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ABSTRACT

This paper introduces a generic and scalable framework for
automated anomaly detection on large scale time-series data.
Early detection of anomalies plays a key role in maintain-
ing consistency of person’s data and protects corporations
against malicious attackers. Current state of the art anomaly
detection approaches suffer from scalability, use-case restric-
tions, difficulty of use and a large number of false positives.
Our system at Yahoo, EGADS, uses a collection of anomaly
detection and forecasting models with an anomaly filtering
layer for accurate and scalable anomaly detection on time-
series. We compare our approach against other anomaly
detection systems on real and synthetic data with varying
time-series characteristics. We found that our framework
allows for 50-60% improvement in precision and recall for a
variety of use-cases. Both the data and the framework are
being open-sourced. The open-sourcing of the data, in par-
ticular, represents the first of its kind effort to establish the
standard benchmark for anomaly detection.

1. INTRODUCTION

While rapid advances in computing hardware and software
have led to powerful applications, still hundreds of software
bugs and hardware failures continue to happen in a large
cluster compromising user experience and subsequently rev-
enue. Non-stop systems have a strict uptime requirement
and continuous monitoring of these systems is critical. From
the data analysis point of view, this means non-stop moni-
toring of large volume of time-series data in order to detect
potential faults or anomalies. Due to the large scale of the
problem, human monitoring of this data is practically infea-
sible which leads us to automated anomaly detection using
Machine Learning and Data Mining techniques.

An anomaly, or an outlier, is a data point which is sig-
nificantly different from the rest of the data. Generally, the
data in most applications is created by one or more gen-
erating processes that reflect the functionality of a system.
When the underlying generating process behaves in an un-
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usual way, it creates outliers. Fast and efficient identification
of these outliers is useful for many applications including: in-
trusion detection, credit card fraud, sensor events, medical
diagnoses, law enforcement and others [1].

Current approaches in automated anomaly detection suf-
fer from a large number of false positives which prohibit the
usefulness of these systems in practice. Use-case, or category
specific, anomaly detection models [4] may enjoy a low false
positive rate for a specific application, but when the charac-
teristics of the time-series change, these techniques perform
poorly without proper retraining. Section 6.3 demonstrates
the shortcoming of ‘one size fits all’ principle in practice.

Our system at Yahoo is called EGADS (Extensible Generic
Anomaly Detection System) and it enables the accurate and
scalable detection of time-series anomalies. EGADS sepa-
rates forecasting, anomaly detection and alerting into three
separate components which allows the person to add her
own models into any of the components. Note that this
paper focuses on the latter two components.

EGADS uses a set of default models that are tuned to
reduce the number of false positives, which by itself suffices
for the average user. More advanced use-cases, however,
will require the system to capture some types of anomalies
while ignoring others. The anomalies of interest may vary
in magnitude, severity or other parameters which are un-
known apriori and depend on the use-case. For this reason
the alerting component of EGADS uses machine learning to
select the most relevant anomalies for the consumer.

To the best of our knowledge EGADS is the first compre-
hensive system for anomaly detection that is flexible, accu-
rate, scalable and extensible. EGADS is being open-sourced
[19] along with the anomaly detection benchmarking data
[18]. The open-sourcing of the data and the system will pro-
vide the first of its kind benchmarking data and the frame-
work to help the academics and the industry collaborate and
develop novel anomaly detection models. At Yahoo, EGADS
is used on millions of time-series by many teams daily.

In Section 2 we describe the EGADS architecture. The
algorithms and the alerting module are described in Sec-
tions 3 and 4 respectively. Previous work is described in
Section 5. Experiments are discussed in Section 6 followed
by the real-world use-cases and conclusion in Sections 7 and
8 respectively.

2. ARCHITECTURE

The EGADS framework consists of three main compo-
nents: the time-series modeling module (TMM), the anomaly
detection module (ADM) and the alerting module (AM).



Given a time-series the TMM component models the time-
series producing an expected value later consumed by the
ADM and AM components that, respectively, compute the
error and filter uninteresting anomalies. These components
are described in detail in Sections 3 and 4.

EGADS was built as a framework to be easily integrated
into an existing monitoring infrastructure. At Yahoo, our in-
ternal Yahoo Monitoring Service (YMS) processes millions
of data-points every second. Therefore, having a scalable,
accurate and automated anomaly detection for YMS is crit-
ical. We describe the integration details into YMS next.

2.1 System Integration

EGADS operates as a stand-alone platform that can be
used as a library in larger systems. Therefore, designing an
interface between EGADS and an internal Yahoo monitoring
service (YMS) is critical. A key constraint of YMS is scale;
the platform needs to evaluate millions of data points per
second. As a result, many of the integration architecture de-
cisions are focused on optimizing real-time processing. The
integration with YMS is shown in Figure 1.
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Figure 1: EGADS-YMS Architecture

Several support components are required to drive action
based on detected anomalies. First of all, all anomaly detec-
tion models are generated in batch and applied in real time.
The batch flow is comprised of three steps:

1. Telemetry (i.e. the monitored time-series) data are
stored in bulk on a Hadoop cluster.

2. A batch model generator runs against these data and
builds models for targeted time-series.

3. The models are stored in a model database.
The online flow then utilizes the stored models.

1. Data flows into a Storm [25] stream-processing topol-
ogy.
2. One of the bolts (modules) in the topology calls the

EGADS ADM to evaluate incoming data points based
on models stored in the model database.

3. If an anomaly is present, this is fed to a secondary
rule flow, consisting of combinatorial rules and other
use-case specific logic (see Section 4).

4. Based on the rules, if the anomaly is an alert event,
the event is generated, stored in a status database, and
forwarded to an alert routing system.

5. The alert routing system applies routing configuration
rules to send the alert to the appropriate support staff.

2.2 Scalability

The monitoring use case for EGADS requires the evalu-
ation of millions of data-points per second, across over one
hundred million time-series. This has scalability implica-
tions in terms of CPU load, I/O, and memory footprint.
The evaluation of a datapoint needs to be as efficient as
possible. This means that as much of the model as possible
should be precomputed. It is not practical to read a model
from disk each time a datapoint arrives because of the rate
of inbound traffic. This suggests that the models should be
stored in memory. In order to contain costs, the models
should be as small as possible.

One optimization is to Share models across multiple sim-
ilar time-series. This is practical in the context of a large
web serving environment, since applications are broken into
horizontal tiers of similar servers. This optimization will re-
duce the memory footprint, the batch workload, and I/O
against the model database.

Another possible optimization is to investigate self-tuning
models; models that update themselves based on a stream
of inbound data via online learning rather than requiring
periodic batch generation. Models of this type may need
to be initialized in batch, but overall they will reduce the
batch workload. Depending on implementation, however,
they may increase writes against the model database since
they are being constantly refined.

Yet another optimization involves a trade-off between model
size, training speed and accuracy. Depending on the charac-
teristics of the time-series a light and fast forecasting model
can provide similar accuracy as a more sophisticated one.
We evaluate some of these optimization approaches in Sec-
tion 6.2.2.

3. ANOMALY DETECTION ALGORITHMS

In this section, we give a big picture overview of the
anomaly detection algorithms supported by EGADS. Cur-
rently, EGADS is capable of detecting three classes of anoma-
lies:

(a) Outliers: given an input time-series x, an outlier is a
timestamp-value pair (¢, x;) where the observed value
x: is significantly different from the expected value of
the time-series at that time, i.e. E(x).

(b) Change points: given an input time-series z, a change
point is a timestamp ¢ such that the behavior of the
time-series is significantly different before and after t.

(¢) Anomalous time-series: given a set of time-series
X = {z®}, an anomalous time-series ) € X is
a time-series whose behavior is significantly different
from the majority of the time-series in X.

In the following sections, we give the general sketch of the
methods that are currently used in EGADS for detecting
the aforementioned anomaly types.





3.1 Outlier Detection

Detecting outliers is the most important functionality in
many monitoring applications. For this reason the main
focus of this paper is on @Gutlierideétection and unless it is
explicitly specified, by anomalies, we refer to outliers by de-
fault.

EGADS offers two classes of algorithms for detecting out-
liers, which are described in this section.

3.1.1 Plug-in methods

The first class of methods for time-series outlier detec-
tion in EGADS are called plug-in methods. These meth-
ods explicitly model the normal behavior of the time-series
such that a significant deviation from this model is consid-
ered an outlier. To model the normal behavior of the input
time-series we can plug-in a wide range of time-series model-
ing and forecasting models (e.g. ARIMA [30], Exponential
Smoothing [11], Kalman Filter [9], State Space Models [6],
etc.) depending on the application and the nature of time-
series. That is why we refer to this general strategy as the
plug-in methods. It should be noted that all these mod-
els are used in EGADS for time-series forecasting which is
another feature of our framework; however, since the focus
of this paper is on anomaly detection, we do not give more
details on modeling and forecasting features of EGADS.

Our proposed Plug-in framework consists of two main
components: the time-series modeling module (TMM) and
the anomaly detection module (ADM). Given a time-series
X = {x € R : Vt > 0}, the TMM provides the predicted
value of z; at time ¢, denoted by u:. We also refer to this
quantity as the expected value of z; (not to be confused
with the mathematical notion of expectation). The TMM
can be a machine learned model which makes predictions
based on some training data or a rule-based system which
encodes expert’s knowledge about how x; behaves at time
t. In this paper, we do not make any assumption regard-
ing the TMM; that is, the TMM is just a black box module
in our proposed method that generates predictions u:. In
this sense, our proposed framework is generic and does not
depend on any specific time-series modeling framework.

Given the predicted value u; and the actual observed value
¢, the ADM computes some notion of deviation which we
refer to as the deviation metric (DM). The simplest measure
of deviation is the prediction error, PFE; = x; — us. If the
error falls outside some fixed thresholds, an alert is issued.
This simple method may work in some cases, but it will not
be a good strategy for most because it does not capture the
relative error. The relative error, RE; is defined as a factor
of uy:
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REt:L*

U

= (1)

By thresholding the relative error, one can detect anoma-
lies while normalizing out the dependence on the magnitude
of the expected value. The values of these thresholds, in-
deed, determine how sensitive the anomaly detection module
is. Various thresholding techniques are described in Section
4. Despite its common usage and effectiveness, however,
there is no reason to believe the relative error is always the
optimal metric for anomaly detection on a given time-series.
In fact, the choice of the optimal metric for a given time-
series highly depends on the nature of the time-series as well
as the TMM performance. For instance, if we are dealing
with a very regular time-series for which we have an accu-
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rate model, using the prediction error for anomaly detection
might be sufficient as it is expected to be Normally dis-
tributed. In other cases, the optimal metric might be some-
thing between the prediction error and the relative error.
For this reason, EGADS tracks a set of deviation metrics
by default and the person using the system can create her
own error metrics. These error metrics, together with other
features, such as the time series characteristics, are used in
the alerting module (AM), described in Section 4, to learn
consumer’s preferences and filter unimportant anomalies.

3.1.2  Decomposition-based methods

The second class of outlier detection methods in EGADS
is based on the idea of time-series decomposition. In par-
ticular, in the time-series analysis literature, it is a common
practice to decompose a time-series into three components:
trend, seasonality and noise. By monitoring the noise com-
ponent, one can capture the outliers. More precisely, if the
absolute value of the noise component of point z; is greater
than a certain threshold, one can announce z; as an outlier.

The decomposition of time-series can be done both in the
time-domain via smoothing or in the frequency-domain via
spectral decomposition. STL (Seasonal-Trend Decomposi-
tion based on Loess) [5] is a famous technique that uses
Loess smoothing for dé€emposition. The frequency-domain
methods can be further divided into parameteric and non-
parametric methods. For the parametric methods, the ba-
sis used for spectral decomposition has a known parametric
form (such as Fourier transform [2] or wavelet transform
[22]) whereas, for non-parametric methods, the basis is data-
driven [21].

3.2 Change Point Detection

Change points are those points in time where the behavior
of the time-series starts to deviate from what is expected.
The big difference between change points and outliers is
that change points correspond to more sustained, long-term
changes compared to volatile outliers. A common strategy
for detecting change points in the literature is to move two
side-by-side windows on the time-series and compute the dif-
ference between the behavior of the time-series in the two
windows as a measure of the deviation metric [12, 31, 20,
23]. The behavior of the time-series in each window is typi-
cally modeled by the distribution of the values, motifs, fre-
quencies, etc. that are present in the time-series. We refer
to these techniques as the absolute techniques because they
do not make explicit assumptions regarding the expected
behavior of the time-series.

In EGADS, currently we have taken a different approach
which we refer to as the relative or model-based methods. In
these methods, the expected behavior of the time-series is
explicitly modeled through one of the modeling techniques
mentioned in Section 3.1.1. In particular, we incorporate the
plug-in approach described in Section 3.1.1 to compute the
sequence of residuals (or deviations from the model expec-
tation) for an input time-series. Then we apply the absolute
change point detection methods on the series of residuals to
detect a change in the distribution of the residuals. We have
used KernellDensityEstimation [7] to non-parametrically
estimate the distribution of the residuals and the Kullback-
Leibler divergence [16] to measure the change in the distri-
bution.











‘We believe the model-based change point detection meth-
ods are more useful than the absolute methods in the prac-
tical applications. This is because the change points are
meaningful as much as our models cannot explain the be-
havior of the time-series after a certain time point. However,
if the model can explain the time-series behavior even after
an absolute change point, from the practical point of view,
there is no reason for us to consider that time point as a
change point. In other words, the change points are rela-
tive to the underlying model used to explain the behavior
of the time-series, which in turn gives rise to the relative
change-point detection techniques.

3.3 Detecting Anomalous Time-series

Another class of anomaly detection techniques supported
by EGADS involves detecting anomalous time-series. An
anomalous time-series T is defined as a time-series whose
average deviation from the other time-series is significant.
Assuming all time-series are homogeneous and come from
the same source (i.e. are part of the same cluster) one
can simply compute the average deviation for time-series
(7) relative to other time-series. In EGADS our current
approach involves clustering the time-series into a set of
clusters C' based on various time-series features including
trend & seasonality, spectral entropy, autocorrelation, av-
erage Euclidean distance etc. After clustering we perform
intra or inter-cluster time-series anomaly detection by mea-
suring the deviation within or among the cluster centroids
and the time-series (7). A common use-case for this EGADS
anomaly detection type involves triaging. For example if a
network engineer wants to find an anomalous server amongst
millions of time-series, it can be impractical with the pre-
vious approaches because the modeling is done on the per
time-series basis without taking into account the behavior
of other metrics. Another application of this anomaly detec-
tion type is in/finding similar anomalies, which is the inverse
of the previous use-case.

4. ALERTING

The end-goal of anomaly detection is to produce accurate
and timely alerts. EGADS achieves this via a two stage
process by first generating a set of candidate anomalies by
threshold selection and then filtering the irrelevant anoma-
lies for a given use-case.

4.1 Threshold Selection

The job of threshold selection is to select appropriate
thresholds on the deviation metrics produced by the anomaly
detection module (ADM). Currently EGADS implements
two algorithms for threshold selection based on (a) Ko de-
viation and (b) density distribution.

The first approach is parametric and assumes that the
data is normally distributed with a well-defined mean and
standard deviation. Relying on the Gaussian distribution
we can apply a well known statistical tool called the ‘three-
sigma rule’ which states that 99.73% of all samples lie within
three standard deviations of the mean. Therefore, depend-
ing on the value of K in Ko, one can be confident as to the
probability of observing a sample at time ¢. Depending on
the desired level of sensitivity, one can measure if a given
sample lies within the 95.45% or 68.27% of all the samples
for K = 2 or 1 respectively. Note that the assumption here
was that our deviation metrics are normally distributed.

1942

Time-series feature

Description

Periodicity (frequency)

Periodicity is very important for de-
termining the seasonality.

Trend Exists if there is a long-term change
in the mean level
Seasonality Exists when a time series is influ-

enced by seasonal factors, such as
month of the year or day of the week

Auto-correlation

Represents long-range dependence.

Non-linearity

A non-linear time-series contains
complex dynamics that are usually
not represented by linear models.

Skewness Measures symmetry, or more pre-
cisely, the lack of symmetry.

Kurtosis Measures if the data are peaked or
flat, relative to a normal distribu-
tion.

Hurst A measure of long-term memory of

time series.

Lyapunov Exponent A measure of the rate of divergence

of nearby trajectories.

Table 1: Time-series features used by EGADS

The second approach is non-parametric and is useful for
the cases when the deviation metric is not normally dis-
tributed. The basic idea is to to find low density regions of
the deviation metric distribution. One approach is to use an
algorithm such as [ocallOutlierlFactor (LOF) [3] which is
based on a concept of a local density, where locality is given
by nearest neighbors, whose distance is used to estimate the
density. By comparing the local density of an object to the
local densities of its neighbors, one can identify regions of
similar density, and points that have a substantially lower
density than their neighbors. These are considered to be
outliers.

4.2 Filtering

Filtering performs the last stage post-processing on the
anomalies which are then delivered to the consumer. While
the candidate anomalies, which are the input to the filtering
stage, are statistically significant, not all of them will be rel-
evant for a particular use-case. For example some consumers
are interested in spikes in the time-series, while others are
interested in dips, yet others are interested in change points.
EGADS provides a simple and intuitive interface which al-
lows users to mark the regions of the time-series that are
anomalous. This feedback is then used by EGADS together
with time-series and model features to train a classifier that
predicts if an anomaly a; is relevant to user w;. The time-
series features tracked by EGADS are shown in Table 1 and
are described in more detail in [29]. Section 6.4 explores
the performance of a filtering module for a specific use-case.
Like other components of EGADS, the filtering component
is extensible in terms of models and features.

Figure 2 shows the feature profile of a sample time-series.
Note that the metrics beginning with dc are obtained on
the adjusted time-series (i.e. after removing trend and sea-
sonality). In Section 6.2 we look at how these time-series
characteristics impact the model performance.
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Figure 2: An example of the time-series and its characteristics extracted by EGADS. These characteristics are used by EGADS

for filtering and model selection.

5. RELATED WORK

There are a number of anomaly detection techniques in
the literature. The techniques range from point anomaly
detection algorithms to change-point detection algorithms.
In [24] authors propose an outlier detection technique based
on hypothesis testing, which is very accurate at detecting ex-
treme outliers. In fact Twitter, [26], uses [24] in conjunction
with piecewise approximation of the underlying long-term
trends to remove many of the false positives. Twitter’s ap-
proach is fast and enjoys an impressive precision and recall,
however it is specific to the use-case of Twitter. There are
also a number of open-source point anomaly detection tech-
niques available including [27, 15].

Authors in [13] provide an anomaly detection technique
that finds ‘Change Points’ or ‘Level Shiffs’. Change Points
(CP) are different form point anomalies or point outliers in
that CP reflect a change in underlying statistic of the time-
series (e.g., Mean shift). CP typically occurs in a time-series
with a launch of a new product feature or a new platform.
There are a number of open-source change point detection
algorithms available including [14].

In our experience, a particular anomaly detection algo-
rithm is usually applicable to only a specific use-case. As
authors in [1] mention the anomalies will have typically a
high anomaly score, but the high score alone is not a dis-
tinguishing factor for an anomaly. Rather, it is the analyst,
who regulates the distinction between noise and anomaly.
Similarly, authors in [4] provide a concise overview of the
anomaly detection technique per category, citing the fact
that only a set of anomaly models are most appropriate for
a given anomaly category of interest. Therefore, based on
the observation that ‘One Size Fits All’ is a myth in the
anomaly detection world, EGADS uses a strategy where a
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collection of well trained anomaly detection models with a
post-processing use-case-specific anomaly filtering stage is
used. Nevertheless, EGADS is not the only generic anomaly
detection framework out there. Venkataraman et. al [28]
proposed a ’Black Box Anomaly Detection’ framework that
can be applied to a variety of data sources. Although the
proposed framework is generic, it is not fully automated
because it still needs a significant degree of user involve-
ment in setting the appropriate models and metrics for a
given application. Besides, this framework assumes the in-
put training data to the system is anomaly-free, which is an
unrealistic assumption in many real-world use-cases. On
the other hand, Lan et. al. [17] proposed a framework
for anomaly detection in large-scale systems which is au-
tomated but not generic enough to be applied to a general
time-series anomaly detection problem. EGADS, however,
provides flexible and effective mechanisms which make it
both generic, automated and scalable. Furthermore, from
the industrial point of view, EGADS has been incorporated
in large-scale monitoring systems across Yahoo.

6. EXPERIMENTAL STUDY

We present the experiments for the modeling, anomaly
detection and alerting components of EGADS next.

6.1 Data

The dataset used for the experiments is comprised of a
mixture (50/50) of Syntheticlandirealidatd. We have cre-
ated a synthetic time-series generation tool that is being
open-sourced along with the framework [19] and the bench-
marking data [18]. Using the tool, each synthetic time-series
is generated by specifying the length, magnitude, number of
anomalies, anomaly type, anomaly magnitude, noise level,
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Figure 3: Model performance on time-series with varying characteristics.

trend and seasonality. These parameters are picked from a
fixed distribution. The real dataset is comprised of Yahoo
Membership Login (YML) data. The YML data tracks the
aggregate status of user logins to the Yahoo network. Both
the synthetic and real time-series contain 1400 data-points
each, which for the YML data represent 3 months worth of
data-points. Unless otherwise stated, all experiments were
run on 1000 randomly picked time-series and the results were
averaged. Also note that both the synthetic and real-time
data have anomaly labels, that are either synthetically or
editorially generated, allowing us to measure precision and
recall.

6.2 Modeling Experiments

Time-series modeling (captured by the TMM component
in EGADS) is a fundamental part of anomaly detection. It
is often the case that the anomaly detection is as good as
the underlying time-series model. Due to a large number
of candidate models, model-selection becomes critical and
depends upon time-series characteristics and available re-
sources. In the experiments that follow, we demonstrate
the impact of time-series features on the model performance
and show the trade-off between accuracy, memory usage and
training time. The models and the error metrics used in the
experiments are described in Tables 2 and 3 respectively.
More details about the models and the metrics can be found
in [10] and [29].

6.2.1 Time-series Characteristics and
Model Performance

To demonstrate the impact of time-series features on model
performance we compare the error metrics of different mod-
els when fitting time-series with different features (see Sec-
tion 4.2). Figure 3 shows that time-series characteristics
play an important role in model behavior. For example the
Seasonal Naive Model, performs poorly on a dataset with no
seasonality and a strong trend. EGADS keeps track of the
historic time-series characteristics and model performance.
Using this historical information, EGADS selects the best
model (given the time-series features) judged by the error
metrics described in Table 3. In practice, performing model
selection based on the data features is much faster than per-
forming cross-validation for every model.

1944

Model Description

Olympic The naive seasonal model where the pre-

Model (Sea- | diction for next point is a smoothed aver-

sonal Naive) age over previous n periods.

Exponential A popular model wused to produce

Smoothing smoothed time-series. Double and Triple

Model exponential smoothing variants add trend
and seasonality into the model. The ETS
model used for the experiments auto-
matically picks the best ‘fit’ exponential
smoothing model.

Moving

Average In this mode, the forecast is based on an

Model artificially constructed time series in which
the value for a given time period is replaced
by the mean of that value and the values
for some number of preceding and succeed-
ing time periods. The Weighted Moving
Average and Naive Forecasting Model are
special cases of the moving average model.

Regression Models the relationship between x & y us-

Models ing one or more variable.

ARIMA Autoregressive integrated moving average.

(T)BATS (Trigonometric) Exponential smoothing

Family state space model with Box-Cox transfor-
mation.

Spectral An in-house algorithm that implements a

Kalman Filter | fast multi-variate spectral learning method
for learning Kalman Filter parameters.

Table 2: Models Used for Modeling Experiments

6.2.2 Time-series Model Scalability

As discussed in Section 2 it is often prohibitive to build
models for every time-series and optimization techniques
are required to support real-time performance over massive
(e.g., millions of points every second) data-streams. A fun-
damental optimization performs a trade-off between model
size, training time and accuracy. Such a trade-off is shown
in Figures 4(a) and 4(b). From the figure, for example, it is
clear that the Seasonal Naive model is quick to train but has
a relatively large memory requirement and a high average
error. At Yahoo, a target in terms of resources and training
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Figure 4: Model trade-offs

Model Description

Bias The arithmetic mean of the errors.

MAD The mean absolute deviation. Also known
as MAE.

MAPE The mean absolute percentage error.

MSE The mean square of the errors.

SAE The Sum of Absolute Errors.

ME Mean Error.

MASE Mean absolute scaled error.

MPE Mean percentage error.

Table 3: Metrics Used for Modeling Experiments

Model Description

EGADS EGADS density-based anomaly detection.

ExtremeLow-

DensityModel

Outlier

EGADS CP EGADS kernel-based change-point detec-
tion.

EGADS EGADS re-implementation of the classic k-

KSig- sigma model.

maModel

Outlier

Twitter Out-
lier

The Open-Source Twitter-R anomaly de-
tection library based on the Generalized
ESD method.

Extremel & 11

Open source univariate outlier detection

R Outlier that threshold the absolute value and the
residual to detect anomalies.

BreakOut A package from Twitter that uses an ESD

Twitter CP statistics test to detect change points.

ChangePtl R
Cp

An R library that implements various
mainstream and specialized change-point
methods for finding single and multiple
change-points within data. Method I uses
a change in variance.

ChangePt2 &
3R CP

Detects a change in the mean and the vari-
ance.

Table 4: Open Source systems used for evaluation

time is first set and then the models are picked accordingly.
In other words, the objective is to minimize the errors in
Table 3 subject to the resource and model building time
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constrains. Other optimization techniques including time-
series sampling and model sharing are being investigated.

6.3 Anomaly Detection Experiments

In this section we compare open source system against
EGADS. The open source systems considered are shown in
Table 4. The results on the data described in Section 6.1
are shown in Figure 5. The results are compared in terms
of the standard Fj-Score = 2 x %. The results
indicate that there is no best anomaly detection model for
all use-cases. In particular different algorithms are best at
detection different types of anomalies. For example Twit-
ter [13] performs best on the time-series labeled T'S-2 while
ExtremeLowDensity model is best on T'S-3. These datasets
contain a mixture of anomaly types (e.g., outliers, change-
points), and one might argue that comparing an algorithm
that is only meant for change-point detection is not fair. Re-
call, however, that the motivation for EGADS was that the
user should be agnostic to the type of time-series and the
type of anomalies that are in the data. The system must be
able to gracefully and robustly deal with a wide variety of
anomalies present in the data. For this reason, EGADS is
built as a library that combines a set of anomaly detection
models into a single framework. The anomalies from these
models are forwarded to the filtering component for accurate
anomaly detection.

Performance of Anomaly Detectors on Different Datasets

08 I EGADS_
ExtremeLowDe...

M EGADS_CP

I EGADS_
KSigmaModel_
Outlier

I Twitter_Outlier

I Extremel_R_
Outlier

B Extremell_R_
Outlier

I BreakOut_
Twitter_CP

[ ChangePti_R_CP

I ChangePt2_R_CP

I ChangePt3_R_CP

F-Score

TS-6-FScore

TS-1-FScore TS-2-FScore TS-3-FScore TS-4-FScore TS-5-FScore

Figure 5: Anomaly model performance on different datasets.
Observe that there is no single model that is best on all
datasets.
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Figure 6: Accuracy of the filtering stage using different types
of features.

6.4 Anomaly Filtering Experiments

The importance of an anomaly often depends on the use-
case. Specifically, some users may be interested in the time-
series behavior that exhibits a malicious attack, while oth-
ers may be interested in revenue drops. Yahoo Membership
(YM) use-case refers to the former set of users. Specifically
for the YM use-case, editors supplied feedback to EGADS
of instances that exhibited abnormal spikes and level shifts.
Abnormal in the case of YM meant seasonal followed by
non-seasonal behavior which characterizes most of the at-
tacks. Also the YM editors did not care about traffic-shift
behavior, where a large drop in traffic was observed in a
time-series due to router table being updated.

To address this requirement the filtering stage scanned all
anomalies a; from all models and using a model classified if
a; was a true positive. The model used in the filtering stage
for the YM use-case is a boosted tree model based on Ad-
aBoost [8]. The features used in the model are described in
Table 1. The core principle of AdaBoost is to fit a sequence
of weak learners (e.g., small decision trees) on repeatedly
modified version of the data. The final result is then pro-
duced via a combined weighted majority vote. On each it-
eration, the examples that are difficult to predict receive a
higher importance in the next iteration and therefore each
subsequent weak learner focuses on the examples that are
missed by the previous learners in the sequence. Besides the
time-series features described in Table 1 we use the model
features described in Section 6.2. The experiments in Fig-
ure 6 indicate an impressive precision/recall even with just
the time-series features compared to just using the model
alone without the filtering stage. This experiment under-
lines an important principle and a critical component of any
anomaly detection framework: an anomaly is use-case spe-
cific and must be learned automatically for a fully scalable
and automated solution.

7. PRACTICAL USE-CASES AT YAHOO

A major use case for anomaly detection at Yahoo is the
monitoring of system and business metrics in order to detect
infrastructure and product issues. Yahoo currently tracks
over one hundred million distinct timeseries emitted by its
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production systems. In monitoring these timeseries, three
broad use categories emerge; system metrics, business KPIs,
and groups of like metrics.

7.1 System Metrics

System metrics are broadly defined as measurements of
the health of a hardware component in a serving system.
Examples include CPU utilization, free disk space, network
interface traffic stats, and memory utilization. Some of these
metrics, such as CPU utilization, track the overall traffic to
a component, and some, like free disk space, are independent
of the current traffic levels. What sets system metrics apart
from other types of metrics is that due to the redundant
nature of Yahoo’s serving system, a threshold violation is
typically a leading indicator of serving problems. Because
of this, alerting against these types of metrics is often not
treated as an outage, but instead used to trigger longer term
remediations such as adding capacity or clearing disk space.

7.2 Business KPIs

Business KPIs are metrics that directly reflect customers’
experiences with Yahoo sites. Examples include things such
as page views, serving latency, serving errors, click-through
rate, and revenue received. Business KPIs are almost always
trailing indicators of site issues, and by definition reflect im-
pact to Yahoo’s ability to serve. As a result, anomalies in
business KPIs are normally treated with a high degree of ur-
gency. The nature of business KPIs at large scale is that they
tend to be highly predictable, so they lend themselves well to
automated anomaly detection. Yahoo has had tremendous
success in instrumenting business KPIs to discover serving
and revenue issues using automated anomaly detection.

7.3 Groups of similar metrics

Most of Yahoo’s infrastructure follows a horizontal scaling
model, with dozens to hundreds of individual servers mak-
ing up each serving tier. When triaging and isolating the
cause of a suspected incident, it can be difficult to survey
an infrastructure of thousands of machines to find the fault.
Automated anomaly detection can be used to rank the rela-
tive anomalousness, or “interestingness”, of each component
of the infrastructure, and these characteristics can be ranked
in descending order to enable operators to quickly see pat-
terns and isolate issues.

8. CONCLUSION

Anomaly detection is a critical component at the heart
of many real-time monitoring systems with applications in
fault detection, fraud detection, network intrusion detec-
tion and many others. Despite its crucial importance, im-
plementing a fully-automatic anomaly detection system in
practice is a challenging task due to the large problem scale
and the diverse use-cases residing in the real-world setting.
These challenges typically result in solutions that are either
not scalable or highly specialized, which would in turn re-
sult in a high rate of false positives when applied to other
use-cases.

In this paper, we introduced EGADS; the generic anomaly
detection system implemented at Yahoo to automatically
monitor and alert on millions of time-series on different Ya-
hoo properties for different use-cases ranging from fault de-
tection to intrusion detection. As we described in the paper,
the parallel architecture of EGADS on Hadoop as well as its



stream processing mechanism through Storm enable it to
perform real-time anomaly detection on millions of time-
series at Yahoo. Furthermore, EGADS employs different
time-series modeling, and anomaly detection algorithms to
handle different monitoring use-cases. By incorporating this
array of algorithms combined with a machine-learned mech-
anism in the alerting module, EGADS automatically adapts
itself to the anomaly detection use-case that is important
to the user. All of these features effectively create a power-
ful anomaly detection framework which is both generic and
scalable. Our showcase experiments on real and synthetic
datasets have shown the superior applicability of our frame-
work compared to its rival solutions.

Last but not least, EGADS by its very nature is extend-
able, providing an easy mechanism to plugin new models and
algorithms into the system. This feature specifically creates
an oppurtunity for the community to contribute to EGADS.
Finally, to further engage with the anomaly detection and
monitoring community, our framework together with all its
datasets are contributed to the open source repository.
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