


The present form of support vector machine (SVM) was
largely developed at AT&T Bell Laboratories by Vapnik
and co-workers.

Known as a maximum margin classifier.

Originally proposed for classification and soon applied to
regression and time series prediction.

One of the most e�cient supervised learning methods.
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where ↵ denotes the parameters.

For a testing sample x , we can predict its label by
sign[f (x ,↵)].

f (x ,↵) = 0 is called the separation hyperplane.
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Linear classifiers

Linear hyperplane

f (x ,w , b) = hx ,wi+ b = 0

Consider the linearly separable case, there are infinite number
of hyperplanes that can do the job.
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Margin of a linear classifier

Definition: the width that the boundary could be increased by
before hitting a data point.



Maximum margin linear classifier

Definition: the linear classifier with the maximum margin.



Support vectors



Problem formulation
To formulate the margin, we further requires that for all
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We have introduced two additional hyperplanes
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hx ,wi+ b = 0
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What is the margin? The distance between the two new
hyperplanes.

The minimum distance between the hyperplane
hx ,wi+ b = 1 and the origin is ⇢
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How to calculate ⇢
1

and ⇢
2

?

Note x̄ = ⇢
1

w/kwk, where w/kwk is the unit vector along
the direction w . Since x̄ is on the blue hyperplane, then

h⇢
1

w/kwk,wi+ b = 1

which follows ⇢
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kwk . Similarly, we obtain ⇢
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The kernel-based function is exactly equivalent to preprocessing the data by applying similarity function to all inputs, then learning a linear model in the new transformed space.









































































































































































































































































































































































































































































































































































































































The kernel-based function is exactly equivalent to preprocessing the data by applying similarity function to all inputs, then learning a linear model in the new transformed space.



Commonly used kernels

Homogeneous polynomials

k(x , y) = (hx , yi)d

Inhomogeneous polynomials

k(x , y) = (hx , yi+ 1)d

Gaussian Kernel

k(x , y) = exp

✓
�kx � yk2

2�2

◆

Sigmoid Kernel

k(x , y) = tanh(⌘hx , yi+ v)



Polynomial kernel

k(x , y) = (hx , yi)d
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