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Abstract—Online service systems have been increasingly
popular and important nowadays. Reducing the MTTR
(Mean Time to Restore) of a service remains one of
the most important steps to assure the user-perceived
availability of the service. To reduce the MTTR, a common
practice is to restore the service by identifying and apply-
ing an appropriate healing action. In this paper, we present
an automated mining-based approach for suggesting an
appropriate healing action for a given new issue. Our
approach suggests an appropriate healing action by adapt-
ing healing actions from the retrieved similar historical
issues. We have applied our approach to a real-world and
large-scale product online service. The studies on 243 real
issues of the service show that our approach can effectively
suggest appropriate healing actions (with 87% accuracy)
to reduce the MTTR of the service. In addition, according
to issue characteristics, we further study and categorize
issues where automatic healing suggestion faces difficulties.

Keywords-Online service system; healing action; issue
repository; incident management

I. INTRODUCTION

Online service systems such as online banking, e-

commerce, and email services have been increasingly

popular and important nowadays, with an increasing

demand on the availability of services provided by

these systems. While significant efforts have been made

to strive for keeping services up continuously, studies

[1] on a sample of hosts have shown that daily and

weekly service downs still appear commonly in online

services. A serious service down for a non-trivial period

often results in huge economic loss or other serious

consequences. For example, customers of a service

provider may turn to competing providers if the offered

services are not available.
In practice, services are often continuously monitored

to detect service issues by checking whether service

quality violates one of a set of strict pre-defined rules.

When a service issue is detected, engineers are called

to resolve the issue to pro-actively prevent the issue’s

potential impact to user-perceived service availability.

Thus, reducing the MTTR (Mean Time to Restore) of

a service remains one of the most important steps to

assure the user-perceived availability of the service [2].

In order to reduce MTTR, a common practice is to

restore the service by identifying and applying an appro-

priate healing action [3] (i.e., a temporary workaround

action, such as rebooting a SQL machine) after the

occurrence of an issue. Then, after service restoration,

identifying and fixing of underlying root causes for the

issue are conducted via offline postmortem analysis. In

other words, directly applying of an appropriate healing

action for the issue wins time for offline diagnosis and

fixing of underlying root causes (which typically take

relatively longer time to resolve).

However, manually identifying an appropriate healing

action for a given new issue is time consuming and

error prone. Such manual process is based on investigat-

ing service-instrumented data such as transaction logs.

According to an internal study from an online service

team, about 90% time of MTTR is spent on manual

effort for identifying an appropriate healing action. Such

substantial manual effort is due to two factors. First,

investigating a large amount of service-instrumented

data is time consuming. Second, understanding the issue

and providing appropriate healing action are heavily

depends on domain knowledge. For example, each ma-

chine in a real-world product online service (studied in

our evaluation in Section IV) produces about 6,000 lines

of transaction logs per minute on average. Operators

need to inspect these logs from several (usually 4 to

12) machines, and understand the symptom of the issue

by reading and reasoning the detailed log information.

To address high cost and error proneness of manually

identifying an appropriate healing action, in this paper,

we present an automated mining-based approach for

suggesting an appropriate healing action for a given

new issue. Our approach generates a signature for

an issue from its corresponding transaction logs and

then retrieves historical issues with similar signatures

from a historical issue repository. The historical issue

repository records the solved historical issues. Each
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issue has a number of basic attributes: affected time,

affected location (e.g., specific cluster, network, or data-

center), real customer impact measurement, correspond-

ing transaction logs, etc., along with the appropriate

healing action taken by operators to heal the issue.

Finally, our approach suggests an appropriate healing

action by adapting healing actions of the retrieved

historical issues. In particular, our approach measures

the similarity between the transaction logs of the given

new issue and the transaction logs of a historical issue,

by addressing two major challenges due to the high-

correlation phenomenon and the weak-discrimination

phenomenon. The high-correlation phenomenon refers

to the correlation of event’s occurrences in transaction

logs for causing ineffective historical-issue retrieval.

The weak-discrimination phenomenon refers to noisy

events that appear relatively independent to the transac-

tion status (being in an issue state or compliant state).

Detailed examples for these phenomena are illustrated

in Section II.

To tackle challenges due to these phenomena, we

develop the technique of concept analysis to address

the high-correlation phenomenon and the technique of

contrast analysis to address the weak-discrimination

phenomenon. Then we define a novel similarity metric

to measure similarity between issues and retrieve similar

historical issues from the historical issue repository for

the given new issue. Finally, we develop a technique of

healing-suggestion adaptation to use predefined rules to

analyze and adapt the healing actions of the retrieved

historical issues to derive a healing suggestion for the

given new issue.

In particular, our technique of concept analysis uses

Formal Concept Analysis (FCA) to obtain the concept

lattice, where highly-correlated events are grouped to-

gether as the intents [4] of concepts. Our technique

of contrast analysis analyzes the complementary set of

events between concepts directly linked through the

obtained concept lattice. Such analysis produces the

complementary sets of events highly correlated to the

transaction status.

Our technique of healing-suggestion adaptation de-

fines the verb + target + location structure to represent a

healing suggestion. Both the verb + target are extracted

from the retrieved historical issues for the given new

issue, whereas the location is extracted from transaction

logs of the given issue directly. The verb denotes a

specific action from the healing action of the retrieved

historical issues, such as “recycle” and “restart”. The

target denotes a service role from the healing action

of the retrieved historical issues, such as “Application

Pool”, “IIS (Internet Information Service)”, and “SQL”.

The location denotes the affected location of the given

new issue, such as “Asia/Network2/Farm332/SQL412-

002”.

We have deployed our healing system on one online

service (serving millions of online customers globally)

for more than half a year. During this period, 76

operators in this product team effectively diagnosed and

healed this online service with the intensive assistance

of our healing system. Our evaluations on this real-

world online service demonstrate the effectiveness of

our approach in real practice.

To further evaluate the capability, and potential lim-

itations of our approach, we randomly sampled 400

real service issues, and carefully studied our results by

simulation. We found that our approach cannot work

properly at 157 (39%) issues. We summarize the under-

lying reasons, which shed lights towards service auto-

healing. In summary, this paper makes the following

main contributions 1:

• We formulate the problem of suggesting healing

actions for a newly occurred issue as retrieving

similar resolved issues in the history, and our tech-

niques of concept analysis and contrast analysis

help address challenges and achieve high accuracy

on historical-issue retrieval.

• We evaluate our approach on the 243 issues that

occurred in the real-world online service in 2012.

The results show that our approach can effec-

tively suggest correct healing actions to reduce the

MTTR of the service.

• We summarize our experience of applying our

approach on the real-world service, investigating

issue characteristics and cases where automatic

healing suggestion faces difficulties in practice.

The paper is organized as follows. Section II presents

examples. Section III presents our approach. Section IV

presents evaluation results. Section VI discusses related

work. Section VII concludes.

II. EXAMPLES

Transaction logs are printed during system execution.

Figure 1 shows a log stream collected for two exam-

ple transaction instances (within the occurring period

of an issue): the user-login transaction instance (the

highlighted log entries sharing the same transaction ID)

and file-editing transaction instance (the un-highlighted

log entries sharing the same transaction ID). Such logs

record relatively detailed information about run-time

behaviors of a system.

1This paper significantly extends the previous version of this work
(a 4-page ASE 2012 short paper [5]) in three main ways. First,
we provide theoretical analysis to validate the effectiveness of our
approach. Second, we conduct concrete evaluations of our techniques
in a real product environment for over the year of 2012. Third, we
further investigate various types of issues that out current approach
fails on, shedding light on future directions of improvement.
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Figure 1. Log stream for example transaction instances
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Figure 2. Example logging statement in source code

Each log entry (as shown in Figure 1) typically

consists of four fields. The log time indicates when

the log entry occurs. The event ID is used to identify

the corresponding logging statement in the source code.

Figure 2 illustrates the corresponding portion of source

code for event ID (in short as event throughout the

rest of the paper) y1, which describes that a SQL

exception has been thrown. The transaction ID is used

to identify the corresponding transaction instance. The

text message describes the detailed runtime information.

In addition, a transaction instance in an online service

system has one important attribute: http-status, used by

us to determine the transaction instance’s fail/success

label (see Section III.A.2 for details). The http-status

indicates the returned status of a given transaction in-

stance, e.g., “200” denoting “OK” while “500” denoting

“Internal Server Error”.

The event sequence collected for a transaction in-

stance can reveal part of the code path executed when

serving the transaction instance, e.g., revealing which

functions are executed. Figure 3 shows sequences of

events and their statistics for three transaction types

within the occurring period of an issue (including the

“file editing” and “user login” types for the two example

transaction instances shown in Figure 1 and the “file

reading” transaction type).
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Figure 3. Log statistics for three transaction types within the
occurring period of an issue

By manually inspecting the information in Figure 3

for issue diagnosis, one could notice that the dominating

symptom for the issue is event y1 (indicating that

a SQL exception is thrown), because there are 187

failing transaction instances uniquely associated with

this event, in contrast to only 36 failing transaction

instances uniquely associated with events x1 – x8 in-

dicating that an invalid cookie is encountered. Then

one could suggest a healing action for this issue as

rebooting a SQL machine (a typical healing action for a

SQL-exception symptom), in contrast to restarting the
Internet Information Services (IIS) (a typical healing

action for an invalid-cookie symptom). However, if one

would like to develop mining algorithms to automate

this issue-diagnosis process, there exist two phenomena

on transaction logs for posing challenges.

High-correlation phenomenon. We observe that

some events always appear together, being highly cor-

related. The reason for such observation is that the

developers want to track execution states with finer

granularity at some critical statements, such as the

credential-verification session. Such tracked states cap-

ture sufficient logging information for diagnosis when

causes of issues are related to the execution of these

statements. For example, when event b appears, c, d,

and e always follow (see Figure 3). As another example,

events x1–x8 always appear together to indicate invalid

cookies. If we do not group them together when com-

paring event sequences for the given issue and historical

issues, events x1–x8 would contribute eight times than

event y1 to characterize the given new issue, likely

causing this given issue to be wrongly matched with a

historical issue with the dominating symptom as events

x1–x8. Such wrong matching would cause a wrong

healing action to be suggested.

Weak-discrimination phenomenon. Some events are

noisy, being weakly-discriminating events, whose ap-

pearance is independent of the transaction status (i.e.,

issue state or compliant state). Examples of such events

are a and z (in Figures 1 and 3) for indicating enter-

ing and leaving actions for each transaction instance,

respectively. These events appear in almost every trans-

action instance. Log messages corresponding to these

events contribute little to distinguish different types of

issues. Thus, due to such weakly-discriminating events,

retrieved historical issues for the given new issue may

not be desirable. For example, assume that another

different issue from the historical issue repository is

dominated by events a, b, d, y2, and z where “y2” is

related to “antivirus timeout”. If we do not address such

phenomenon, we would wrongly retrieve this historical

issue for the given issue related to SQL exception (since

the only difference of events for these two issues is “y1”

vs. “y2”.
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III. APPROACH

Our approach consists of three steps. First, we use

concept analysis and contrast analysis to generate the

signature for an issue. Second, we retrieve historical

issues similar to the given new issue from an issue

repository based on their generated signatures. Third,

we produce healing suggestions by adapting the healing

actions of the retrieved historical issues.

A. Signature Generation

Our approach includes the techniques of con-

cept analysis and contrast analysis to address high-

correlation and weak-discrimination phenomena. Con-

cept analysis applies Formal Concept Analysis (FCA)

to group highly-correlated events together as the in-

tent of a concept. Contrast analysis calculates Mutual

Information to measure the correlation between each

concept and its corresponding transaction status, and

then evaluates the complementary set of intents between

parent and child concepts in concept lattice by measur-

ing their Delta Mutual Information (DMI). We generate

the signature for the issue as the complementary sets

that satisfy the predefined criterion.

1) Concept Analysis: In our problem, each transac-

tion instance corresponds to an event sequence. How-

ever, we ignore the information of temporal ordering

and event-recurrence count, and use an event set to

represent to each transaction instance. Although the

information of temporal order and event-recurrence

could indicates particular failure characteristic (e.g.,

race-condition, and iterating in a loop, respectively),

service issues relate to such information are very rarely

appeared in practice. So our simplification improves

efficiency, while preserve enough effectiveness. Then,

we group together highly-correlated events by apply-

ing FCA. The intuition is that highly-correlated events

together indicate one kind of symptom. FCA is a prin-

cipled way to automatically group such events together

[13].

Figure 4 illustrates two concept nodes from the

concept lattice, which is constructed from the logs in

Figure 3. The gray node in the middle of Figure 4 is

“file-editing” + “file-reading”, which is the parent to the

gray node in the bottom. More precisely, each concept

c contains a set of events, called the intent, denoted

by Int(c). The intent of a parent node always belongs

to the intent of its child (note that according to FCA

theory, the parent-child relationship is constructed by

such partial-order relation). In addition, the extent of

each concept is a set of transaction instances, denoted by

Ext(c). According to FCA theory, the event set belongs

to each transaction instance in Ext(c) shares the same

Int(c).
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Figure 4. Relationship between two linked concepts in the lattice

Table I
JOINT DISTRIBUTION OF Xc , Y

Y = 1 Y = 0
Xc = 1 x y
Xc = 0 n− x m− y

2) Contrast Analysis: By leveraging the fail/success

information of each transaction instance and the rela-

tionship between parent and child concepts, contrast

analysis finds the subset of the events that are highly

correlated to failed transaction instances. We next give

a definition about the fail/success label for a transaction

instance, and then present our considerations about

positive correlation and delta mutual information.

Fail/success label. We define the label for each

transaction instance (reflecting the transaction status) as

labeli =

{
failure, HttpStatusi ≥ 500

success, otherwise

where i denotes the index of a specific transaction

instance. Note that, although we use such specific

definition in our problem, it can be flexibly and easily

modified according to the different requirements of

different scenarios.

Positive correlation. We calculate mutual informa-

tion to measure the correlation between a concept and

failures.

Let x and y be the number of failed and succeeded

transaction instances for a given concept c, respectively;

let n and m be the total number of failed and succeeded

transaction instances within the occurring period of a

given new issue, respectively. Then we define a random

variable Y , which indicates the outcome (1 refers to

fail, and 0 refers to success) of a randomly selected

transaction instance; and another random variable Xc,

which indicates the outcome of a randomly selected

transaction instance belongs to Ext(c).

Then the outcomes x, y, n, m can approximately

represent the joint distribution of Xc and Y as illustrated

314314314



in Table I. In our approach, we adapt the formula of

mutual information as below (by dropping the < 10 >,

< 01 > items):

M(Xc, Y ) = P (Xc = 1, Y = 1) log
P (Xc = 1, Y = 1)

P (Xc = 1)P (Y = 1)

+P (Xc = 0, Y = 0) log
P (Xc = 0, Y = 0)

P (Xc = 0)P (Y = 0)

Thus we use only the positive correlation part of

mutual information. In general, the negative correlation

( < 10 >, < 01 > items) happens trivially often in

network traces and are not meaningful [6].

Delta information. To achieve accurate retrieval, we

need to exclude noisy events and keep only “clean”

events. For example, in Figure 4, the mutual information

of the child node is high, but the events {a, b, c, d, e, z}
that it contains are irrelevant to the failures, and should

be eliminated. To address this problem, we analyze

Delta Mutual Information (DMI) between child and

parent concept nodes in the concept lattice, to measure

how the delta events contribute to correlation.

Let �Es = Int(chi) \ Int(par) be the extra events

that the child node has, e.g., �Es being {y1} in

Figure 4. Then we define

DMI(�Es) = M(Xchild, Y )−M(Xparent, Y )

Intuitively, DMI(�Es) represents the contribution

of the extra events �Es for failure correlation. By

walking through each edge in the concept lattice graph,

we select �Es as a term if it satisfies criteriaX:

criteriaX =

{
M(XInt(par), Y ) > 0

DMI(�Es) > 0

Intuitively, the first inequality indicates there exists a

positive correlation between a concept par and failure,

and the second inequality indicates there exists ”more”

failure-correlation due to the extra events that the child

node contains. In addition, Such definition of term

has a number of important properties. The theorem

below brings a bridge between our criteria and human’s

intuition when diagnosing the service issues.

Theorem DMI(�Es) ≈ ∂M
∂x �x + ∂M

∂y �y where
∂M
∂x > 0 and ∂M

∂y < 0.

Intuitively, let �Es be a set of events which satisfy

criteriaX , then the higher value of the DMI(�Es)
means that events in “�Es appear more probably

(higher value of ∂M
∂x ) in failed requests, and less

probably (lower value of ∂M
∂y ) in succeeded requests

as well”. We do not give the detailed proof in this

paper due to space limit. Readers can refer to our

project website [7] for the theorem and detailed proof.

This property also inspires us for developing further

similarity measurement.

In the example in Figure 4, {y1} is a term, since

mutual information of the parent node is 0.03, and

the corresponding DMI is 0.08. Next, we use the

DMI(�Es) as the weight for term �Es. So a sig-

nature Sissue is the collection of all the terms, which

can be represented as follows:

Sissue = {< �Es, DMI(�Es) > |criteriaX = true}
B. Similar-Issue Retrieval

In similar-issue retrieval, we first need to have a

representation for issues and then define a similarity

to measure issue similarity so that the most similar

issue for the given new issue could be retrieved. We

implement the term-weighting and document-scoring

function of Generalized Variable kernel Similarity Met-

ric (GVSM [8]) to measure the defined similarity metric.
1) Issue Representing: We treat each issue in the his-

torical issue repository as one document, each signature

as a set of terms, and DMI as the weight of each term.

Let D = {d1, d2, ..., dm} be the total m documents in

the issue repository. Consider the given new issue as

a query, denoted as q. So we represent each document

di as
∑

p∈A(i)

wip�tp, where a term is represented by an

abstract vector �tp, p is the index of the corresponding

term in di, A(i) is the valid index set, and wip is the

weight of �tp. We use DMI as the weight for each

term. Such weight is much different from the TF-IDF
weight [9]. Our evaluations (Section IV) compare the

results of such difference.
2) Similarity Metric: We calculate the cosine score

of two document vectors, each representing one issue. In

particular, given a documents di that di =
∑

p∈A(i)

wip�tp.

We next define the similarity metric

sim(di, dj) =
di · dj
‖di‖‖dj‖ =

∑
p∈A(i),q∈A(j) wipwjq �tp · �tq

‖di‖‖dj‖
The metric measures the cosine of the angle be-

tween the two vectors. Here ‖di‖ =
√

di · dj . We

define inner product between two terms: �tp · �tq =
# of overlapped events in p-th term and q-th term.

We abandon the orthogonal assumption in the conven-

tional vector space model, since the orthogonal assump-

tion is too restrict (this assumption is also referred to as

exact-match: the inner product is equal to 1 if and only

if the two sets are exactly the same; otherwise, 0). We

aim to give a similarity score between 0–1 rather than

yes/no. We prove that our similarity metric satisfies the

requirements of GVSM, so our problem can be modeled

as a text retrieving problem, and we could leverage the

corresponding benefits due to the properties of GVSM.

We do not give the detailed proofs here due to space

limit. The detailed deductions can be viewed at our

project website [7].
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Table II
RULE-BASED MAPPING

verb target event of location
reboot SQL(Database) ev1
recycle App-Pool (Application Pool) ev2
restart IIS (Internet Information Service) ev2

re-image WFE (Web Front End) ev2
reboot WAC (Web Application) ev3
patch Service (SQL/WFE/WAC) ev1,ev2,ev3
restart Scanner (Anti-virus Component) ev2,ev3
restart Search (Search Component) ev3
restart AD (Active Directory) ev4

C. Healing-Suggestion Adaptation

We use a triple structure < verb, target, location >
to represent a healing action, and manually extract the

verb and target from the description of the historical

issue retrieved for the given new issue, and extract the

location from log messages of the given new issue. The

extracted healing actions are reasonably proper, since all

these issues are well-resolved, and the corresponding

healing actions have been verified according to the

incident management process from the product teams.

Based on empirical investigations of healing actions

for online service systems, we find that most healing

actions can be formatted as HealingAction = verb+
target+location. A verb is an action, such as “reboot”

and “re-image” (re-image: to completely replace the op-

erating system with a pre-configured image). The major

types of verbs in our problem setting are illustrated in

Table II. A target represents a component or a service

role, such as an Internet Information Services (IIS) or a

database, as illustrated in Table II. A location is an exact

affected machine name with its physical location. When

we retrieve a similar historical issue for the given new

issue, we obtain “verb” and “target” from the historical

issue, e.g., from the description text “We found few
SQL servers with high memory usage and few servers
were not able to connect through . Availability is back
up after rebooting the SQL machine SQL32-003”, we

extract the verb as “reboot” and the target as “SQL”.

The combination of a verb and a target is not arbitrary;

Table II shows all the possible combinations according

to our study.

We extract the location (the specific machine names)

with a rule-based technique. The specific machine name

is typically mentioned in the log messages associated

with a fixed set of events. For example, the log mes-

sage “Cannot connect to SQL server * ...” is always

associated with event ev1, so we find event ev1 from

logs and then extract * from the log message as location
by using regular expression. The complete mapping is

illustrated in Table II.

Note that manually identifying an appropriate healing

action for the given new issue is typically non-trivial

since not only identifying an appropriate healing action

Table III
CATEGORIES OF STUDIED HEALING ACTIONS

category ID verb target # of cases
ID1 recycle App-Pool 57
ID2 reboot WAC 57
ID3 restart IIS 43
ID4 reboot SQL 39
ID5 restart AD 31
ID6 re-image WFE 9
ID7 patch Service 3
ID8 restart Scanner 2
ID9 restart Search 2

needs high-confidence evidence but also there are totally

9 types of healing actions (as listed in Table II), which

could be instantiated to form a non-trivial number of

possible healing actions in the search space. Hence

inspecting our suggested healing action(s) (e.g., the

healing action identified from the top-k most similar

historical issues) could apparently reduce the time-cost

on the two aspects.

IV. EXPERIMENTAL EVALUATION

In our evaluations, we intend to answer three research

questions:

• RQ1. How effectively can our approach suggest ap-

propriate healing actions for the given new issues?

• RQ2. How well does our technique for addressing

the high-correlation phenomenon contribute to the

overall effectiveness of our approach?

• RQ3. How well does our technique for addressing

the weak-discrimination phenomenon contribute to

the overall effectiveness of our approach?

A. Experiment Setup

We evaluate our techniques in a released produc-

tion service, named ServiceX. ServiceX is a customer-

facing, geographically distributed, 24 x 7, 3-tier online

service, with five datacenters around the world. We next

describe the collection of trace data and definition of

evaluation metrics for our evaluations.

We randomly sampled 400 issues from the resolved

issues which are detected by the internal monitoring

system in the year of 2012. Among these issues, 243

issues are with clear resolutions and transaction logs,

and these issues are valid for our evaluations.

The healing actions for the 243 issues are categorized

into 9 categories based on the combination of their verb
and target information as shown in Table III. In the

categorization, we do not consider or list the location

information in the healing actions since it is different

across different issues.

1) System Topology: The ServiceX system includes

five datacenters. Each datacenter can be represented

by a hierarchical topology, with many “farms” as the

leaf node. Each farm is a unit of full functionality for
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serving a set of customers, which contains servers of

multi-roles (e.g., WFEs, SQLs). The transaction logs

of each individual server are temporarily stored in the

corresponding local machine for a certain period of

time (the detailed information cannot be exposed due

to Microsoft confidential). According to a topology-

manager, which maintains the mapping from logical

server role to the specific physical machine, we can

query the corresponding transaction logs by given a

specific server name. The service issues are triggered

by monitoring system as well as real customers. When

an issue is triggered, it is sent to a global historical

issue repository named as RepX. Each issue in RepX is

associated with an issue ID, affected farm, and time

period, etc. Such associated information is used to

identify transaction logs for the issue.

2) Metrics: To comprehensively evaluate our ap-

proach, we design two-scenario strategies which mimic

the two major real usages of our technique. In both

scenarios, we in-turn treat each of the 243 issues (in

the order of their occurring time) as a “new issue”. But

the two scenarios differ in what issues we choose as the

“historical issues”.

In Scenario I, we reflect real usage of our approach

in practice by treating the previously encountered issues

(i.e., those that occurred before “new issue”) as the

“historical issues”. We then apply our approach for each

combination of “new issue” + “historical issues” and

then measure the accuracy of our approach’s effective-

ness in suggesting a correct healing action for the “new

issue”.

In Scenario II, we adopt the “leave-one-out” strategy

(a common strategy used in statistical analysis) by

treating all the remaining issues (other than the “new

issue”) as the “historical issues”. Scenario II is used for

building a knowledgebase which manages all historical

issues.

Note that in our results, the location info for a sug-

gested healing action is always correct for each issue,

because only an unhealthy service would produce ev1

– ev4 (see Table II). Therefore, the retrieval accuracy

is critical in the overall effectiveness of our approach:

if the healing action for the retrieved similar historical

issue for a “new issue” is in the same category as

the correct healing action for the “new issue”, then

the healing suggestion is correct (since the location
information of the healing action is assured to be correct

as described earlier).

3) Experiment Design: To answer the second and

third research questions, we apply two approaches (vari-

ants of our approach) in short as App1 and App2 besides

applying our approach in short as Ours. In App1, we

do not address the high-correlation phenomenon: we

calculate Mutual Information of each individual event as

its weight (using contrast info), then represent the events

as a vector, and finally calculate the cosine score as the

similarity metric value. In App2, we do not address the

weak-discrimination phenomenon: we first apply FCA

and use delta events between parent and child concepts

to define terms (using grouping information), use TF-

IDF as the weight of each term, and finally calculate

the cosine core as the similarity metric value.

Detailed Design of Scenario I: We design an

experiment that estimates the accuracy of top 1 similar

issue being retrieved by our approach to mimic one main

scenario when our technique is used in real practice.

We first sort all the issues by the occurring time from

the earliest to the latest. Then for each approach, we

initialize the score as zero. Then for each “new issue”

qi, we check the top 1 similar “historical issue” (here the

historical issues refer to the issues that occurred earlier

than qi) retrieved by our approach: if the retrieved “his-

torical issue” belongs to the same category of healing

actions as the “new issue”, we increase the score by one.

At the end of all iterations, for each qi, we can attain

an average score, which reflects the average accuracy of

healing suggestion at the time point of qi. We draw such

curve with X-axis being the index of the sorted issues

and Y-axis being the average accuracy at the time point

of the corresponding qi.
In Scenario I, we also evaluate the cost performance

of our approach. The runtime cost of our approach con-

sists of two parts: signature generation and retrieval. In

the part of signature generation, we apply our signature-

generation algorithm to only a new issue. After the

signature is generated, we store it into text indexed by

issue IDs. In practice, loading signatures of historical

issues is very fast, so we can ignore the loading time.

In the part of retrieval (i.e., similarity calculation), as the

number of historical issues grows, the time complexity

of this part grows linearly.

Detailed Design of Scenarios II: In our evalua-

tions, for each combination of each approach (Ours,

App1, and App2), each “new issue” qi selected from

healing-action category catk, and a given similarity

threshold s, we measure the precision for our approach’s

effectiveness in suggesting correct healing actions:

pre(qi, s) =
#retrivals in catk(similarity > s)

#retrievals(similarity > s)

Then we measure average precision for catk:

pre(catk, s) = average(pre(qi)), ∀qi ∈ catk

We measure the average precision for all categories:

pre = average(pre(catk, s)), ∀catk
In our evaluations, we set s from 0.6 to 0.995,

with 0.05 as each increment step. Then we get the
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Figure 5. Accuracy of suggesting correct healing actions

highest precision for our approach, App1, and App2,

respectively.

In our target problem, recall is not a useful metric,

since the decision of the final healing action is typically

not based on recall. According to the feedback from

engineers (short for product engineers, whose duties

are service diagnosis and recovering), they mainly care

about the retrieved candidates themselves, without car-

ing about the size of the categories that the specific

issues belong to, so we do not use recall as an important

metric.

B. Experiment Results

We next illustrate our experimental results of Scenar-

ios I and II, respectively.

1) Results of Scenario I: Experiments in Scenario

I address the accuracy of suggested healing actions

in real scenarios. Figure 5 shows the overall accuracy

trend for each approach. The X-axis is the index of

each issue (sorted by occurring time); the Y-axis is the

average accuracy of the issues between the first one and

the current one. Higher accuracy values indicate better

effectiveness.

RQ1: Approach Effectiveness: The overall accu-

racy of our approach, App1, and App2 is 87%, 82%,

and 72%, respectively. Achieving the best effectiveness,

our approach correctly suggests healing actions for 213

issues. Figure 5 shows the trend of the average accuracy:

the curve of our approach is always on top of curves of

App1 and App2.

Note that there are at least 9 issues for which wrong

healing actions would be suggested, since these issues

are the first issue of each of the total 9 categories, and

no previously encountered issue of the same category

is available for them to leverage. Such cases are repre-

sented by some points (e.g., the value of X-axis is 11,

17, 32) located at sharp drops in Figure 5.

Beside these 9 issues, our approach wrongly suggests

healing actions for 21 issues. We provide further inves-

tigation on these issues in Section IV.C.

The high accuracy of our approach is critical to

enable auto-healing tasks. Although currently service

recovery heavily relies on manual efforts, product teams

are starting to deploy some scripts to apply healing

Table IV
APP1 SUGGESTS CORRECT HEALING ACTIONS, WHEREAS OUR

APPROACH DOES NOT

Issue# Top1 Similarity (Ours) Top1 Similarity (App1)
153 0.02 0.27
178 0.24 0.24

Table V
OUR APPROACH SUGGESTS CORRECT HEALING ACTIONS,

WHEREAS APP1 DOES NOT

Issue# Top1 Similarity (Ours) Top1 Similarity (App1)
14 0.91 0.49
45 0.68 0.97
79 0.82 0.87
83 0.71 0.28
86 1.00 0.61
90 1.00 0.96
91 0.60 0.75
124 1.00 0.74

actions automatically, e.g., deploying a script in a

dedicated management machine to command the IIS

of a remote service to restart. We can then map our

suggested healing action to its corresponding script,

which is deployed to accomplish service auto-healing.

RQ2: Concept-Analysis Effectiveness: The blue-

colored (middle) curve in Figure 5 is for App1. Our

approach’s curve is on top of it at each value of X-axis.

App1 correctly suggests healing actions for 207 issues,

whereas our approach correctly suggests healing actions

for 6 more issues in total.

Table V and IV list all the issues with different

suggestions between our approach and App1 (including

the issues that our approach gives correct suggestions

but App1 does not, and those vice versa). There are 2

issues that App1 gives correct suggestions (the first 2

rows), and 8 other issues that our approach gives correct

suggestions (the last 8 rows).

To understand the reasons for such different sugges-

tions, we conduct further investigation. Table V and IV

further lists the top1 similarity score for each issue,

computed by our approach and App1, respectively. We

can observe that the 2 issues that App1 performs better

are trivial; the similarity score there is low: 0.27 is

the highest score. Such low score indicates that most

parts of the signatures between the current issue and

the top1 similar issue are not that similar (recall that

in the experiment design of Scenario II, we set the

similarity threshold to 0.6 as the lower bound). Further

investigation of the detailed log events and messages

confirms with such observation: in fact, the two issues

(#153 and #178) are “outliers” compared with other

issues, although correct healing actions are suggested

for them in the end.

On the other hand, all the 8 issues that our approach

performs better have at least 0.6 of top 1 similarity

score, and most scores are even close to 1.0. Further

investigation of these issues confirms that the current
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issue and the most similar issue are indeed related, App1

does not suggest correct healing actions because of its

main weakness: the bias of several terms of large size

(i.e., a signature consisting of a large number of events).

One typical example is the issues in category ID7,

each describing a specific service trouble named as

an “ADO.NET” issue. These results show that our

approach’s overall effectiveness benefits from address-

ing the high-correlation phenomenon. Dominating terms

(i.e., those with significantly larger weight than the other

terms of the same issue) of this category are {x} and

{y1 y2 y3 y4 y5}. When the execution of a transaction

instance goes through event {x} and {y1 – y5}, such

issue of a swift timeout can be reproduced. However, the

terms of many issues in the category of “SQL resource”

(ID4) are {z} and {y1 y2 y3 y4 y5}, with only one

event being different: “z” instead of “x”. Such difference

is small in quantity but is impactful. App1 can hardly

distinguish an issue from the category of “ADO.NET”

from an issue from the category of “SQL resource”, and

would report a high similarity score for these two issues,

leading to wrong healing suggestions. However, in our

approach, set {y1 – y5} contribute the same weight as

{x}, so the final similarity score would not be biased

by a specific term of large size. Note that the healing

actions for the two categories “ADO.NET” and “SQL

resource” are different, being patching a machine and

rebooting an SQL machine, respectively (see Table III).

RQ3: Contrast-Analysis Effectiveness: The green

colored (bottom) curve in Figure 5 is for App2. App2

correctly suggested healing actions for 174 issues, with

its accuracy as about 72%. Our approach improves the

accuracy of App2 by about 21%, which is substantial. In

summary, the evaluation result shows that, considering

contrast information (i.e., fail/success of each request)

substantially contributes to the overall accuracy of our

approach.

Runtime Performance of Our Approach: We gener-

ate the signatures of the total 243 issues with the runtime

cost of 45,848ms; thus, on average, we generate the

signature for each issue with the runtime cost of about

189ms.

Figure 6 shows the run time cost of retrieving the

top1 historical issue for each issue. The x-axis shows

the issue index, and the y-axis shows the time cost (with

unit as ms). We can see that the speed of processing

the first 150 issues is really fast (less than 50ms). As

the issue index grows, the runtime cost of the retrieval

grows, yet being still small (less than 250ms). Accord-

ing to the experiences from engineers, in practice, less

than 1 minute is already an acceptable bound for healing

services, since it is much less than the common MTTR

(the actual value of MTTR of ServiceX is not exposed

due to Microsoft confidential).

Figure 6. Overall performance of our approach

Table VI
OVERALL PRECISION

similarity threshold highest precision
Ours 0.85 0.87
App1 0.81 0.81
App2 0.94 0.58

The signature-generation part of App1 is 100 times

faster than the signature-generation part of our ap-

proach, since App1 calculates the mutual information of

only each individual event; however, the retrieval part

of our approach is 5 times faster than the retrieval part

of App1. One major reason is that our contrast analysis

eliminates most of irrelevant events; however, in App1,

the comparison of the new issue and a historical issue

can involve hundreds of unique events including many

irrelevant ones.

2) Results of Scenarios II: We use the similarity

threshold s as a parameter to get the pre s curve of each

approach. This part of evaluation complements to the

evaluation of Scenario I. To make the comparison fair,

we consider only the highest precision of each approach.

Table VI shows that the highest precision of our

approach is 0.87, with the corresponding similarity

threshold as 0.85. We can see that our approach also

performs the best compared to App1 and App2 in terms

of precision.

Note that high precision is very desirable for another

real scenario in practice. In particular, first, engineers

would like to set a similarity threshold. Then, after

a new issue occurs, they would like to see all the

possible historical issues (compared to the new issues)

with similarity exceeding this threshold. Finally, the

engineers inspect these retrieved historical issues and

make the final decision on which healing action to apply.

In this scenario, higher precision allows the engineers

to gain higher confidence in making decisions based on

the retrieved historical issues.

C. Experiences in Real Product

To make our approach more effective and better fit

into pipelines of service diagnostic in real production,

we investigate and record the issues or conditions where

our approach fails to suggest correct healing actions. We

further improve our algorithm design and implementa-

tion based on some of these findings. In this section,
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Table VII
ISSUES WHERE OUR APPROACH IS NOT APPLICABLE OR

FAILS

Inapplicable issues Issues our approach fails
Issue type Count Issue type Count

No logs available 78 (19.5%) one-shot issue 12
Service upgrade 31 (7.8%) logs not enough 4
Auto recovered 28 (7.0%) latency issue 3

False alarms 5 (1.3%) insufficient events 2
Other 15 (3.8%) Total 21

we discuss these experiences focusing the types of new

issues where our approach is not applicable and the

types of new issues where our approach fails to suggest

correct healing actions.

1) Issues Where Our Approach is Not Applicable:
We systematically and manually investigate the sampled

400 issues in RepX (see Section IV.A). Besides the

243 issues used in our evaluations, the remaining 157

(39%) issues do not satisfy our input requirements. The

statistics on types of these issues are listed in the left-

hand side of Table VII. We next illustrate the four main

types of issues.

The type of “No logs available” describes the issues

where we cannot collect corresponding transaction logs

anywhere. The underlying reasons vary: some were due

to network issues, so the user requests did not reach the

application service; some were due to changes of the

topology in the system, so that the alerted service no

longer existed when engineers started the investigation.

The type of “Service upgrade” describes issues that

are “noisy” issues alerted during system upgrade, i.e.,

the monitoring system was not shut down in time when

the service upgrade began. Engineers would just leave

a note of “this is trivial alarm that don’t need to inves-
tigate” and close it, so we cannot obtain corresponding

healing actions.

The type of “Auto recovered” describes issues that

were automatically recovered before engineers started

the investigation.

The type of “False alarms” describes issues that were

filed due to cases not related to real service issues, e.g.,

some internal testing bugs were wrongly filed as service

issues by mistake.

2) Issue Where Our Approach Fails: We study the

21 issues that our approach does not suggest correct

healing actions, and categorize them in the right-hand

side of Table VII.

The type of “one-shot issue” (12 issues) describes

issues with unique signatures, which are not similar to

the signatures of any other issues (each of the 12 issues

is not similar with each other either). According to the

feedback on these issues from engineers, the logs of

these issues provide useful information for diagnosis,

and the signatures that our approach generates are still

valuable to the engineers in diagnosis. Our approach

fails on these issues because there exist no similar

historical issues for these issues.

The type of “logs not enough” (4 issues) describes

issues with log information insufficient for diagnosis.

Engineers did not identify the root causes by inspecting

these logs, and our approach does not generate helpful

signatures either. According to the discussion with en-

gineers, the logging was not sufficient when the system

executed the code paths that lead to these 4 issues. On

the other hand, 4 is a small number, implying that the

current logging practice is generally good enough.

The type of “latency issue” (3 issues) describes issues

where the user requests are processed with suspiciously

long time, but are still processed successfully. Users

would feel unhappy about such slow response; however,

our approach cannot handle such long-latency issues

well, because the unhappy (long-latency) code paths

are not different to the happy (fast) code paths, and

no events for these two cases are discriminative.

The type of “insufficient events” (2 issues) describes

issues that are associated with insufficient events. Using

only events or event sets associated with these issues

cannot well discriminate the issues with other issues.

More information from log messages should be lever-

aged to generate more proper signatures. For example,

from the system’s source code, there is one event

generated for indicating the overall general exception

handling at the last stage of request processing. If the

request fails, there could be various exception types to

indicate different system failures, which could lead to

different healing actions. So using only this event can-

not well discriminate different issues. However, since

the exception information is recorded in the message

column, our approach’s effectiveness can be improved

by simply combining the event with its partial message

to construct a more useful new event.

D. Threats to Validity

The threats to external validity primarily include the

degree to which the studied online service, its issues,

its usages, etc. are representative of true practice. The

studied online service is a real-world product online

service that serves millions of customers globally. The

investigated issues and service usages come from real-

world cases. These threats could be reduced by more ex-

periments on wider types of subjects in future work. The

threats to internal validity are instrumentation effects

that can bias our results. Faults in our healing system

might cause such effects. To reduce these threats, we

manually inspected trace data and our system outputs

for a number of issues.
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V. REAL CASE STUDIES

In this section, we select two typical real issues oc-

curred in one online service system, to demonstrate the

effectiveness and potential capability of our approach.

Antivirus Configuration Corruption.
ServiceX experienced continuous performance problem

in one datacenter in January of 2012. During the oc-

currence of this issue, customers experienced both slow

response and failed to upload files in an unpredictable

fashion. Operators who first diagnosed this issue found

that one Web Front End (WFE), named WFEx, “pro-

duced” most http-status = 500 failures. Since each

transaction instance randomly selected one WFE to

be served due to the load-balancing strategy, only the

transaction instances that go through WFEx would have

a high probability to fail. The operators asserted that

WFEx went into a bad state, so they rebooted it after

investigation. However, such rebooting action did not

turn back the service availability, and the same issue

existed continuously. After involving senior experts,

they finally found the root cause of the issue to be

that the “configuration file for antivirus software became
corrupted after a random restart”. In the end, the only

resolution was to re-image.

Resolving this issue is challenging, involving 12

experts in different relevant teams and with mail discus-

sion in about two weeks to find the root cause by inves-

tigating various logs of different components/features.

This issue is also a tricky one since people usually re-

boot a WFE after general diagnosis. Our approach finds

the symptoms (denote as ACC: Antivirus Configuration

Corruption) “antivirus timeout” (which led to “Internal

Server Error”, reflecting that users failed to upload files)

and “SQL failing over detected” (which led to long

latency, reflecting that users felt slow response) on only

WFEx. We recorded this issue in the repository. On

early February, 2012, a new issue X occurred in another

farm of the same datacenter, our approach retrieved the

historical issue with ACC as the most similar issue, with

the similarity score of 0.96. Guided by the information

of the historical issue and its healing suggestion, the op-

erator, who was not familiar with this issue, immediately

moved to check the antivirus configurations instead of

rebooting the WFE (a common healing action). Our

approach helped reduce much investigation time of

the operator by providing informative diagnostic clues.

After repeated occurrences of such issue with the ACC

symptom, the issue was finally marked as a “need fix”

issue of antivirus software, and is to be fixed in the

future upcoming service upgrade.

False Alarms of Monitoring System.
We provide another interesting story that occurred after

we conducted the evaluation. This story demonstrates

that not only the healing actions, but also the informa-

tion about descriptions and diagnostic steps of similar

historical issues could be leveraged to help investigate

current issues.

Starting from early July of 2012 till the end of the

month, the monitoring system of ServiceX sent out

120 specific types of alarms (service issues). These

issues were not easy to diagnose. According to the

email discussion from the involved operators, and also

the information recorded in the issue repository, the

involved operators did observe some new suspicious

transaction logs in the effected machine; however, these

machines seemed running healthily without any ab-

normal behavior. To be conservative, operators had to

inspect the potential dependent machines one by one.

After hours of investigation, operators had no findings,

and had to temporally tag “no clue, postponed” to the

issue in the issue repository.

This challenging issue had been resolved about three

weeks later with more than ten experts involved. The

root cause was that the monitoring system reported a

lot of false alarms due to the incompatible versions of

components (of the monitoring system) after the previ-

ous upgrade. All the 120 false issues were then marked

as “duplicated” in the repository. Similar issues never

occurred again after the subsequent service upgrade.

We captured and replayed the whole story by sim-

ulation. According to our simulation study, we found

that if the first three issues (which recorded detailed

descriptions and diagnostic steps, and occurred in the

first two days) were labeled as a similar group, all the

remaining 117 issues could be retrieved correctly (i.e.,

for each unlabeled issue, the most similar one is one

of the three, and with the similarity-metric value >
0.90). Although there were no healing actions associated

with these issues, the rich information of the previous

investigations (i.e., those for the first three issues) can

substantially reduce redundant efforts for diagnosing the

large number of recurrent issues.

VI. RELATED WORK

We discuss related work in the areas of system diag-

nosis, fault detection, and mining software repositories.

System diagnosis. Cohen et al. [10] propose that re-

trieving a previously solved and annotated issue similar

to the given new issue may help identify the root cause

or fixing action for the given issue when the retrieval is

accurate. In contrast, rather than aiming to fix the issue,

our work aims to provide healing suggestion to reduce

MTTR by leveraging historical issues. Yuan et al. [11]

use classification techniques to classify issues into dif-

ferent categories. In contrast, our work does not require

specific labeling but retrieves similar historical issues

for adapting their healing actions as suggested healing

321321321



actions for the given issues. Previous work [12], [13]

on automated diagnosis of distributed systems uses two

types of trace data for analyzing system performance:

system metrics/events and transaction logs. Our work

requires only transaction logs for signature generation

and healing suggestion.

Fault localization. Our technique used to generate

signature from transaction logs shares a similar high-

level concept with the fault-localization technique pro-

posed by Liu et al. [14]. Sun et al. [15] evaluate patterns

mined from both correct and incorrect runs to detect

duplicate bug reports. Our work uses contrast informa-

tion for achieving high accuracy of signature generation.

Cellier [16] applied FCA for fault localization by using

concepts to find interesting clusters. In contrast to these

previous techniques on fault localization based on cov-

erage information, our work is motivated by addressing

challenges posed by characteristics of transaction logs.

Mining bug repositories. When a new software fault

is reported, operators usually use a web search engine

to search for the text of error messages or console

messages for diagnosis. The essence of such scenario

remains when the web search engine is replaced by a

search engine for a bug repository. Ashok et al. [17]

implement a search tool to speed up bug fixing by

leveraging natural language text, dumped traces, and

bug output. Some other work [15], [18] uses mining

or classification techniques on textual information to

cluster or detect duplicate bug reports. These techniques

would not be effective in our problem setting because

the textual information in a typical historical issue

repository is incomplete or imprecise.

VII. CONCLUSION

To effectively reduce the MTTR of a service, we

have proposed an automated mining-based approach for

suggesting an appropriate healing action for a given

issue. Our approach suggests an appropriate healing

action by adapting healing actions for the retrieved

similar historical issues. Our studies on a real-world

product online service show that our approach can

effectively provide appropriate healing actions to reduce

the MTTR of the service.
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