”

improve the performance

Ensemble learning

@ introduction to machine learning: ensemble learning




Two concepts

* Strong learner: learning algorithm with high accuracy

* Weak learner: performance on any training set is

slightly better than chance prediction
error = 2 -Y

Can we improve a weak learner to a strong learner?

@ introduction to machine learning: ensemble learning




Introduction to ensemble learning

¢ INTUITION: Combining Predictions of an ensemble is more accurate than a
single classifier
* Justification: ( Several reasons)
* Easy to find quite correct “rules of thumb” however hard to find
single highly accurate prediction rule.
* If the training examples are few and the hypothesis space is large
then there are several equally accurate classifiers.
® Hypothesis space does not contain the true function, but it has
several good approximations.
® Exhaustive global search in the hypothesis space is expensive so we

can combine the predictions of several locally accurate classifiers.

@ introduction  machine learning: ensemble learning




Ensemble learning: basic idea

* Sometimes a single classifier (e.g. decision tree, neural network, ...

won’t perform well, but a weighted combination of them will.
* Each learner in the pool has its own weight
* When ask to predict the label for a new example

* Each expert makes its own predjction

* Then the master algorithm combine them using the weights for its own
prediction (i.e. the “official” one)

Q introduction to machine learning: ensemble learning




Properties of a Tree

 Handles huge datasets

* Works for both classification and regression
* Handles categorical predictors naturally

* No formal distributional assumptions

* Can handle highly non-linear interactions and classification
boundaries

* Handles missing values in the features
e Easily ignore redundant variables
 Small Tree are easy to interpret

* Large trees are hard to interpret

e Often prediction performance is poor




Random Forests




Basic idea of Random Forests

Grow a forest of many trees.

Each tree is a little different (slightly different data,
different choices of predictors).

Combine the trees to get predictions for new data.

Idea: most of the trees are good for most of the data
and make mistakes in different places.




Advantages of Random Forests

* Built-in estimates of accuracy.
e Automatic feature selection.
e feature importance.

e Works well “off the shelf”.




Model Averaging I

Classification trees can be simple, but often produce noisy (bushy)

or weak (stunted) classifiers.

e Bagging (Breiman, 1996): Fit many large trees to
bootstrap-resampled versions of the training data, and classify
by majority vote.

e Boosting (Freund & Shapire, 1996): Fit many large or small
trees to reweighted versions of the training data. Classify by

weighted majority vote.
e Random Forests (Breiman 1999): Fancier version of bagging.

In general Boosting > Random Forests > Bagging > Single Tree.




Bagging

e Bagging or bootstrap aggregation a technique for
reducing the variance of an estimated prediction

function.

e For classification, a committee of trees each
cast a vote for the predicted class.




Bootstrap

The basic idea:

randomly draw B datasets with replacement from the

training data with size N, each dataset samples the same size (N) as
the original training set
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N examples

Bagging

Create bootstrap samples
from the training data

M features—|—>




N examples

Random Forest Classifier

Construct a decision tree
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Random Forest Classifier
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Bagging

L= {(X]_I yl)l (XZI y2)l s (XNI yN)} Training Sample

Z"® where=1,.., B. o .
The prediction at input x

when bootstrap sample
b is used for training

) 1 B
fbag (1) — Z Iub(l)

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf (Chapter 8.7)




Bagging : an simulated example

Generated a sample of size N = 30, with two
classes and p = 5 features, each having a
standard Gaussian distribution with pairwise
Correlation 0.95.

The response Y was generated according to
Pr(Y=1/x1<0.5)=0.2,
Pr(Y=0/x1>0.5)=0.8.




Bagging

Notice the bootstrap trees are different than the original tree

Original Tree

x.1<0.395

o

b=1
x.1<0.555

b=2




Bagging
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FIGURE B8.10. Error curves for the bagging example of Figure 8.9. Shoun is
the test error of the original tree and bagged trees as a function of the number of
bootstrap samples. The orange points correspond to the consensus vote, while the
green points average the probabilities.

Hastie

bagging helps under squared-error loss, in short because averaging reduces

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf Example 8.7.1




Random forest classifier

Random forest classifier, an extension to
bagging which uses de-correlated trees.




Random Forest Classifier

Training Data

M features

N examples




Random Forest Classifier

Create bootstrap samples
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N examples

Random Forest Classifier

Construct a decision tree
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Random Forest Classifier

At each node in choosing the split feature
M features—|—>-

choose only among m<M features
Typically m=sqrt(M) or log 2(M)

Location
Similarity

Neighbor
. T Degree Gene Expression
Function Similarit

Gnteract) G\lot interactj (Interact) G\Iotinteraco (Interact) G\Iotinteract)

—

N examples




Random Forest Classifier

Create decision tree
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Random Forest Classifier
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Trees are de-correlated in random forest!
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FIGURE 15.9. Correlations between pairs of trees drawn by a random-forest
regression algorithm, as a function of m. The boxplots represent the correlations
at 600 randomly chosen prediction points x.




Random forest

Available package:

http://www.stat.berkeley.edu/~breiman/RandomForests/cc home.htm

To read more:

http://www-stat.stanford.edu/~hastie/Papers/ESLIl.pdf




Advantages of Random Forests

* Built-in estimates of accuracy.
e Automatic feature selection.
e feature importance.

e Works well “off the shelf”.
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Training Sample
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C]l\/[ ()
Cg (:l?)
CQ (:L')

Cl (:B)

Boosting I

e Average many trees, each
grown to re-weighted versions

of the training data.

e Final Classifier is weighted av-
erage of classifiers:

C(x) = sign [an/le amCm(:I:)]




‘AdaBoost (Freund & Schapire, 1996)'

1. Initialize the observation weights w; = 1/N, i =1,2,..., N.
2. For m = 1 to M repeat steps (a)—(d):

(a) Fit a classifier C,,(z) to the training data using weights w;.

(b) Compute weighted error of newest tree

Sty wil (i # C(21)

err,, = N

D e Wi

«—— 1 he smaller the error of a
(¢) Compute a,, = log[(1 — err,,)/err,,]. tree. the higherthe weight for

this tree
(d) Update weights for i =1,..., N:
w; — w; - explagy, - I(y; # Cp,(2;))]
and renormalize to w; to sum to 1.

3. Output C(x) = sign [an/‘le amCm(x)].




