Random Forests

Based on slides by Oznur Tastan et.al

Two concepts

- Strong learner: learning algorithm with high accuracy
- Weak learner: performance on any training set is slightly better than chance prediction

error = $\frac{1}{2} - \gamma$

Can we improve a weak learner to a strong learner?

Introduction to ensemble learning

- INTUITION: Combining Predictions of an ensemble is more accurate than a single classifier
- Justification: (Several reasons)
 - Easy to find quite correct "rules of thumb" however hard to find single highly accurate prediction rule.
 - If the training examples are few and the hypothesis space is large then there are several equally accurate classifiers.
 - Hypothesis space does not contain the true function, but it has several good approximations.
 - Exhaustive global search in the hypothesis space is expensive so we can combine the predictions of several locally accurate classifiers.

introduction to machine learning: ensemble learning

17

Ensemble learning: basic idea

- Sometimes a single classifier (e.g. decision tree, neural network, ...) won't perform well, but <u>a weighted combination</u> of them will.
- Each learner in the <u>pool</u> has its own weight
- When ask to predict the label for a new example
 - Each expert makes its own prediction
 - Then the master algorithm combine them using the weights for its own prediction (i.e. the "official" one)

18

Properties of a Tree

- Handles huge datasets
- Works for both classification and regression
- Handles categorical predictors naturally
- No formal distributional assumptions
- Can handle highly non-linear interactions and classification boundaries
- Handles missing values in the features
- Easily ignore redundant variables
- Small Tree are easy to interpret
- Large trees are hard to interpret
- Often prediction performance is poor

Random Forests

Basic idea of Random Forests

Grow a forest of many trees.

Each tree is a little different (slightly different data, different choices of predictors).

Combine the trees to get predictions for new data.

Idea: most of the trees are good for most of the data and make mistakes in different places.

Advantages of Random Forests

- Built-in estimates of accuracy.
- Automatic feature selection.
- feature importance.
- Works well "off the shelf".

Model Averaging

Classification trees can be simple, but often produce noisy (bushy) or weak (stunted) classifiers.

- Bagging (Breiman, 1996): Fit many large trees to bootstrap-resampled versions of the training data, and classify by majority vote.
- Boosting (Freund & Shapire, 1996): Fit many large or small trees to reweighted versions of the training data. Classify by weighted majority vote.
- Random Forests (Breiman 1999): Fancier version of bagging.

In general Boosting \succ Random Forests \succ Bagging \succ Single Tree.

Bagging

• Bagging or *bootstrap aggregation* a technique for reducing the variance of an estimated prediction function.

• For classification, a *committee* of trees each cast a vote for the predicted class.

Bootstrap

The basic idea: randomly draw *B* datasets *with replacement* from the training data with size *N*, each dataset samples *the same size* (*N*) as the original training set

Bagging

Bagging

$$Z = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$$
 Training Sample

 Z^{*b} where = 1,.., B.

The prediction at input x when bootstrap sample b is used for training

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf (Chapter 8.7)

Bagging : an simulated example

Generated a sample of size N = 30, with two classes and p = 5 features, each having a standard Gaussian distribution with pairwise Correlation 0.95.

The response Y was generated according to $Pr(Y = 1/x1 \le 0.5) = 0.2,$ Pr(Y = 0/x1 > 0.5) = 0.8.

Bagging

Notice the bootstrap trees are different than the original tree

1 0

1 0

Bagging

FIGURE 8.10. Error curves for the bagging example of Figure 8.9. Shown is the test error of the original tree and bagged trees as a function of the number of bootstrap samples. The orange points correspond to the consensus vote, while the green points average the probabilities.

bagging helps under squared-error loss, in short because averaging reduces

Hastie

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf Example 8.7.1

Random forest classifier, an extension to bagging which uses *de-correlated* trees.

Training Data

Trees are de-correlated in random forest!

FIGURE 15.9. Correlations between pairs of trees drawn by a random-forest regression algorithm, as a function of m. The boxplots represent the correlations at 600 randomly chosen prediction points x.

Random forest

Available package:

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

To read more:

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf

Advantages of Random Forests

- Built-in estimates of accuracy.
- Automatic feature selection.
- feature importance.
- Works well "off the shelf".

- Average many trees, each grown to re-weighted versions of the training data.
- Final Classifier is weighted average of classifiers:

$$C(x) = \operatorname{sign}\left[\sum_{m=1}^{M} \alpha_m C_m(x)\right]$$

AdaBoost (Freund & Schapire, 1996)

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m = 1 to M repeat steps (a)–(d):
 - (a) Fit a classifier $C_m(x)$ to the training data using weights w_i .
 - (b) Compute weighted error of newest tree

 $\operatorname{err}_{m} = \frac{\sum_{i=1}^{N} w_{i} I(y_{i} \neq C_{m}(x_{i}))}{\sum_{i=1}^{N} w_{i}} \text{ The smaller the error of a}$ (c) Compute $\alpha_{m} = \log[(1 - \operatorname{err}_{m})/\operatorname{err}_{m}]$. The smaller the veight for tree, the higher the weight for this tree
(d) Update weights for $i = 1, \ldots, N$: $w_{i} \leftarrow w_{i} \cdot \exp[\alpha_{m} \cdot I(y_{i} \neq C_{m}(x_{i}))]$ and renormalize to w_{i} to sum to 1.

3. Output
$$C(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m C_m(x) \right]$$