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Dealing with Text

• Data are represented in ways natural to problems from which they 
were derived

• Vast amount of text..

• If we want to apply the many data mining tools that we have at our 
disposal, we must 

• either engineer the data representation to match the tools 
(representation engineering), or 

• build new tools to match the data
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Why Text is Difficult

• Text is “unstructured”
• Linguistic structure is intended for human communication and not 

computers

• Word order matters sometimes

• Text can be dirty
• People write ungrammatically, misspell words, abbreviate unpredictably, 

and punctuate randomly
• Synonyms, homograms, abbreviations, etc.

• Context matters
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Text Representation

• Goal: Take a set of documents –each of which is a relatively free-
form sequence of words– and turn it into our familiar feature-vector 
form

• A collection of documents is called a corpus

• A document is composed of individual tokens or terms

• Each document is one instance 
• but we don’t know in advance what the features will be
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“Bag of Words”

• Treat every document as just a collection of individual words 
• Ignore grammar, word order, sentence structure, and (usually) 

punctuation
• Treat every word in a document as a potentially important keyword of 

the document

• What will be the feature’s value in a given document?
• Each document is represented by a one (if the token is present in the 

document) or a zero (the token is not present in the document)

• Straightforward representation

• Inexpensive to generate

• Tends to work well for many tasks
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Pre-processing of Text

The following steps should be performed:

• The case should be normalized
• Every term is in lowercase

• Words should be stemmed
• Suffixes are removed 

• E.g., noun plurals are transformed to singular forms 

• Stop-words should be removed
• A stop-word is a very common word in English (or whatever language is 

being parsed)

• Typical words such as the words the, and, of, and on are removed
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Term Frequency

• Use the word count (frequency) in the document instead of just a 
zero or one

• Differentiates between how many times a word is used
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Normalized Term Frequency

• Documents of various lengths

• Words of different frequencies
• Words should not be too common or too rare

• Both upper and lower limit on the number (or fraction) of documents in 
which a word may occur

• Feature selection is often employed

• The raw term frequencies are normalized in some way, 
• such as by dividing each by the total number of words in the document

• or the frequency of the specific term in the corpus
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TF-IDF

TFIDF 𝑡, 𝑑 = TF 𝑡, 𝑑 ×IDF 𝑡

• Inverse Document Frequency (IDF) of a term 

IDF 𝑡 = 1 + log
Total number of documents

Number of documents containing 𝑡

The sparseness of a term t is measured commonly by an equation 
called inverse document frequency (IDF), which may be thought of as 
the boost a term gets for being rare. 
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TFIDF
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Example: Jazz Musicians

• 16 prominent jazz musicians and excerpts of their biographies from 
Wikipedia

• Nearly 2,000 features after stemming and stop-word removal!

• Consider the sample phrase “Famous jazz saxophonist born in 
Kansas who played bebop and latin”

• Our goal is to find the musicians that best matches above phrase
• Idea: a. develop a feature vector

b. compute the distance of above phase’s feature vector and each
musician’s feature vector

c. pick the musician whose feature vector is most similar to the above
phase’s
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Excerpts from a few jazz musician biographies
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Beyond “Bag of Words”

• 𝑁-gram Sequences

• Named Entity Extraction

• Topic Models
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N-gram Sequences

• In some cases, word order is important and you want to preserve 
some information about it in the representation

• A next step up in complexity is to include sequences of adjacent 
words as terms

• Adjacent pairs are commonly called bi-grams

• Example: “The quick brown fox jumps” 
• It would be transformed into {quick, brown, fox, jumps, quick_brown, 

brown_fox, fox_jumps}

• N-grams they greatly increase the size of the feature set
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Topic Models
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Text Mining Example

Task: predict the stock market based on the stories that appear on the 
news wires
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Mining News Stories to Predict Stock Price Movement
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Mining News Stories to Predict Stock Price Movement
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Thanks!
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Questions?


