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Similarity and Distance

• If two objects can be represented as feature vectors, then we can 
compute the distance between them
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Euclidean Distance
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Euclidean Distance

𝑑",$ − 𝑑",&
' + 𝑑',$ − 𝑑',&

' + ⋯+ 𝑑*,$ − 𝑑*,&
'�

𝑑 𝐴, 𝐵 = 23 − 40 ' + 2 − 10 ' + 2 − 1 '� = 18.8



P. Adamopoulos New York University

Other Distance Functions

𝑑67*87997* 𝑿, 𝒀 = 𝑿 − 𝒀 " = 𝑥" − 𝑦" + 𝑥' − 𝑦' + ⋯

(L1-norm, taxicab-distance)

𝑑>7??7@A 𝑋, 𝑌 = 1 −
𝑋 ∩ 𝑌
𝑋 ∪ 𝑌

𝑑FGHI*J 𝑿, 𝒀 = 1 −
𝑿 ⋅ 𝒀

𝑿 ' ⋅ 𝒀 'where ||·||2 represents the L2 norm, or Euclidean length, of each feature vector (for 
a vector this is simply the distance from the origin). 
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Example: “Whiskey Analytics”

Consequently there are 68 binary features of each whiskey. 



Nearest Neighbors
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Nearest Neighbors for Predictive Modeling
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Nearest Neighbors for Predictive Modeling
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How Many Neighbors and How Much Influence?

𝒌 Nearest Neighbors

• 𝑘 =	?

• 𝑘 = 1	?

• 𝑘 = 𝑛	?
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Geometric Interpretation, Over-fitting, and Complexity
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𝟏-Nearest Neighbor
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𝟑𝟎-Nearest Neighbors



P. Adamopoulos New York University

Issues with Nearest-Neighbor Models

• Dimensionality and domain knowledge
• There might be too many features (and some are irrelevant)
• The distance function need to consider the scale and importance of the

features.

• Computational efficiency


