
Fingerprinting the datacenter:
automated classification

of performance crises

Peter Bodík1,3, Moises Goldszmidt3, 
Armando Fox1, Dawn Woodard4, Hans Andersen2

1RAD Lab, UC Berkeley
2Microsoft 3Research

4Cornell University



Crisis identification is difficult, 
time consuming and costly

Frequent SW/HW failures cause downtime

Timeline of a typical crisis
– detection: automatic, easy
– identification: manual, difficult

• takes minutes to hours
– resolution: depends on crisis type
– root cause diagnosis, documentation

Web apps are complex and large-scale
– app used for evaluation: 400 servers, 100 metrics

2

O
K

O
K

CR
IS

IS

3:00 AM

3:15 AM

4:15 AM

next day



Insight: performance metrics help 
identify recurring crises

Performance crises recur
– incorrect root cause diagnosis
– takes time to deploy the fix

• other priorities, test new code

System state is similar during similar crises
– but not easily captured by fixed set of metrics
– 3 operator-selected metrics not enough

3



Contribution: crisis identification 
as it happens, via classification

1. Fingerprint = compact representation of system 
state
– uniquely identifies a crisis
– robust to noise
– intuitive visualization

2. Using fingerprints to identify crises as they happen
– goal: operator receives email about crisis
– “Crisis similar to DB config error from 2 weeks ago”

3. Evaluation on data from a real commercial service 
deployed on hundreds of servers
– 80% identification accuracy 4



Outline

• Definition of performance crises
• Crisis fingerprints
• Evaluation results
• Related work
• Conclusion

5



Definition and examples of 
performance crises

Performance crisis = violation of service-level 
objective (SLO)
– based on business objectives
– captures performance of whole cluster
– example: >90% servers have latency < 100 ms 

during 15-minute epoch

Crises we analyzed
– app config, DB config, request routing errors
– overloaded front-end, overloaded back-end

6



Fingerprints capture state of 
performance metrics during crisis

Metrics as arbitrary time series
– OS, resource utilization, workload, latency, app, …

7

1: CPU utilization
2: workload

100: latency
… …

se
rv

er
 1

1: CPU utilization
2: workload

100: latency
… …

se
rv

er
 2

1: CPU utilization
2: workload

100: latency
… …

se
rv

er
 

10
00

…

1: select 
relevant metrics

2: summarize 
using quantiles

3: map into 
hot/normal/cold

4: average over 
time

OKOK CRISIS

crisis
fingerprint

across all the application servers
(25th , 50th , and 95th percentiles) 

a summary vector containing one element per quantile per tracked metric, indicating whether the value of that quantile is cold, normal, or hot during that epoch.



Step 1: Using feature selection
to pick relevant metrics

Logistic regression with L1 constraints
– fit accurate linear more with only few metrics
– selected metrics that operators didn’t consider

time

1: CPU utilization

2: workload

100: latency

… …

8
OKOK CRISIS

• all 100 metrics
• 3 operator-selected metrics

low identification
accuracy

what would
not work

model input
(all metrics)

model output 
(binary)

The idea behind regularized logistic regression is to augment the model fitting to minimize both the prediction error and the sum of the model coefficients.This in turn forces irrelevant parameters to go to zero, effectively performing feature selection.

It has been (empirically) shown in various settings that this method is effective even in cases where the number of samples is comparable to the number of parameters in the original model



Step 2: Summarize selected metrics
across servers using 3 quantiles

• robust to outliers
• can efficiently compute even for datacenter-

sized clusters

9

CPU utilization0% 100%# 
se

rv
er

s

95th percentile25th percentile 50th percentile,
median

• mean, variance
• only median

what would
not work



Step 3: Map metric quantiles 
into hot/normal/cold

10

Based on historic values

Epoch fingerprints
– differentiate among crises
– compact
– intuitive

10

tim
e

overloaded back-end

overloaded back-end

DB config error

app config error• raw metric values
• time series model

what would
not work



Step 4: Averaging over time

Different crises have different durations

Crisis fingerprint
– average epoch fingerprints over time
– compare by computing Euclidean distance

• all epoch fingerprints
• 1 epoch fingerprint

what would
not work

epoch fingerprints

crisis fingerprint is a vector

Each row represents an epoch, each column represents a metric quantile, and white, gray, and black represent the values −1, 0, and 1, respectively of the cold, normal, and hot state respectively. Thethree left-most columns of the third crisis from the top in the figure would be summarized as { −7 , −4 , 6 }; there are 12 12 12 12 epochs in the crisis and the column sums are −7, −4, and 6.

Euclidean distance is used as the similarity measure of two vectors 



Crisis identification
in operational setting

Crisis detected automatically via SLO violation

During first hour of crisis
– update fingerprint of current crisis
– if found similar crisis P, emit label P

else emit ? – “previously-unseen crisis”

When crisis is over
– automatically update relevant metrics, fingerprints
– ideally, operators enter supplied label into crisis DB

12

O
K

O
K

CR
IS

IS

epochs

? ? A AA



Outline

• Definition of performance crises
• Crisis fingerprints
• Evaluation results
• Related work
• Conclusion

13



System under study

24 x 7 enterprise-class user-facing application at 
Microsoft
– 400 machines
– 100 metrics per machine, 15-minute epochs
– operators: “Correct label useful during first hour”

Definition of a crisis
– operators supplied 3 latency metrics and thresholds
– 10% servers have latency > threshold during 1 epoch

19 operator-labeled crises of 10 types
– 9 of type A, 2 of type B, 1 each of 8 more types
– 4-month period

14



Evaluation results

Identification stability = stick to first label
– unstable: ??A??, AABBB
– stable: ?????, AAAAA, ??AAA

Previously-seen crises:
– identification accuracy: 77%
– identified when detected or one epoch later

For 77% of crises, average time to ID 10 minutes
– could potentially save up to 50 minutes
– more with shorter epochs

Accuracy for previously-unseen crises: 82% 15



More results in the paper

Comparison to other approaches
– using all metrics
– 3 operator-specified metrics
– failure signatures [SOSP ‘05]

Updating fingerprints

Sensitivity analysis

Online-clustering approach
– model evolution of fingerprint during crisis
– doesn’t assume 100% correct labeling of crises

16



Closest related work

• Capturing, indexing, clustering, and 
retrieving system history, SOSP ’05
– authors: Cohen, Zhang, Goldszmidt, Symons, 

Kelly, Fox

• Failure signatures
– signature for individual servers
– build and manage per-crisis classification models
– detailed comparison in the paper

17



Conclusion

Crisis fingerprint
– compact representation of system state
– scales to large clusters
– intuitive visualization

Use of Machine Learning crucial for metric selection

Correct identification for 80% crises
– on average after 10 minutes
– rigorous evaluation on production data

Selection of relevant metrics used at Microsoft
18



Thank you!

19


