

Deep Generative Models

Aaron Courville MILA, Université de Montréal

6.S191: Introduction to Deep Learning

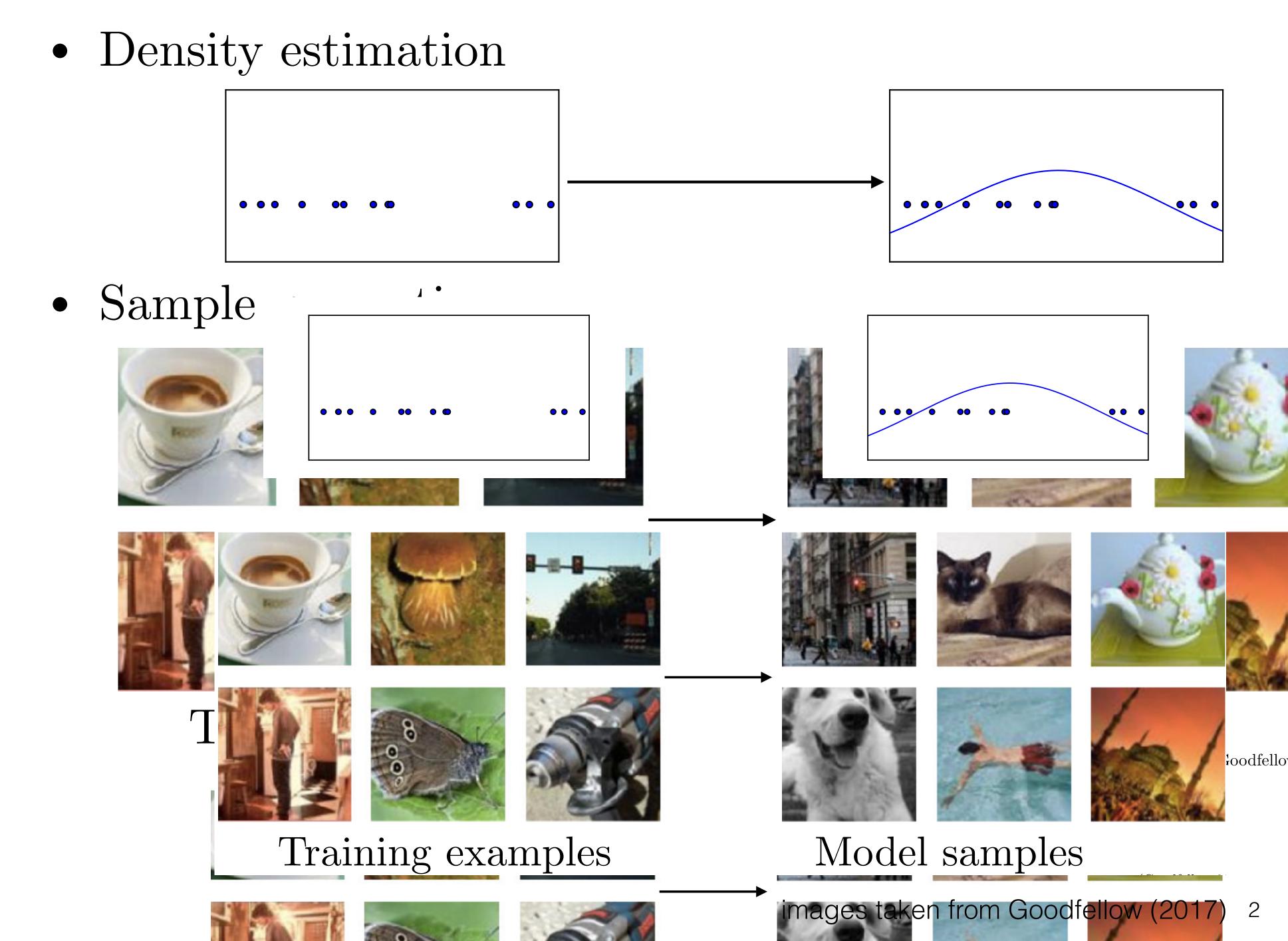
MIT, Jan 30th, 2018

Genera

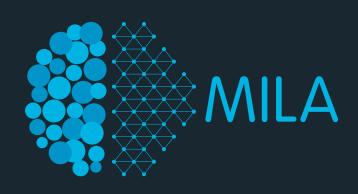
General
 distribu

Density

• Sample



Why generative models?



- Many tasks require structured output
 - Eg. Machine translation

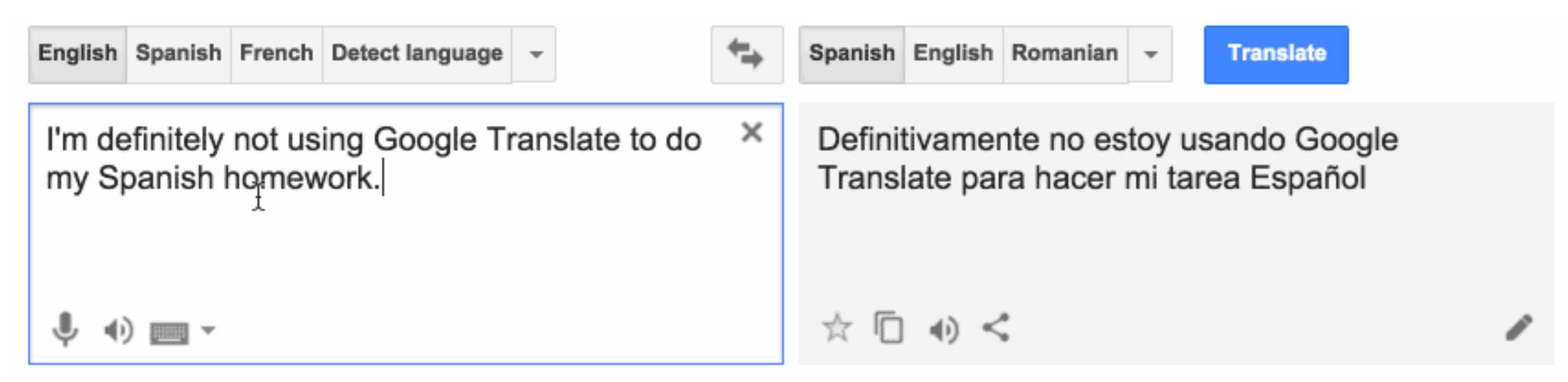
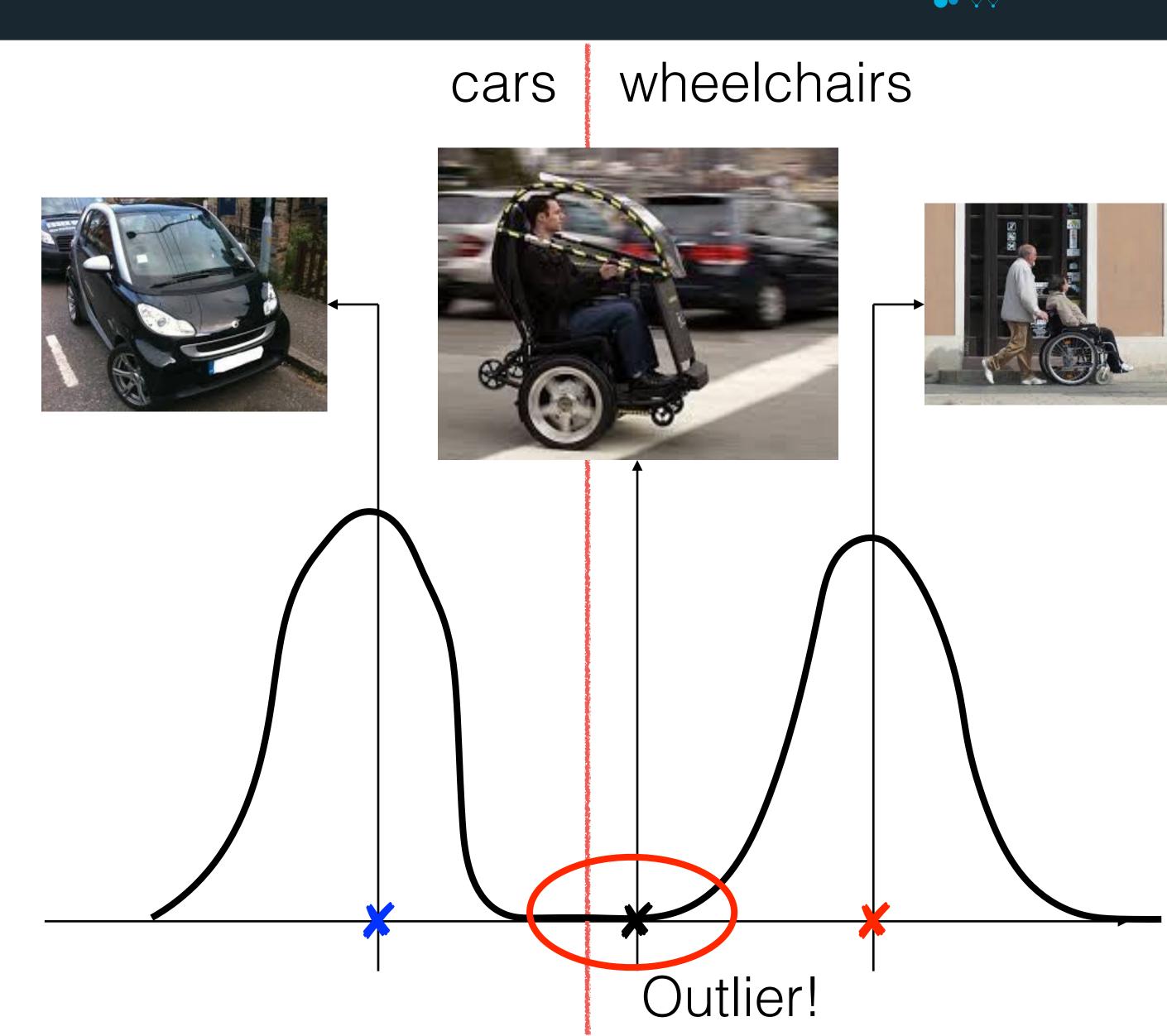


image credit: Adam Geitgey blog (2016) Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences

Why Generative Models? Outlier detection

- Large-scale deployment of CNNbased perception systems is becoming a reality.
- How do we detect when we encounter something new or rare (i.e. not appearing in the training data)?
- Goal: detect these outliers (anomalies) to avoid dangerous misclassification.
- Strategy: Leverage generative models of the training distribution to detect outliers.



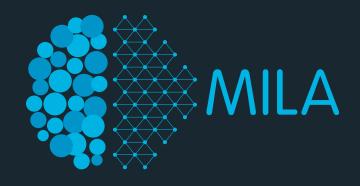
Why Generative Models? Generation for Simulation

 Supports Reinforcement Learning for Robotics: Make simulations sufficiently realistic that learned policies can readily transfer to real-world application

Generative model

Photo from IEEE Spectrum

Deep Generative Models: Outline



Autoregressive models

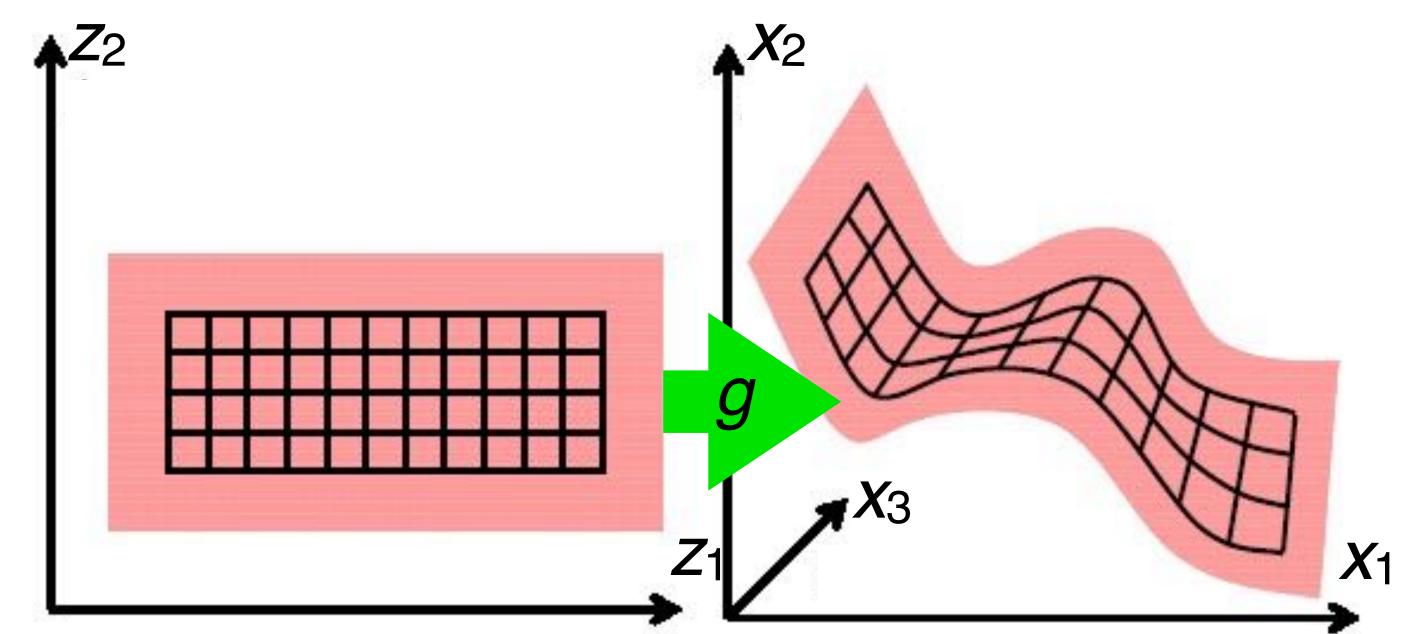
 Deep NADE, PixelRNN, PixelCNN, WaveNet, Video Pixel Network, etc.

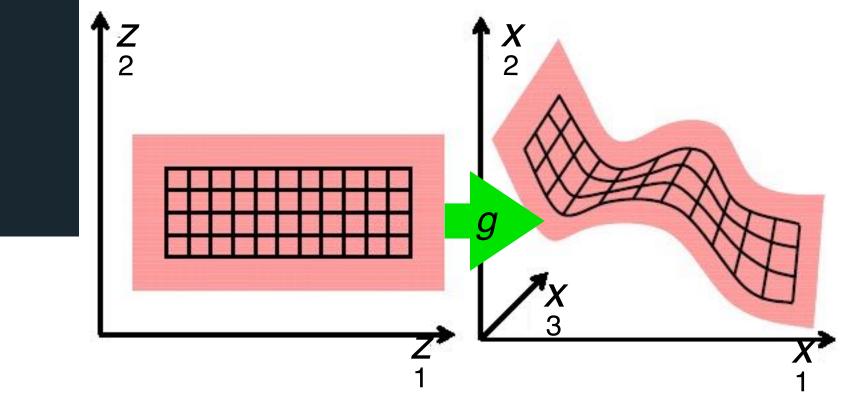
Latent variable models

- Variational Auto encoders
- Generative Adversarial Networks

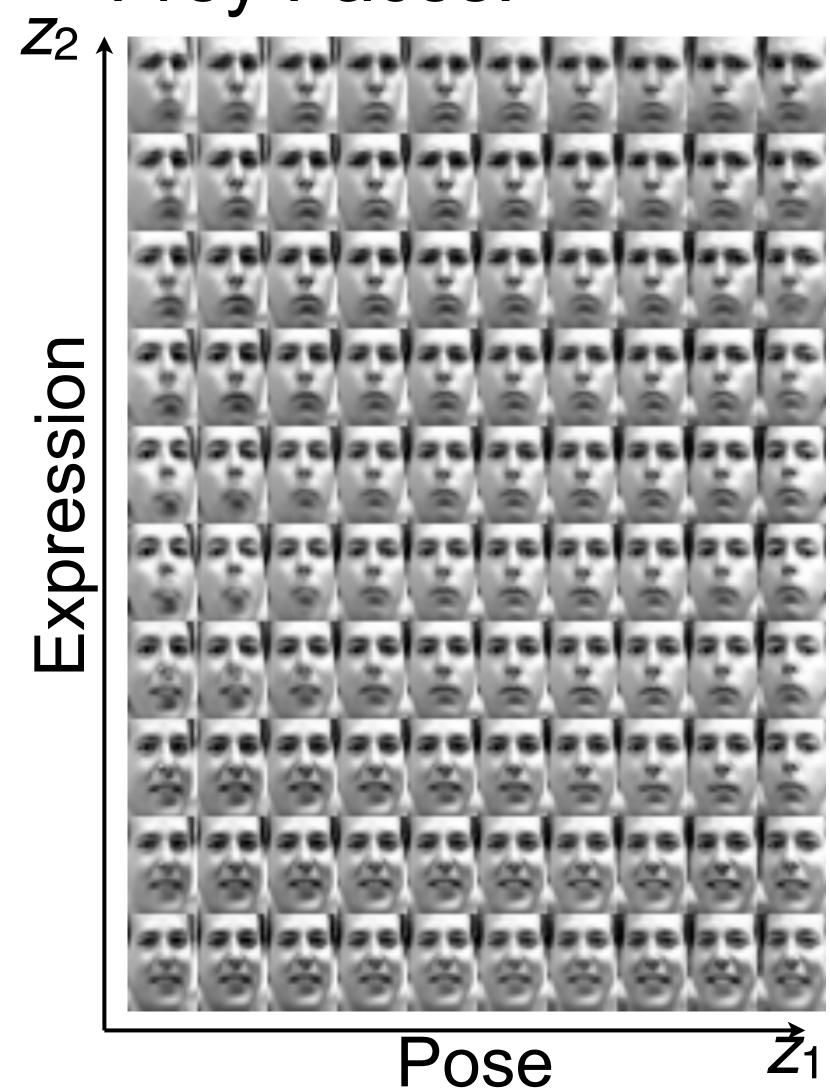
our focus today

- The Variational Autoencoder model:
 - Kingma and Welling, Auto-Encoding Variational Bayes, International Conference on Learning Representations (ICLR) 2014.
 - Rezende, Mohamed and Wierstra, Stochastic back-propagation and variational inference in deep latent Gaussian models. ICML 2014.

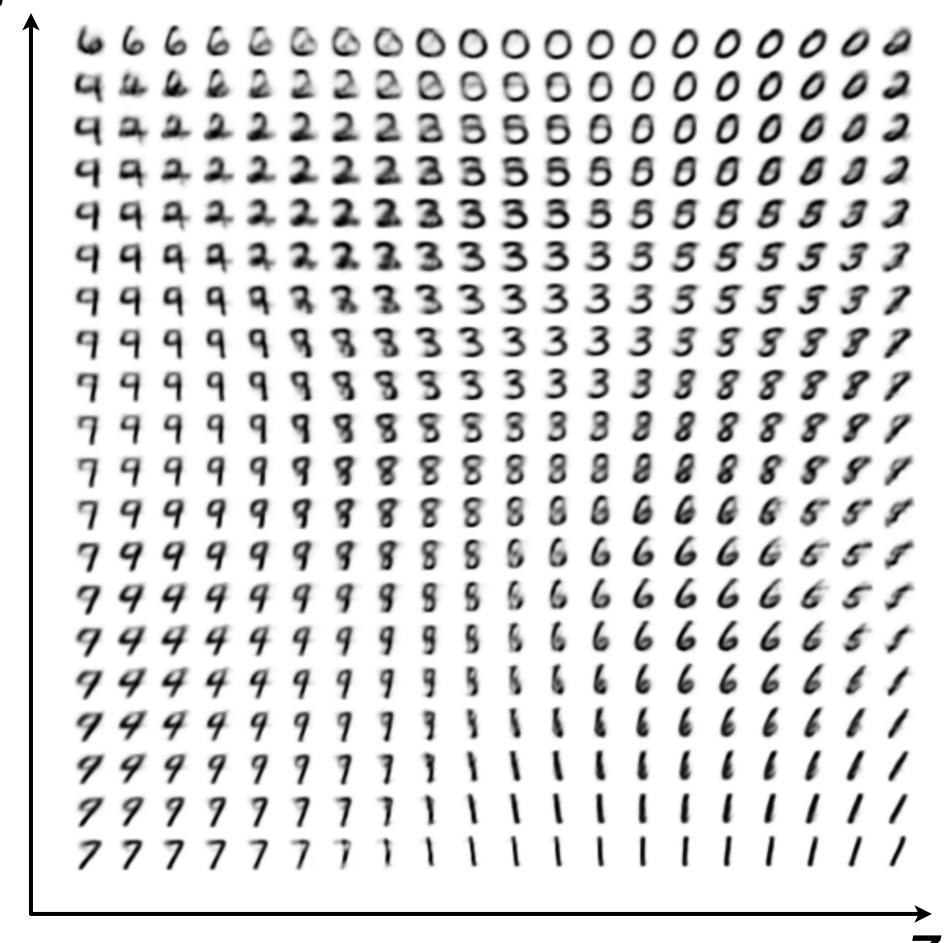


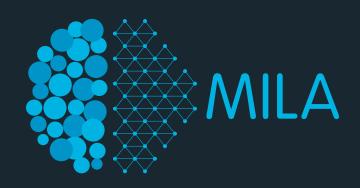


Frey Faces:



MNIST:



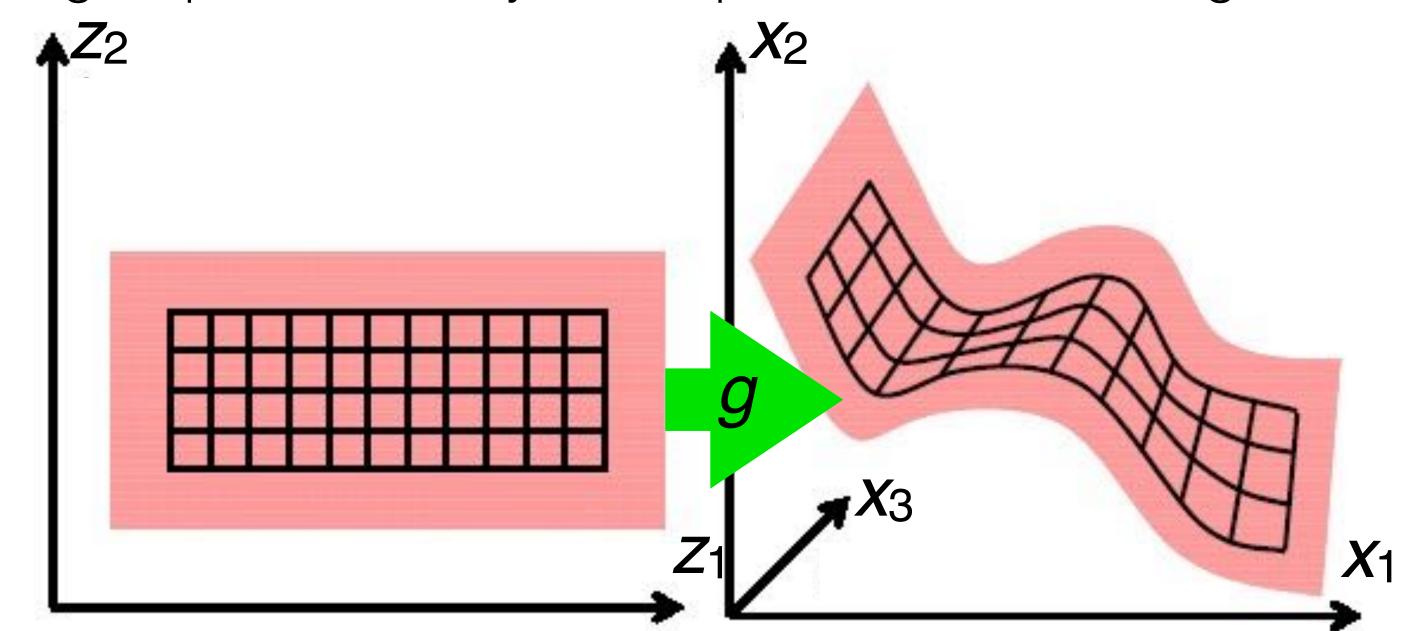


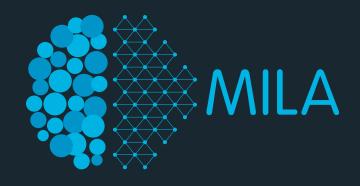
latent variable model: learn a mapping from some latent variable z to a complicated distribution on x.

$$p(x) = \int p(x,z) \; dz$$
 where $p(x,z) = p(x \mid z)p(z)$

Prior $p(z) = \text{something simple}$ $p(x \mid z) = g(z)$

 Can we learn to decouple the true explanatory factors underlying the data distribution? E.g. separate identity and expression in face images



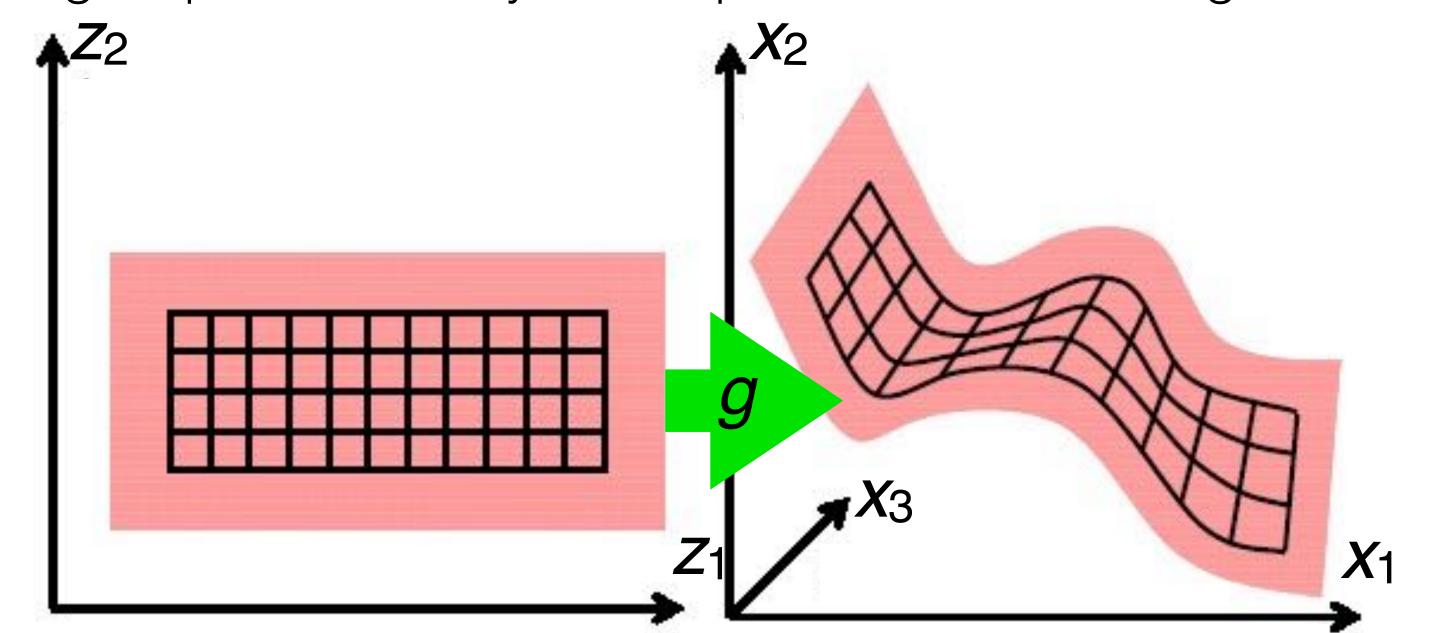


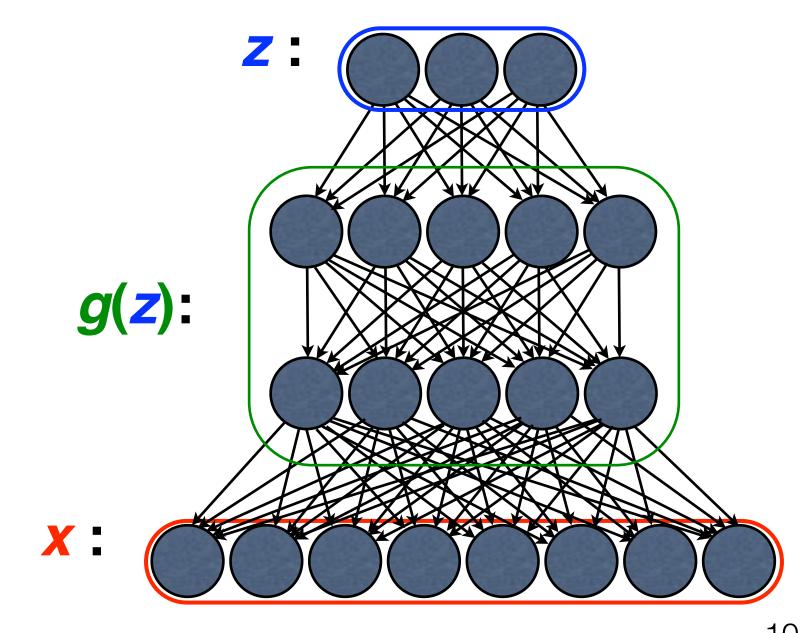
latent variable model: learn a mapping from some latent variable z to a complicated distribution on x.

$$p(x) = \int p(x,z) \ dz \qquad \text{where} \ p(x,z) = p(x \mid z) p(z)$$

 Prior
$$p(z) = \text{something simple} \qquad p(x \mid z) = g(z)$$

 Can we learn to decouple the true explanatory factors underlying the data distribution? E.g. separate identity and expression in face images





Variational Auto-Encoder (VAE)

- Where does z come from? The classic DAG problem.
- The VAE approach: introduce an inference machine $q_{\phi}(z \mid x)$ that learns to approximate the posterior $p_{\theta}(z \mid x)$.
- Define a variational lower bound on the data likelihood: $\log p_{\theta}(x) \geq \mathcal{L}(\theta, \phi, x)$

$$\log p_{\theta}(x) \ge \log p_{\theta}(x) - D_{\text{KL}} \left[q_{\phi}(z|x) || p_{\theta}(z|x) \right]$$

$$= \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x) + \log p_{\theta}(z|x) - \log q_{\phi}(z|x) \right]$$

$$= \mathcal{L}(\theta, \phi, x)$$

$$= \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) + \log p_{\theta}(z) - \log q_{\phi}(z|x) \right]$$

$$= O_{\text{KL}} \left[q_{\phi}(z|x) || p_{\theta}(z) \right] + \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right]$$

• What is $q_{\phi}(z \mid x)$?

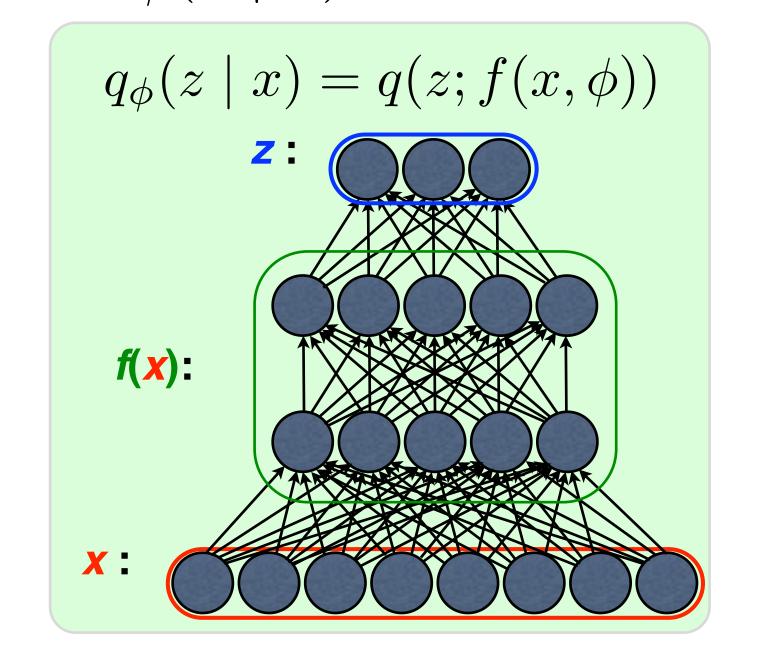
regularization term reconstruction term

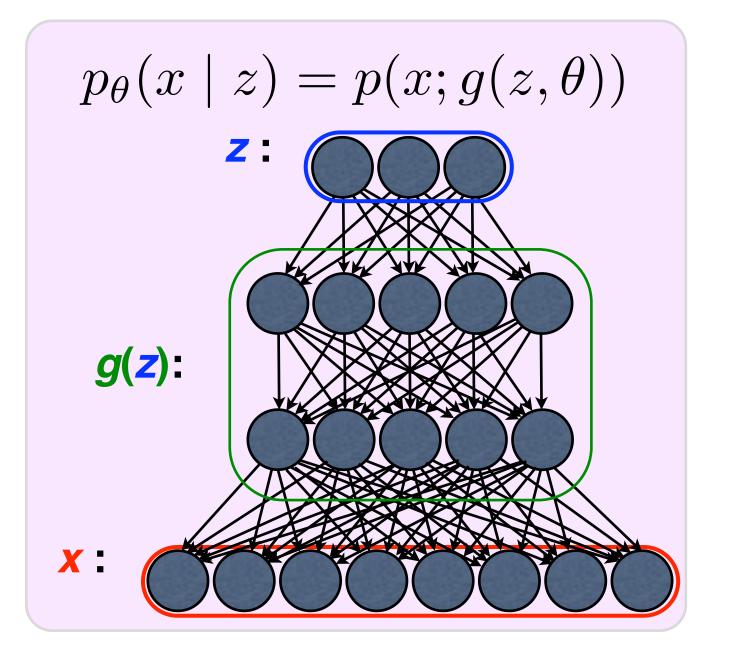
VAE Inference model

• The VAE approach: introduce an inference model $q_{\phi}(z \mid x)$ that learns to approximates the intractable posterior $p_{\theta}(z \mid x)$ by optimizing the variational lower bound:

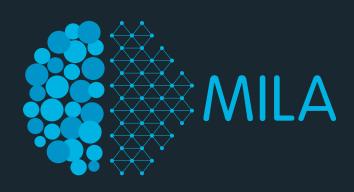
$$\mathcal{L}(\theta, \phi, x) = -D_{\mathrm{KL}} \left(q_{\phi}(z \mid x) \| p_{\theta}(z) \right) + \mathbb{E}_{q_{\phi}(z \mid x)} \left[\log p_{\theta}(x \mid z) \right]$$

• We parameterize $q_{\phi}(z \mid x)$ with another neural network:

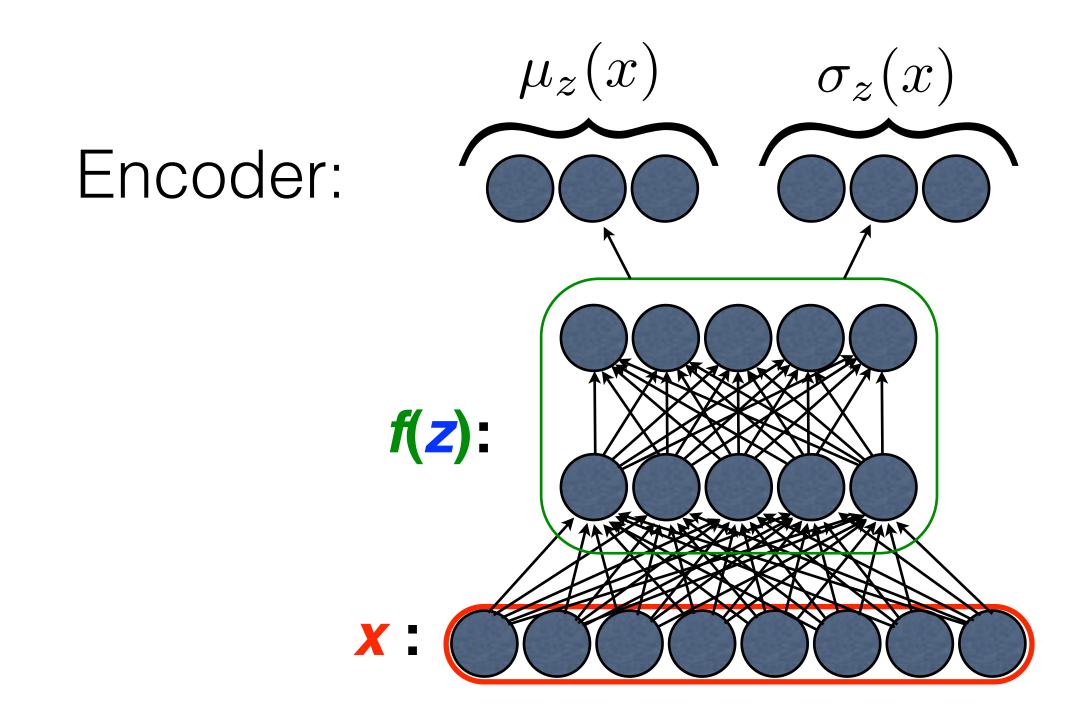


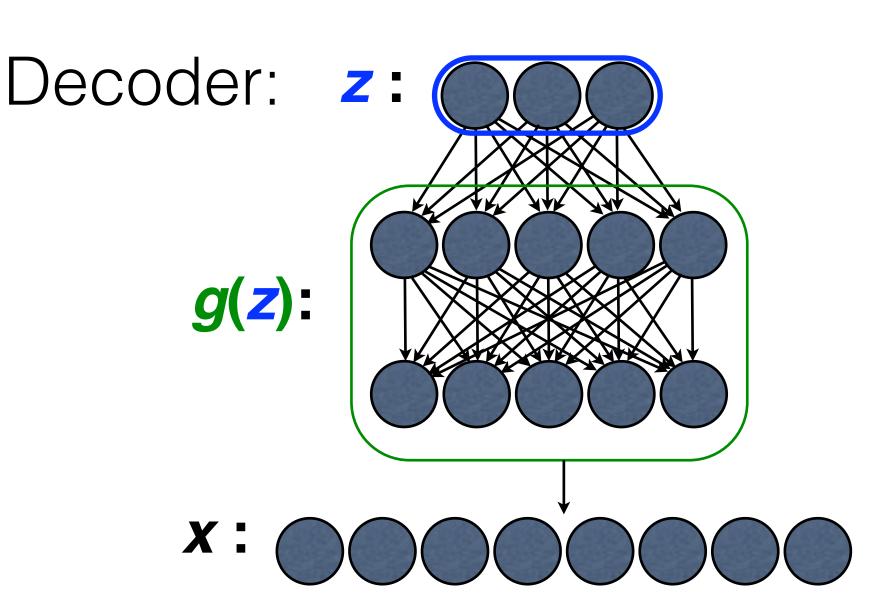


Reparametrization trick



- Adding a few details + one really important trick
- Let's consider z to be real and $q_{\phi}(z \mid x) = \mathcal{N}(z; \mu_z(x), \sigma_z(x))$
- Parametrize ${\pmb z}$ as $z=\mu_z(x)+\sigma_z(x)\epsilon_z$ where $\epsilon_z=\mathcal{N}(0,1)$

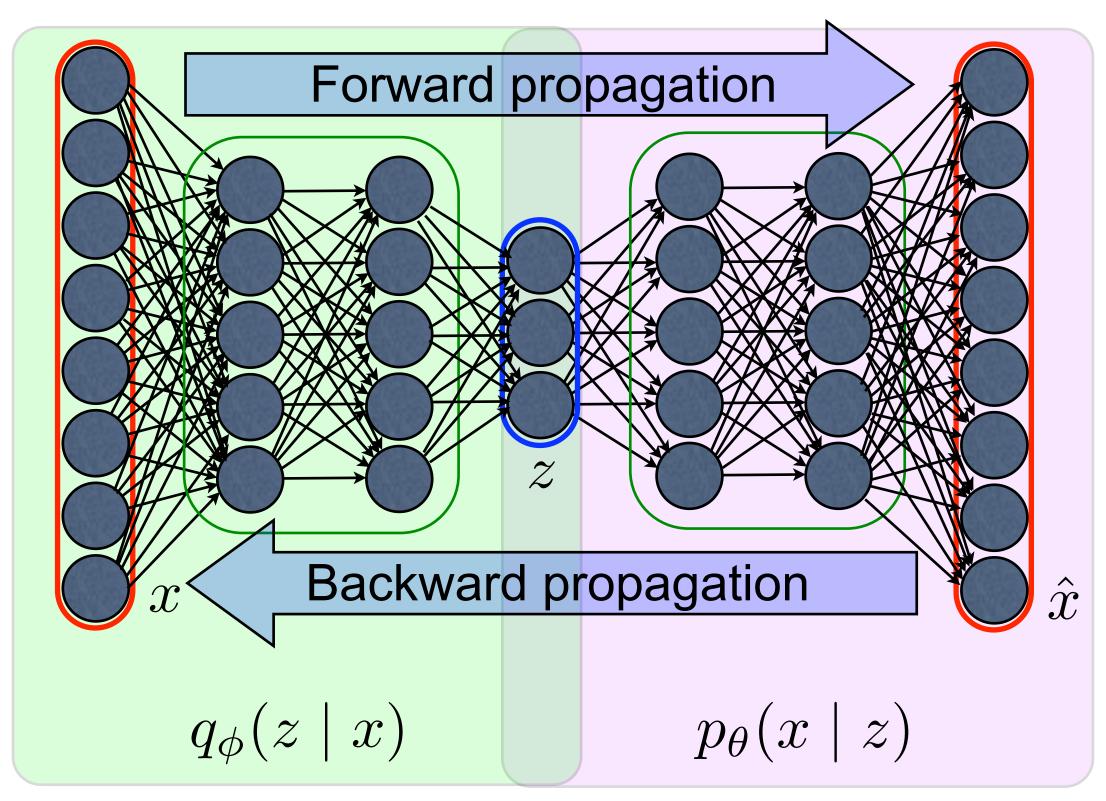




Training with backpropagation!

• Due to a reparametrization trick, we can simultaneously train both the generative model $p_{\theta}(x \mid z)$ and the inference model $q_{\phi}(z \mid x)$ by optimizing the variational bound using gradient backpropagation.

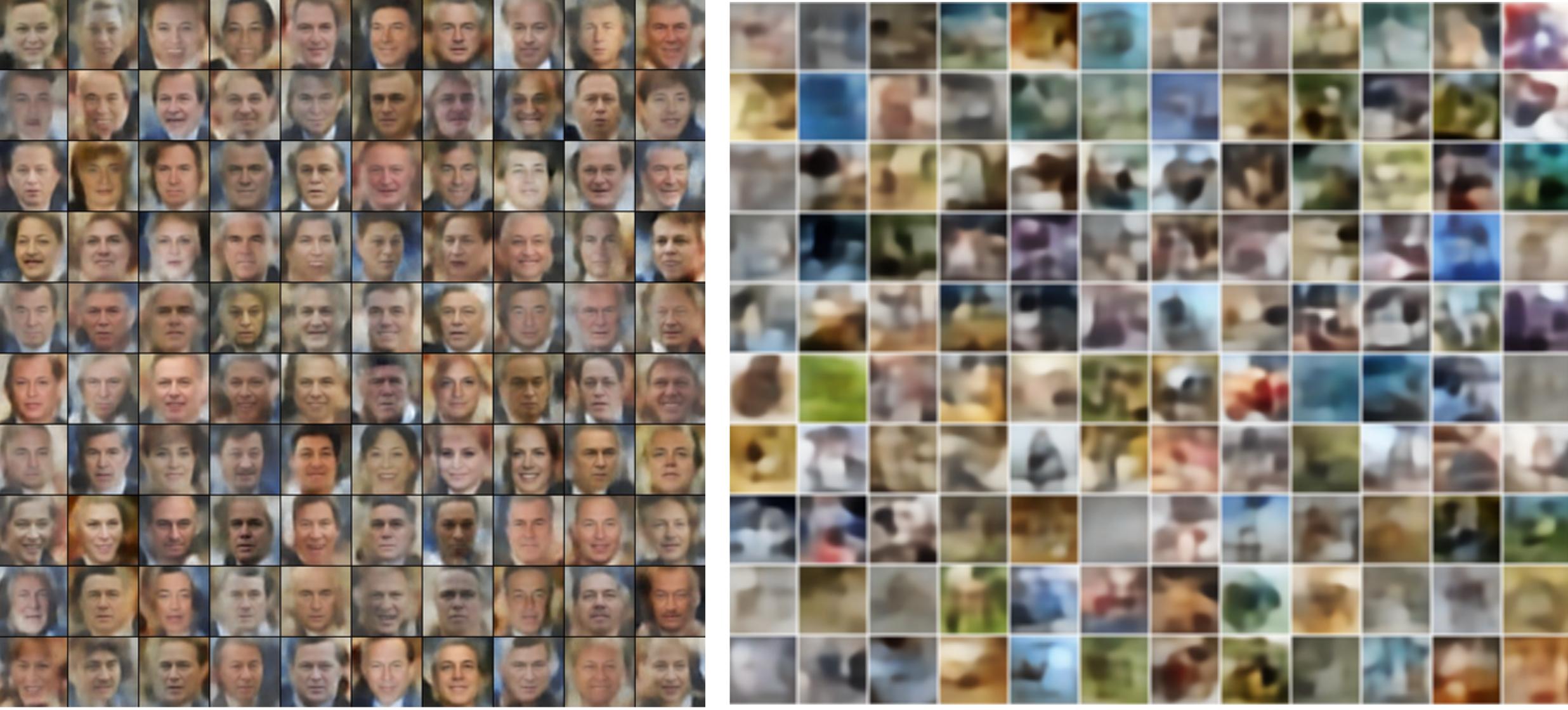
Objective function: $\mathcal{L}(\theta, \phi, x) = -D_{\mathrm{KL}}\left(q_{\phi}(z \mid x) \| p_{\theta}(z)\right) + \mathbb{E}_{q_{\phi}(z \mid x)}\left[\log p_{\theta}(x \mid z)\right]$



vanilla VAE samples

Impressive ...

... at the time

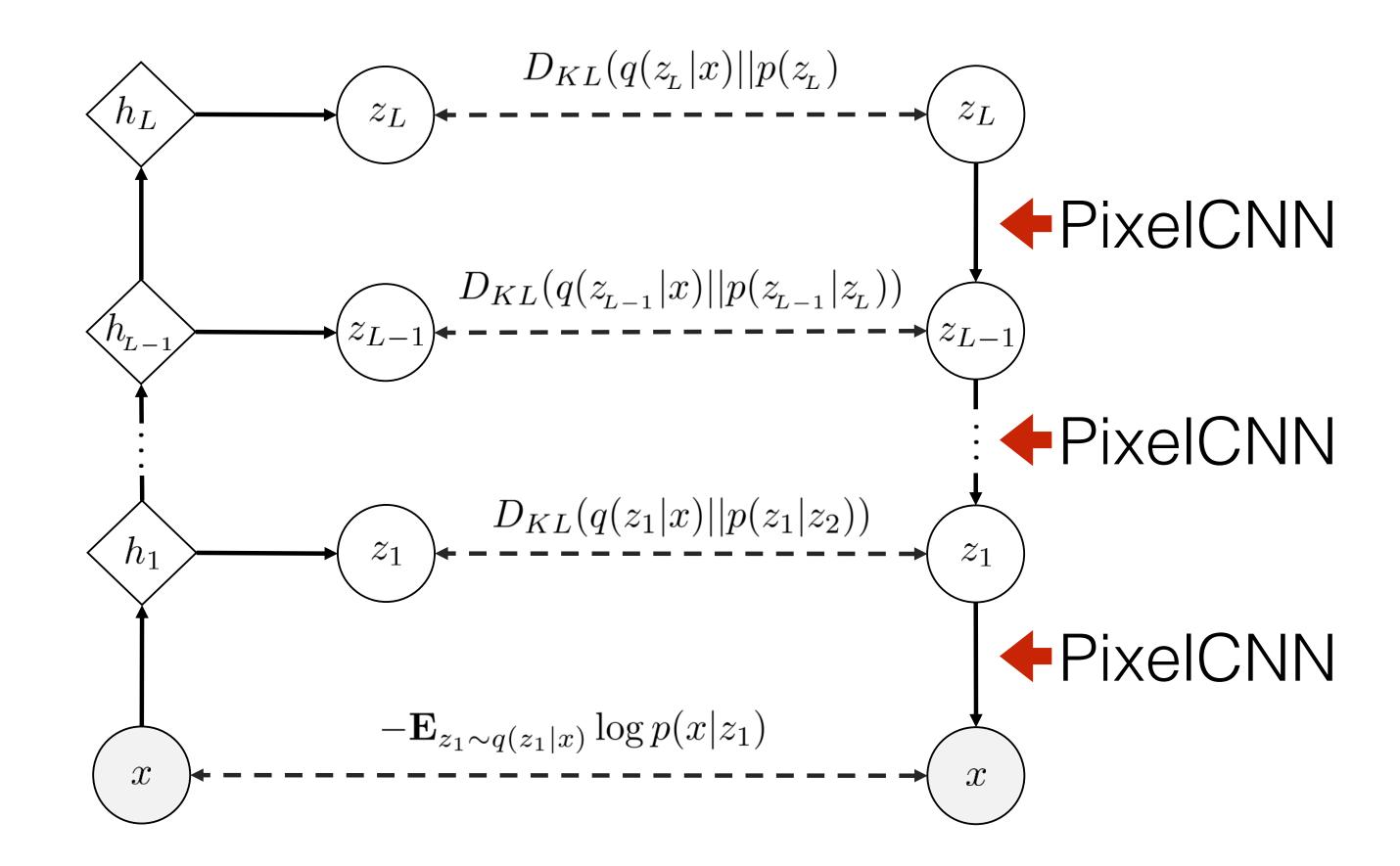


Labelled Faces in the Wild (LFW)

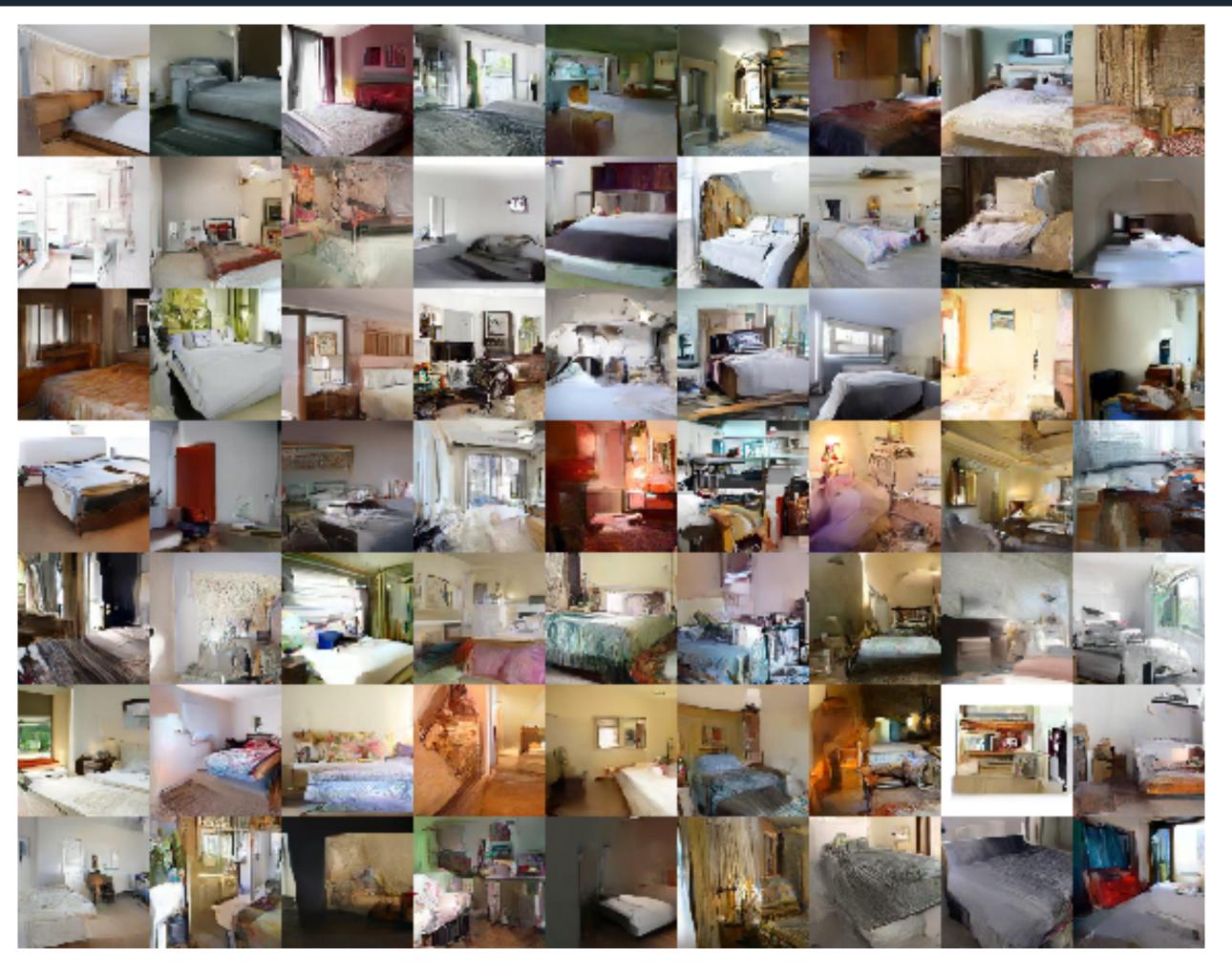
ImageNet (small)

Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed Adrien Ali Taiga, Francesco Visin, David Vazquez, Aaron Courville. ICLR 2017

 Uses a PixelCNN in the VAE decoder to help avoid the blurring caused by the standard VAE assumption of independent pixels.



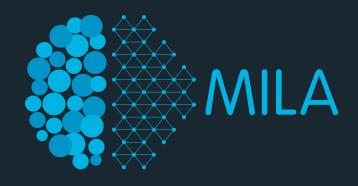
PixelVAE Samples (Gulrajani et al. 2017)

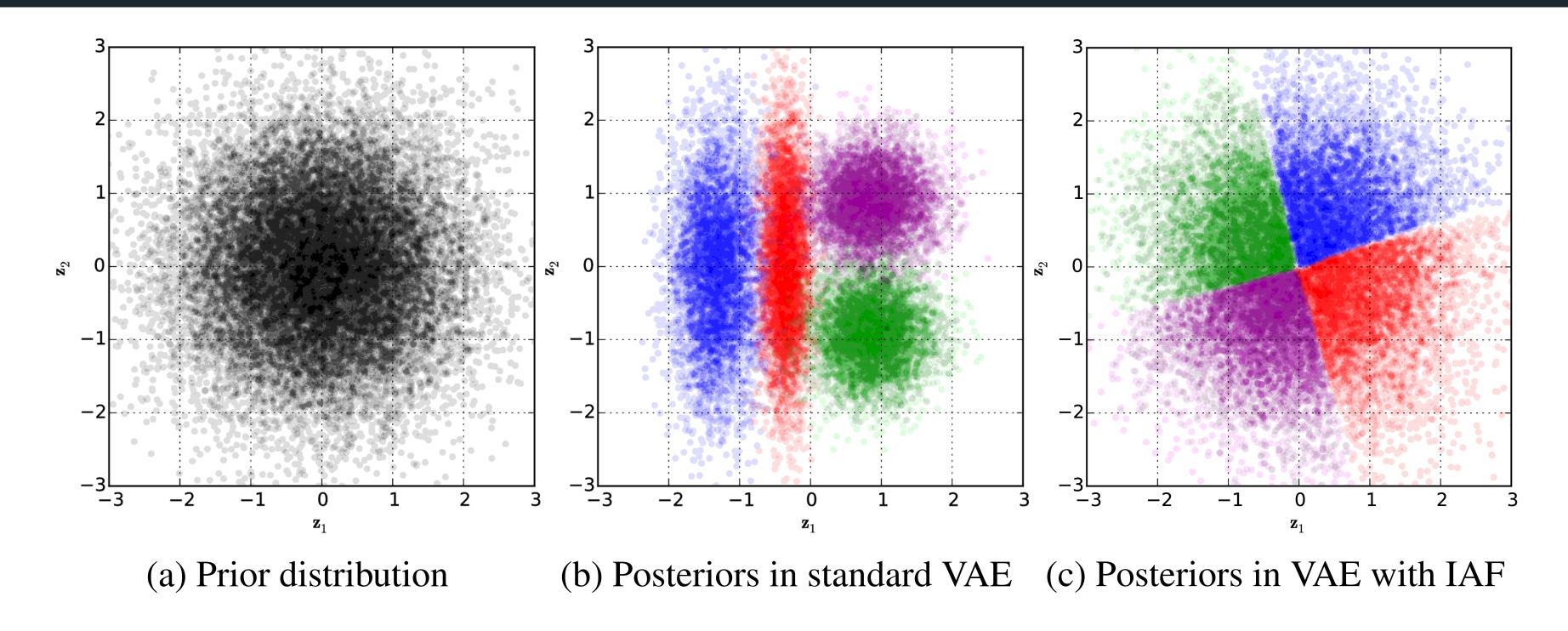


LSUN bedroom scenes (64x64)

ImageNet (64x64)

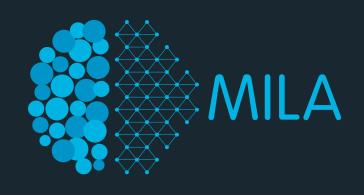
Inverse Autoregressive Flow (Kingma et al., NIPS 2016)

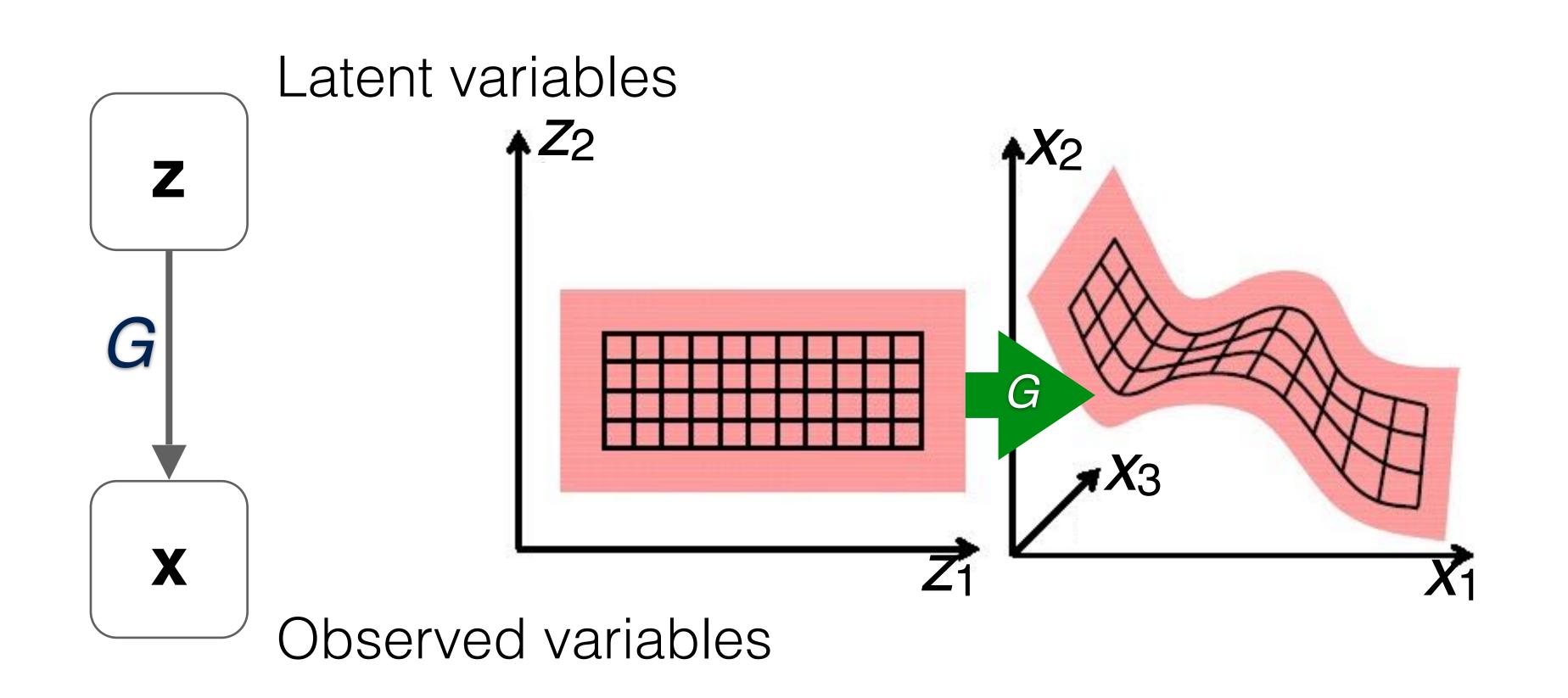




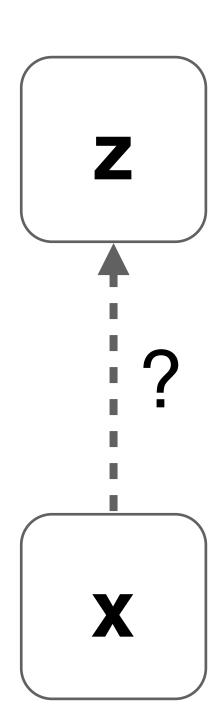
- Standard VAE posteriors are factorized limiting how well they can (marginally) fit the prior.
- IAF greatly improves the flexibility of the posterior distributions, and allows for a much better fit between the posteriors and the prior.

Another way to train a latent variable model?

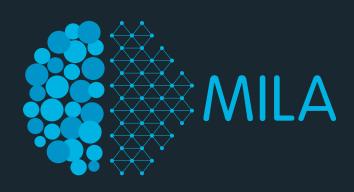


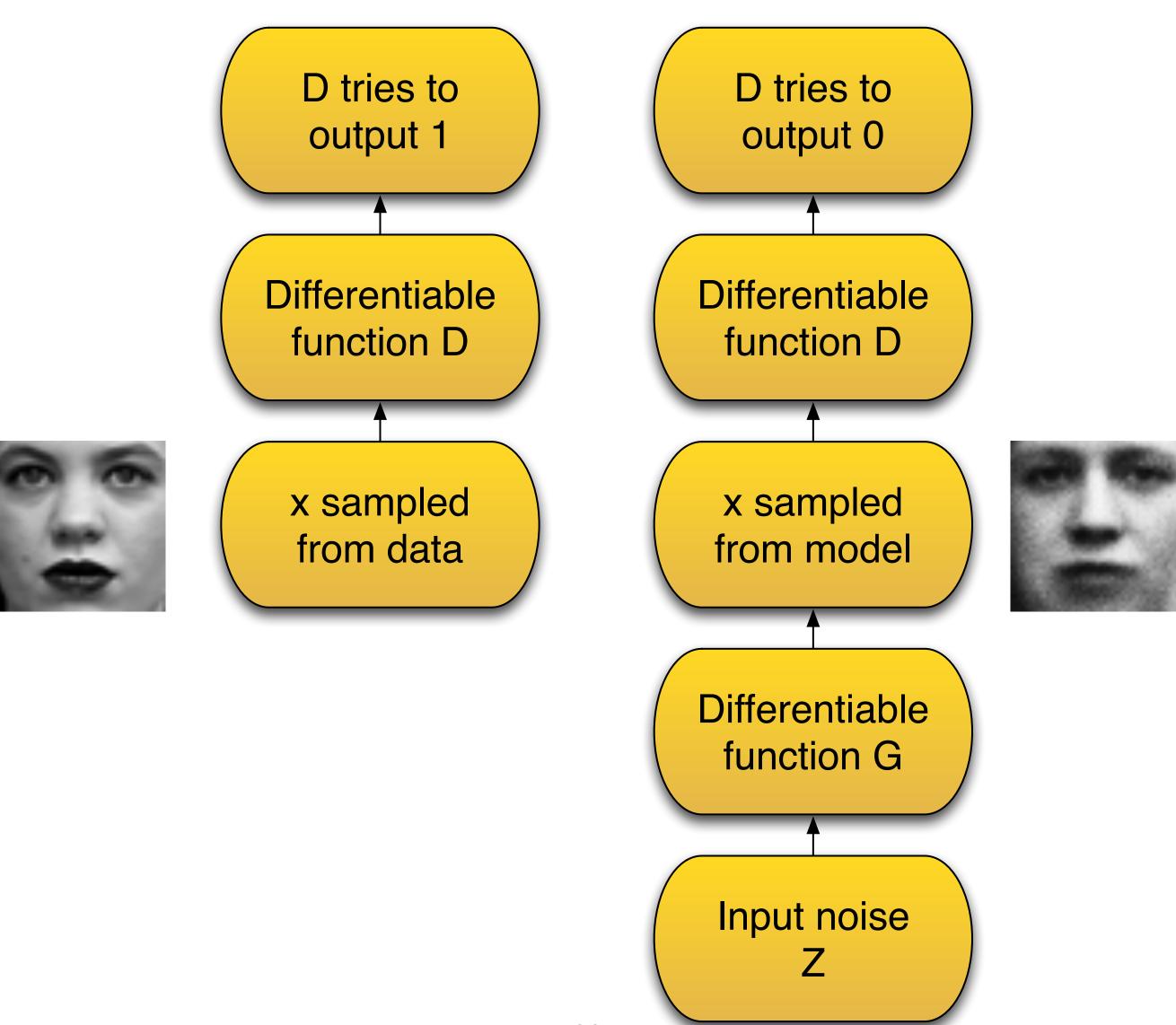


inference



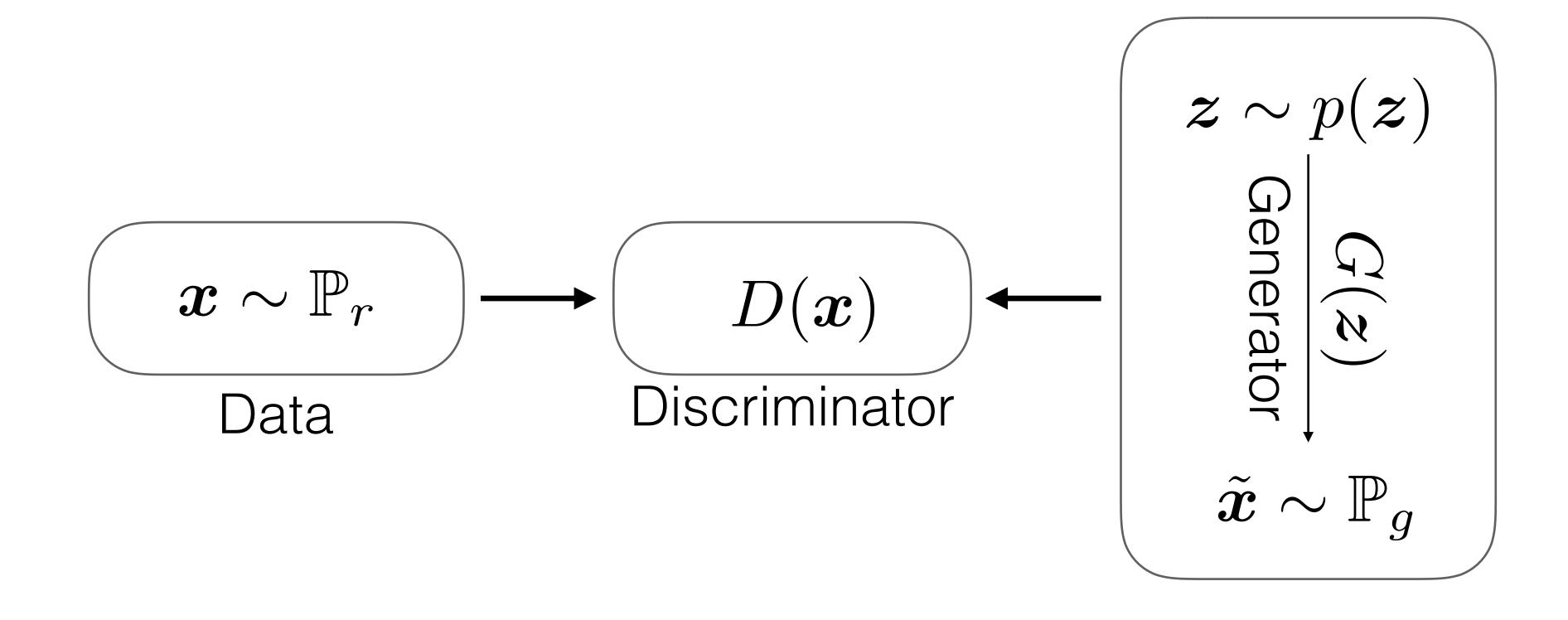
Generative Adversarial Networks



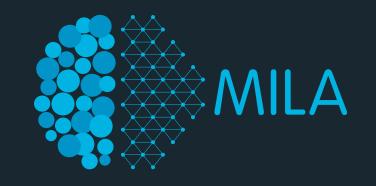


Generative Adversarial Networks





GAN Objective



 Formally, express the game between discriminator D and generator G with the minimax objective:

$$\min_{G} \max_{D} \mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}_r} [\log(D(\boldsymbol{x}))] + \mathbb{E}_{\tilde{\boldsymbol{x}} \sim \mathbb{P}_g} [\log(1 - D(\tilde{\boldsymbol{x}}))].$$

where:

- \mathbb{P}_r is the data distribution
- \mathbb{P}_g is the model distribution implicitly defined by:

$$\tilde{\boldsymbol{x}} = G(\boldsymbol{z}), \quad \boldsymbol{z} \sim p(\boldsymbol{z})$$

- the generator input z is sampled from some simple noise distribution, (e.g. uniform or Gaussian).

GAN Theory

Optimal (nonparametric) discriminator:

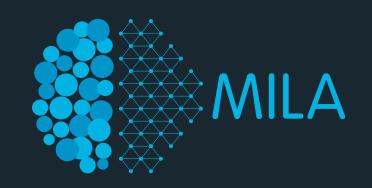
$$D^*(\boldsymbol{x}) = rac{p_r(\boldsymbol{x})}{p_r(\boldsymbol{x}) + p_g(\boldsymbol{x})}$$

• Under an ideal discriminator, the generator minimizes the Jensen-Shannon divergence between \mathbb{P}_r and \mathbb{P}_{g} .

$$JS(\mathbb{P}_r || \mathbb{P}_g) = KL\left(\mathbb{P}_r \left\| \frac{\mathbb{P}_r + \mathbb{P}_g}{2} \right) + KL\left(\mathbb{P}_g \left\| \frac{\mathbb{P}_r + \mathbb{P}_g}{2} \right) \right)$$

where
$$\mathrm{KL}(\mathbb{P}_r\|\mathbb{P}_g) = \int \log\left(\frac{p_r(x)}{p_g(x)}\right) p_r(x) d\mu(x)$$

GAN Theory ... in practice



- The minimax objective leads to vanishing gradients as the discriminator saturates.
- In practice, Goodfellow et al (2014) advocate the heuristic training objective:

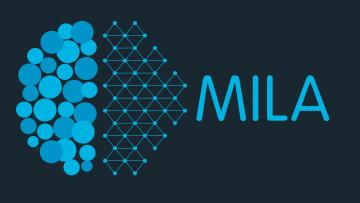
$$\max_{D} \mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}_r} [\log(D(\boldsymbol{x}))] + \mathbb{E}_{\tilde{\boldsymbol{x}} \sim \mathbb{P}_g} [\log(1 - D(\tilde{\boldsymbol{x}}))].$$

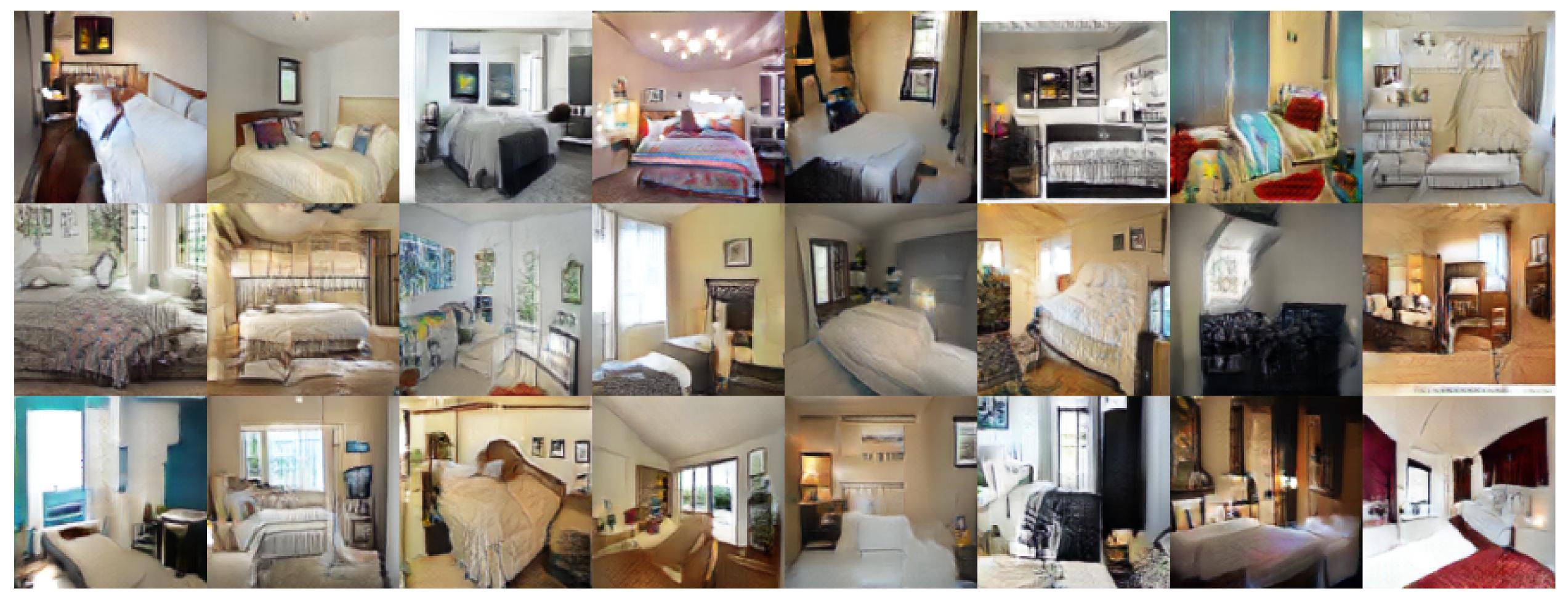
$$\max_{G} \mathbb{E}_{\tilde{\boldsymbol{x}} \sim \mathbb{P}_g} [\log(D(\tilde{\boldsymbol{x}}))].$$

 However, this modified loss function can still misbehave in the presence of a good discriminator.

GAN samples

Least-Squares GAN Xudong Mao, Qing Li[†], Haoran Xie, Raymond Y.K. Lau and Zhen Wang, ArXiv, Feb. 2017





128x128 LSUN bedroom scenes

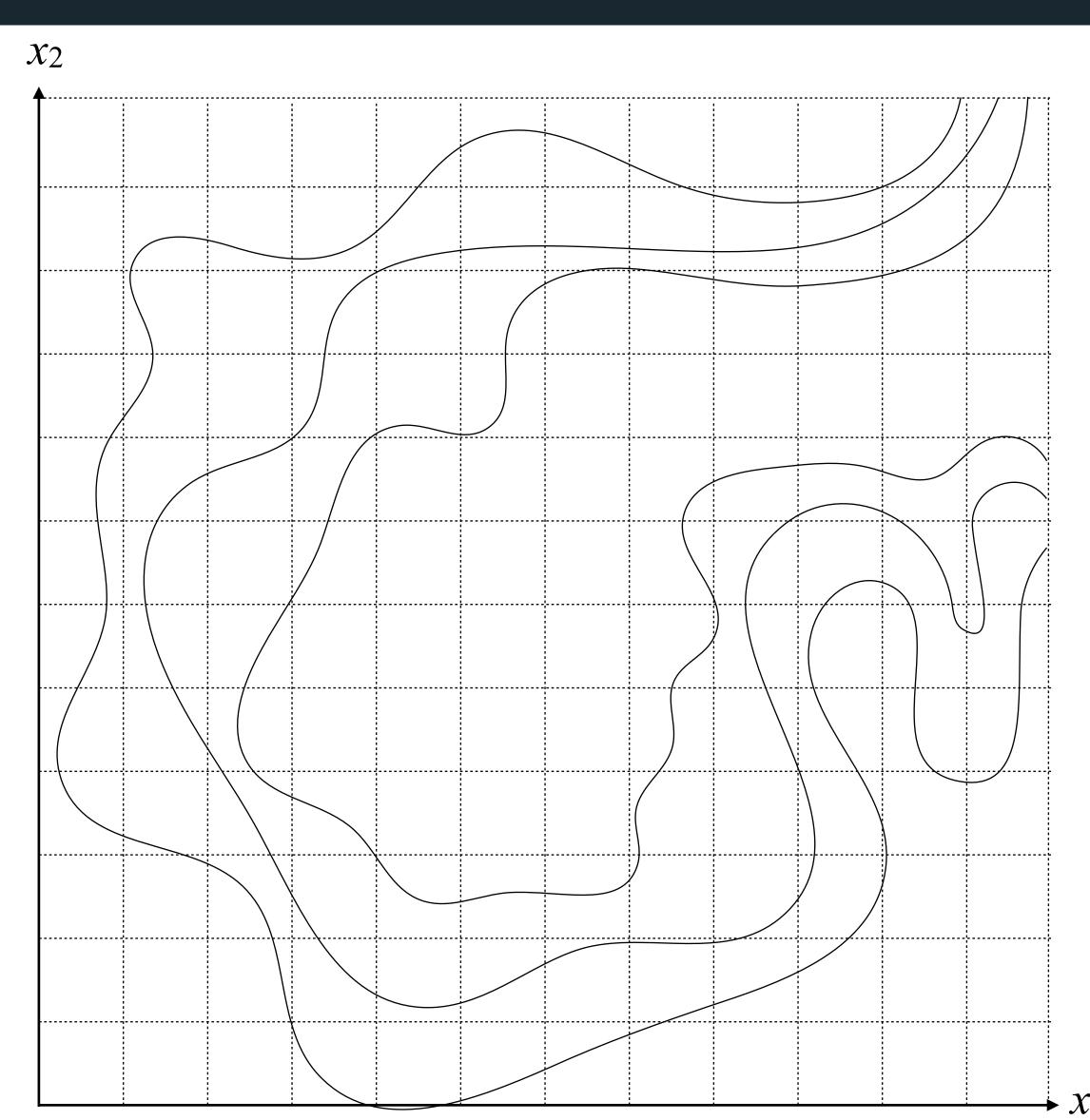
DCGAN samples (Radford, Metz and Chintala; 2016)

Z-space interpolations



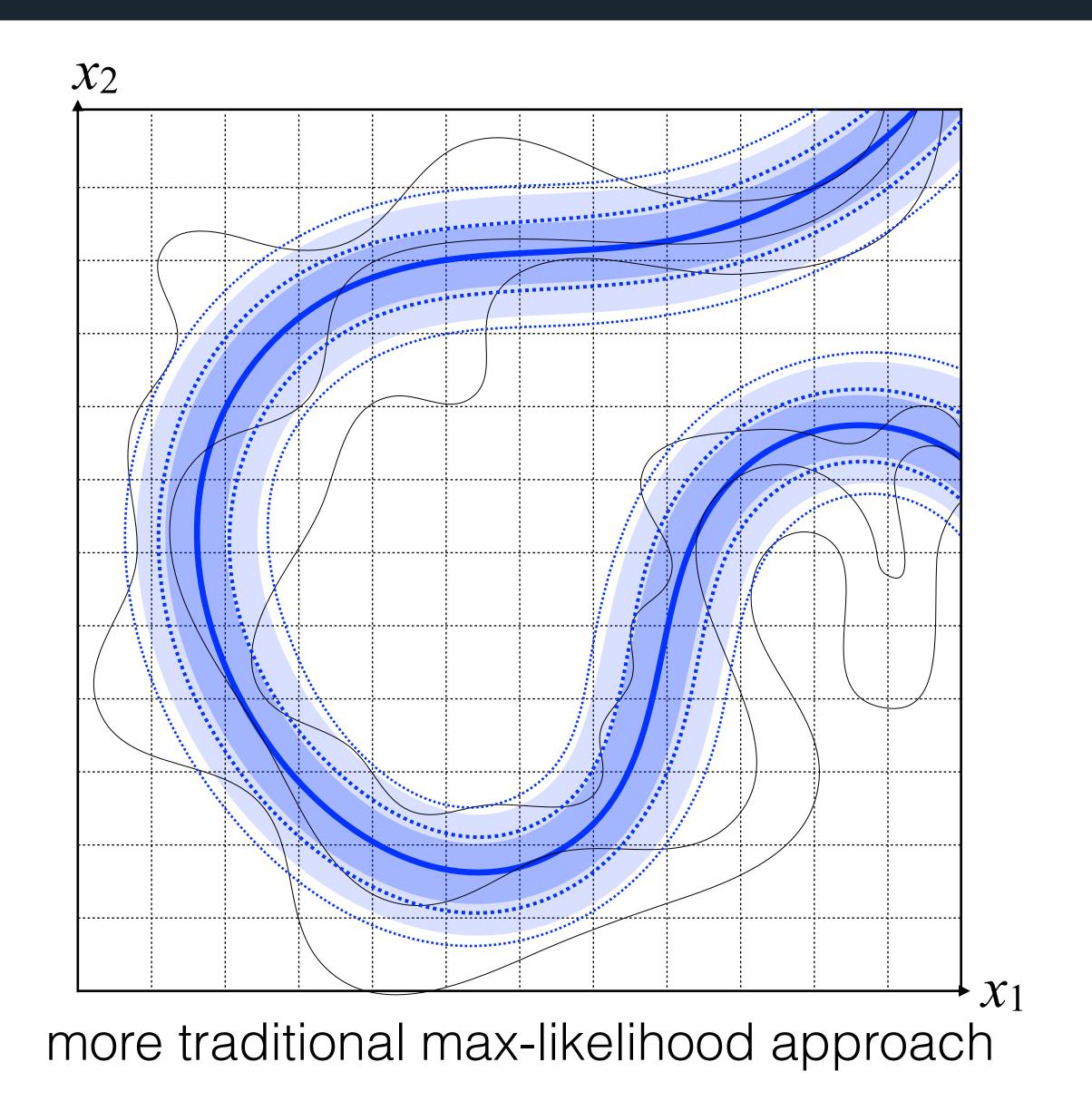
LSUN bedroom scenes

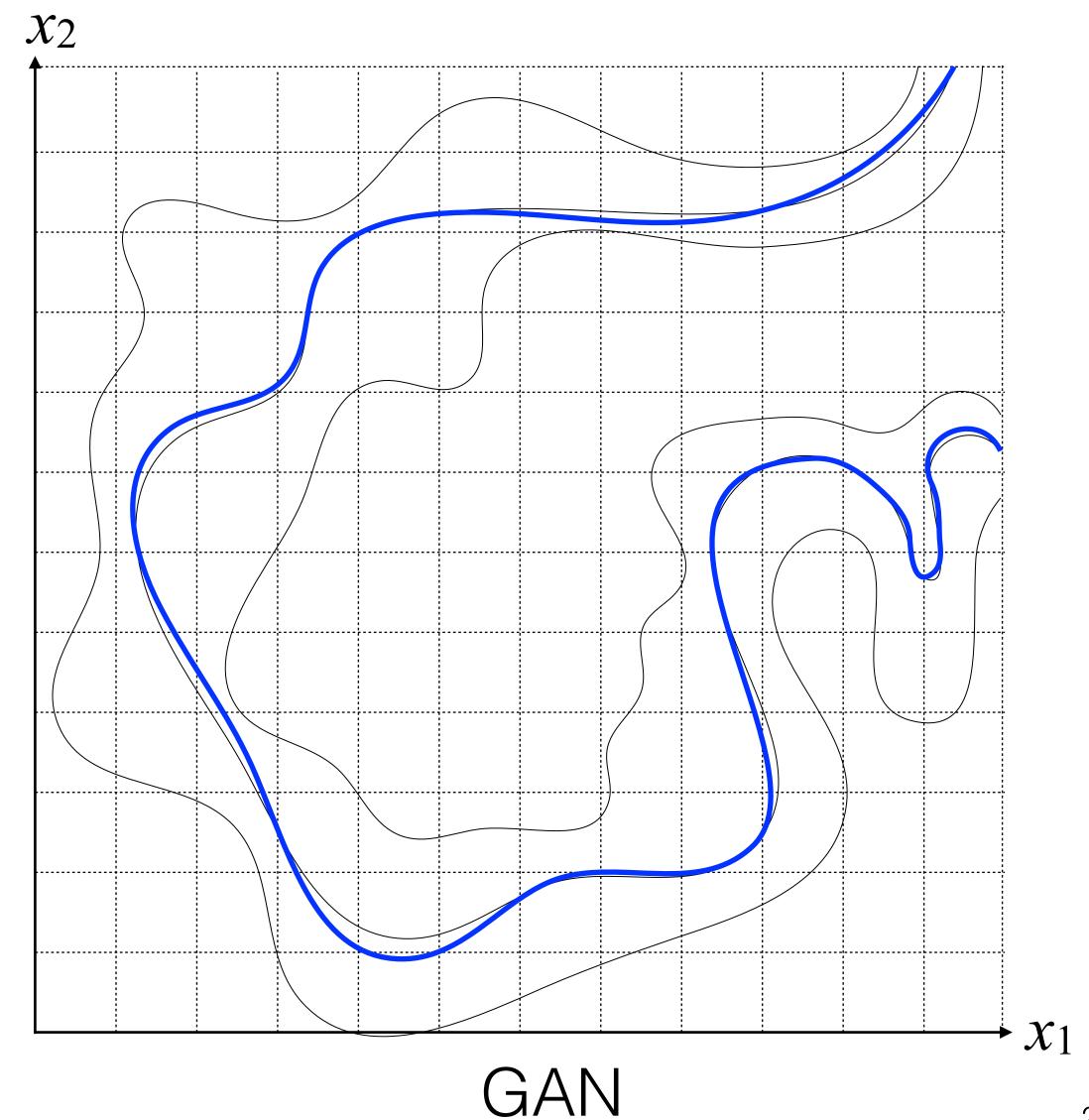
What makes GANs special?



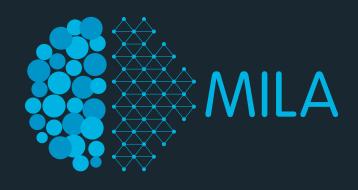
Cartoon of the Image manifold:

What makes GANs special?

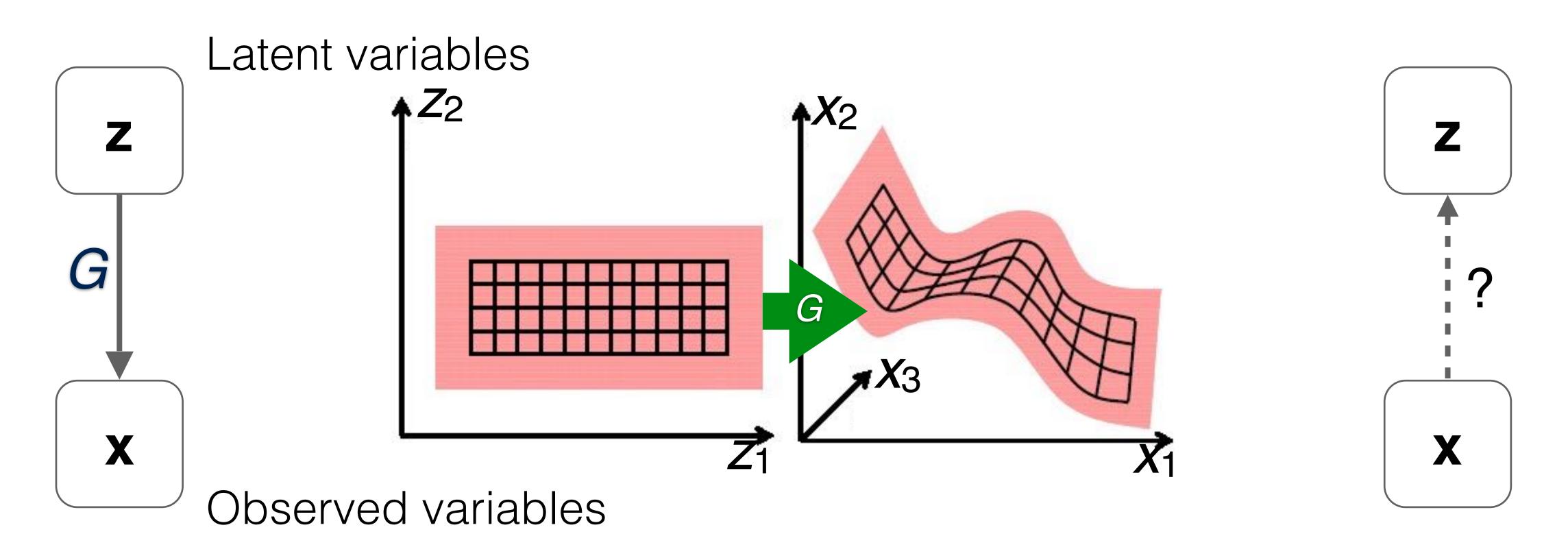




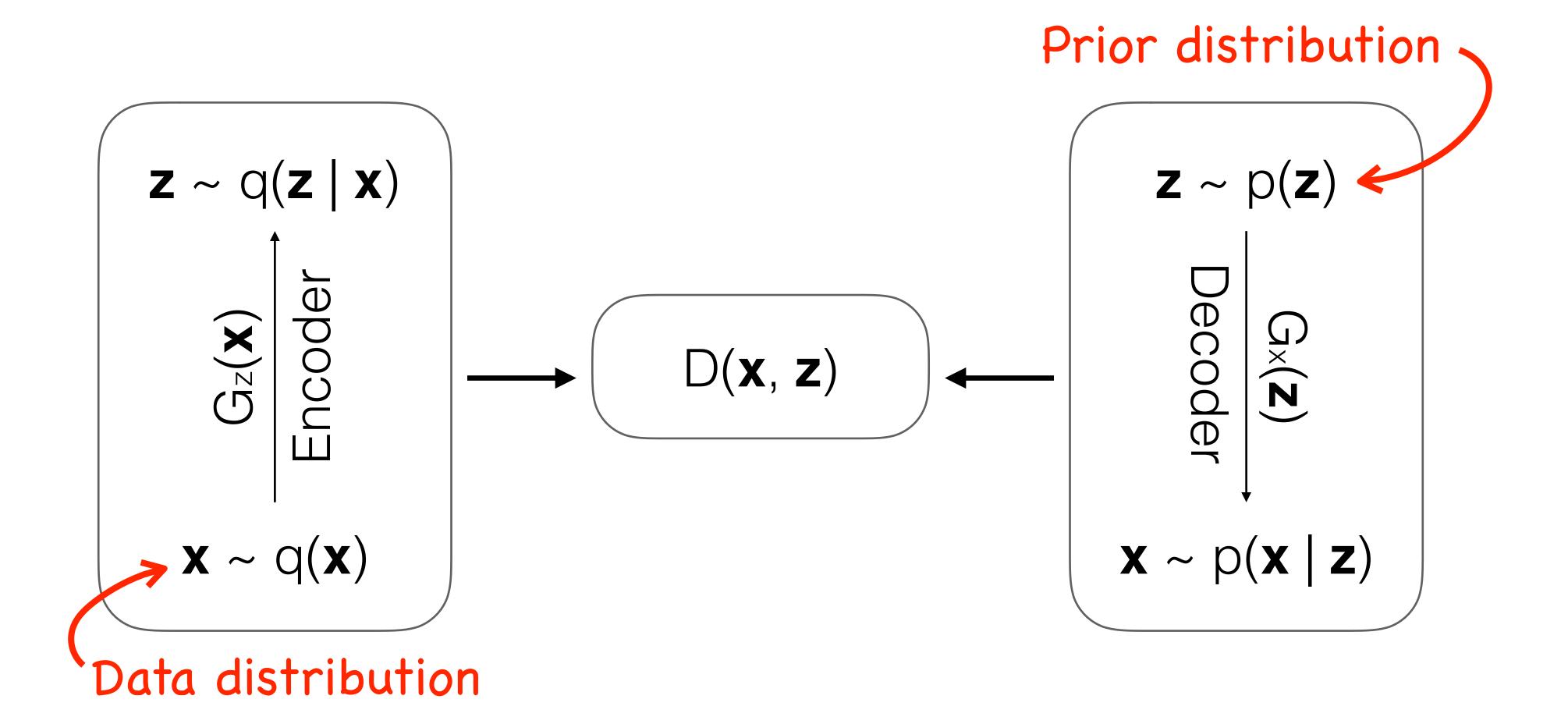
But what about inference...



Can we incorporate an inference mechanism into GANs?



ALI / BiGAN: model diagram



- **ALI**: Vincent Dumoulin, Ishmael Belghazi, Olivier Mastropietro, Ben Poole, Alex Lamb, Martin Arjovsky (2016) *ADVERSARIALLY LEARNED INFERENCE*, arXiv:1606.00704, ICLR 2017
- BiGAN: Donahue, Krähenbühl and Darrell (2016), ADVERSARIAL FEATURE LEARNING, arXiv:1605.09782, ICLR 2017

Hierarchical ALI

CelebA-128X128

Model samples

cycleGAN: Adversarial training of domain transformations (Zhu et al. ICCV 2017)

MILA MILA

- CycleGAN learns transformations across domains with unpaired data.
- Combines GAN loss with "cycle-consistency loss": L1 reconstruction.

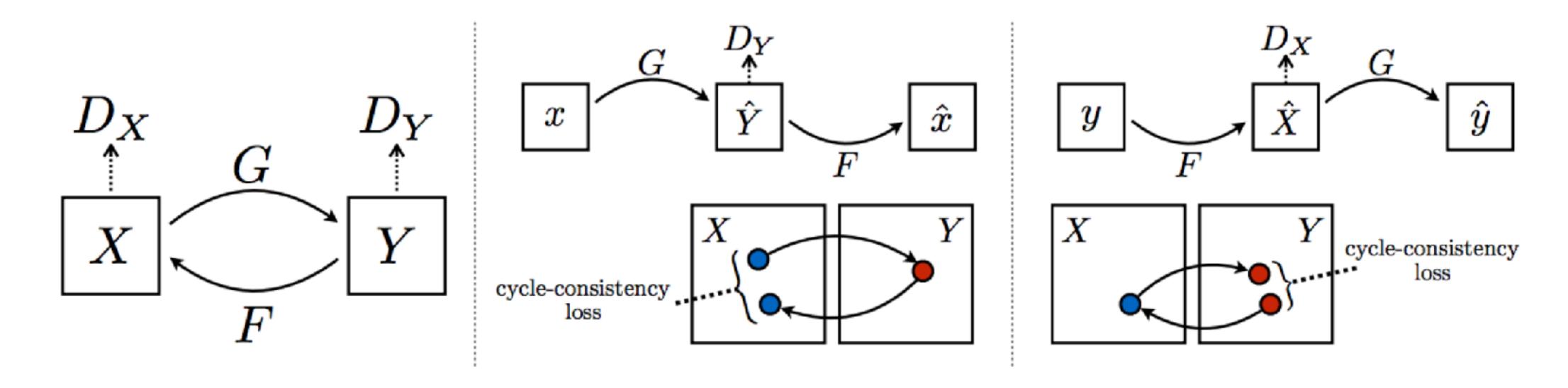


Image credits: Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", in IEEE International Conference on Computer Vision (ICCV), 2017.

CycleGAN for unpaired data

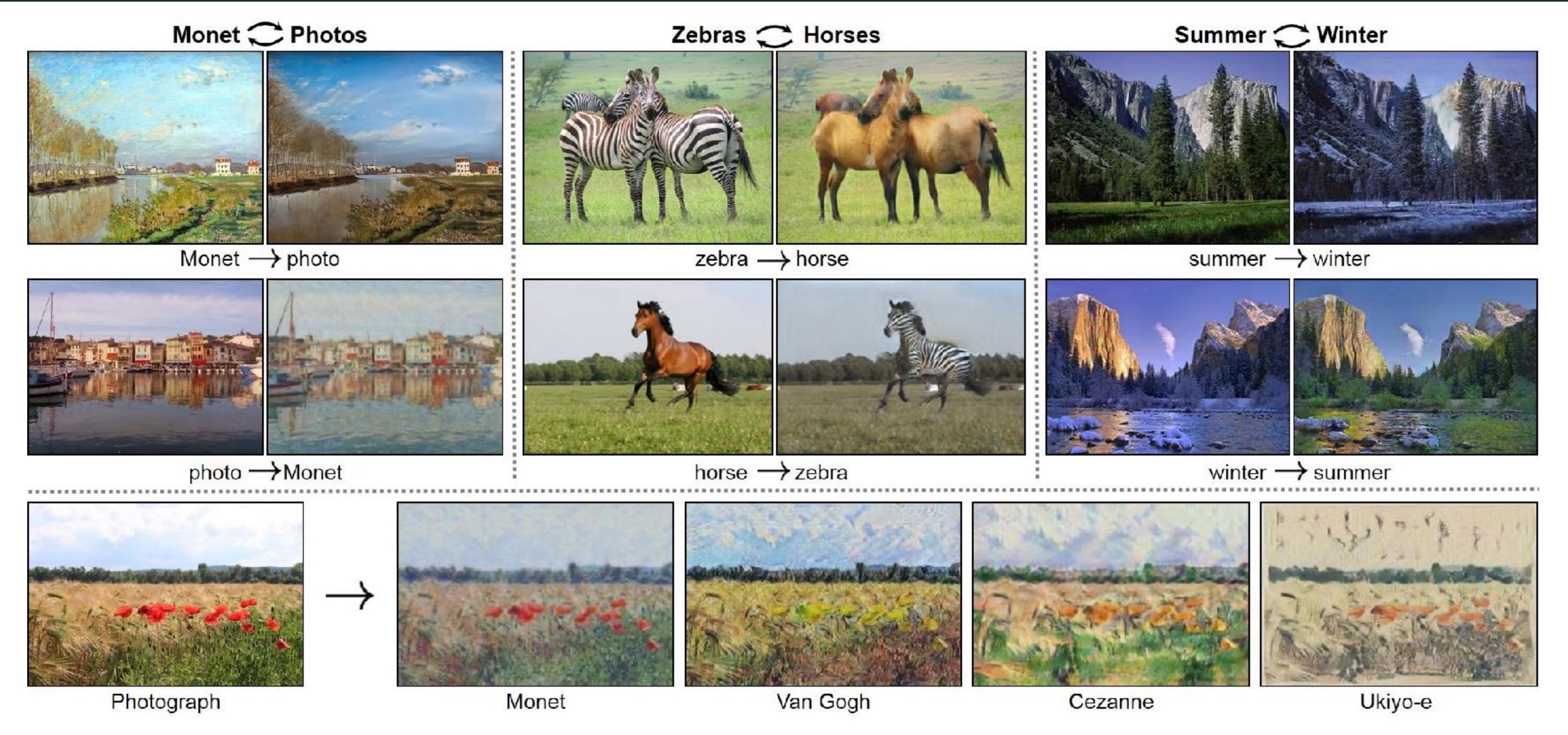
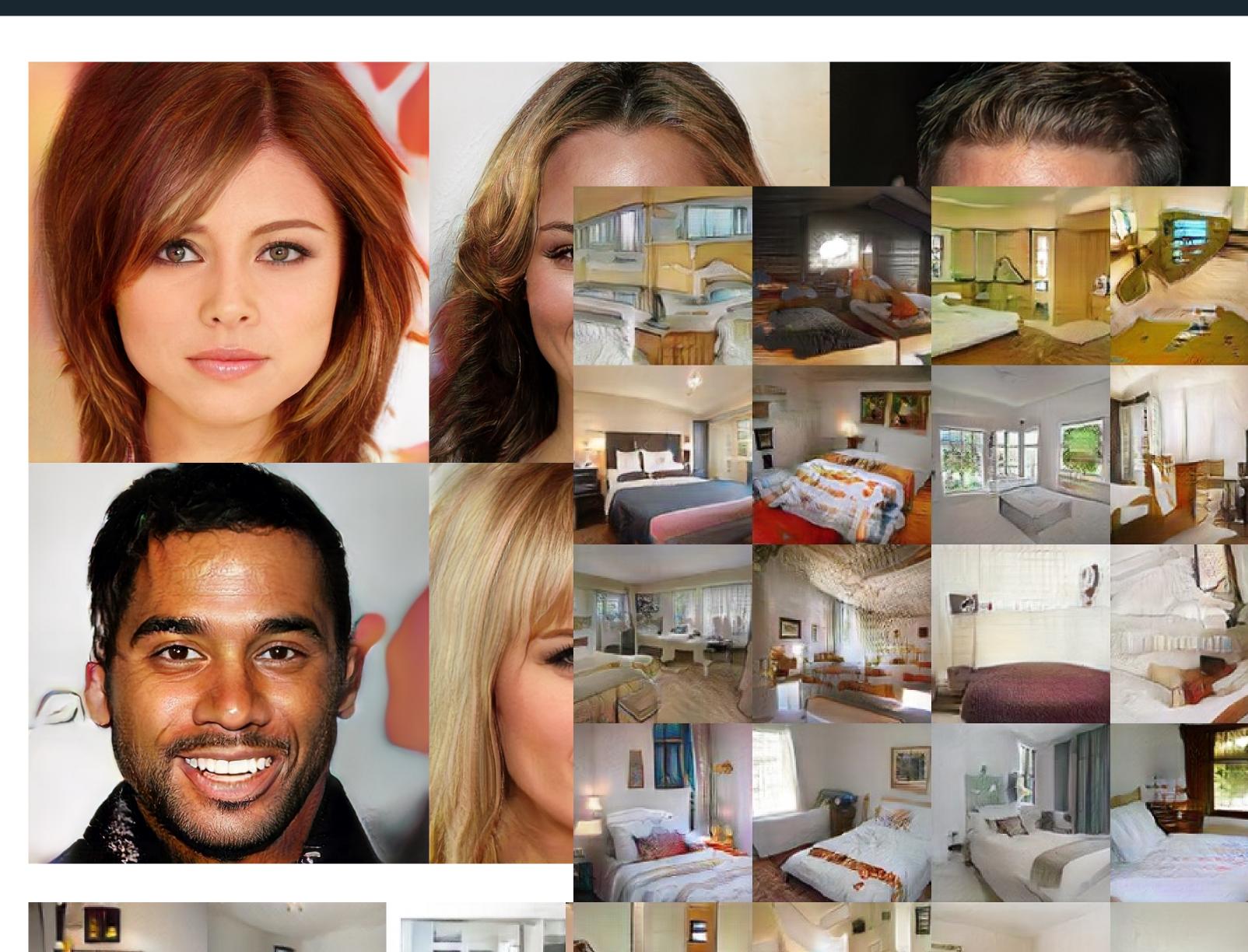


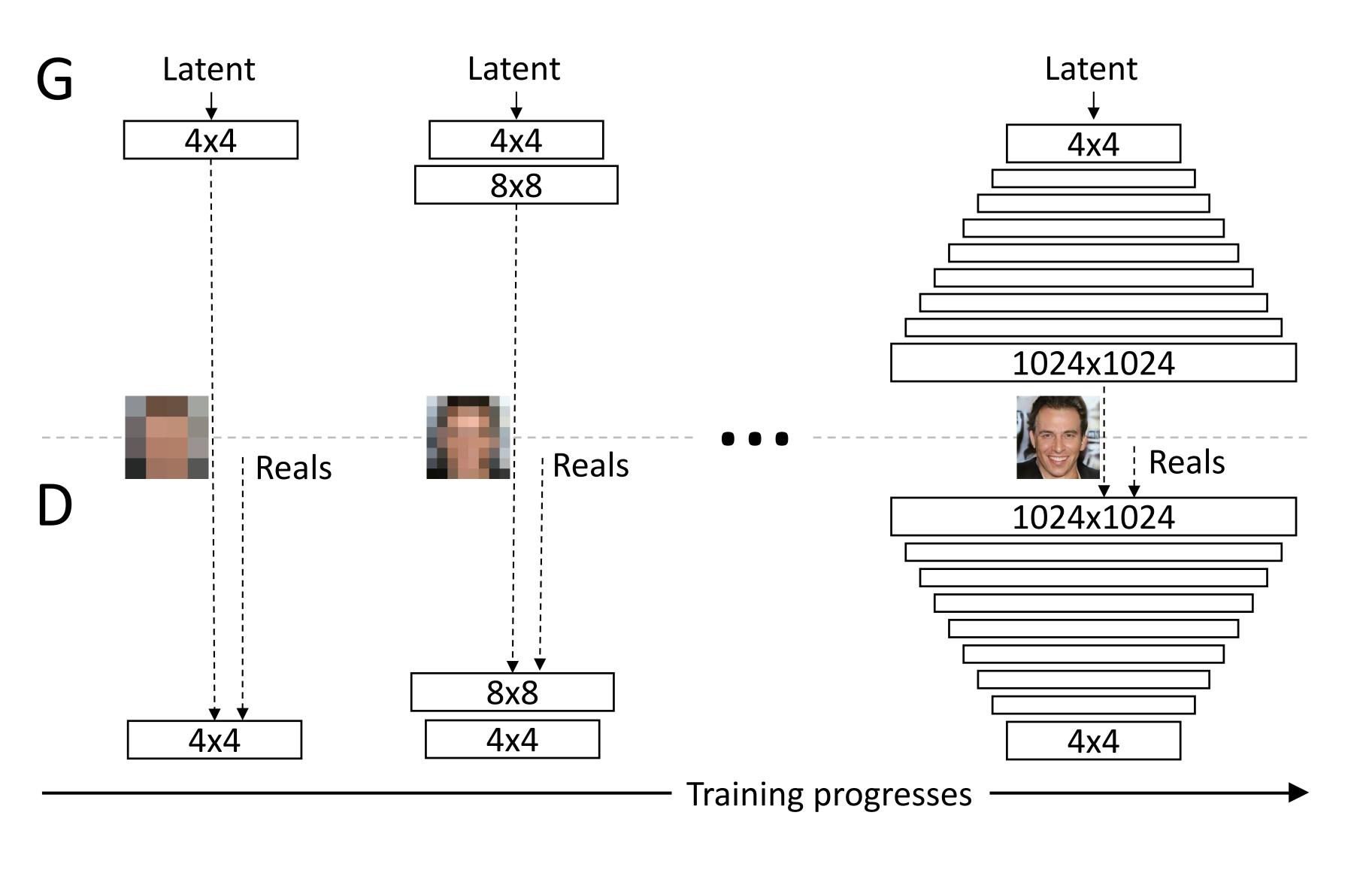
Image credits: Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", in IEEE International Conference on Computer Vision (ICCV), 2017.

PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION (Kerras et al. from NVIDIA, 2017)

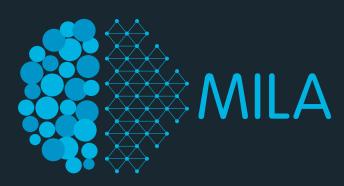
- Recent work from NVIDIA.
- Improves image quality by growing the model size throughout training.
- Samples from a model trained on the CelebA face dataset.



PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION (Kerras et al. from NVIDIA, 2017)



PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION (Kerras et al. from NVIDIA, 2017)



- Recent work from NVIDIA.
- Improves image quality by growing the model size throughout training.
- Conditional samples from a model trained on the LSUN dataset

