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@ The present form of support vector machine (SVM) was
largely developed at AT&T Bell Laboratories by Vapnik
and co-workers.

@ Known as a maximum margin classifier.

@ Originally proposed for classification and soon applied to
regression and time series prediction.

@ One of the most efficient supervised learning methods.



@ Given a set of training samples
(X17y1) ; (X27y2) P (XNa_yN) » Xj € Rnayi € {_17 1} )
find a function f(x, «) to classify the samples, such that

>0, Vy,=+1;
f(Xi’&){ < 07 vyl = _1a

where o denotes the parameters.
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where o denotes the parameters.
@ For a testing sample x, we can predict its label by
sign[f(x, a)].



@ Given a set of training samples

(X]_,y]_),(Xz,yz),' o a(XNa_yN) , Xi € Rnayi € {_17 1}7

find a function f(x, «) to classify the samples, such that

>0, Vy,=+1;
f(Xi’&){ < 07 vyl = _1a
where o denotes the parameters.
@ For a testing sample x, we can predict its label by
sign[f(x, a)].
o f(x,a) =0 is called the separation hyperplane.



Linear classifiers

Linear hyperplane
f(x,w,b)=(x,w)+b=0

Consider the linearly separable case, there are infinite number
of hyperplanes that can do the job.

* denotes +1

° denotes -1

How would you
classify this data?
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Linear classifiers

Linear hyperplane
f(x,w,b)=(x,w)+b=0

Consider the linearly separable case, there are infinite number
of hyperplanes that can do the job.

° denotes +1

° denotes -1

Any of these
would be fine..

..but which is
best?




Margin of a linear classifier

° denotes +1

° denotes -1

7

Definition: the width that the boundary could be increased by
before hitting a data point.



Maximum margin linear classifier

* denotes +1

° denotes -1

Definition: the linear classifier with the maximum margin.



Support vectors

* denotes +1

° denotes -1

Support Vectors?™ 4|

are those

datapoints that -
the margin . °
pushes up ° e

against




Problem formulation

To formulate the margin, we further requires that for all
samples

i, @) = . wi +b{ < -1, Vy =L

or
Yo w) +b) > 1, i=1,... N,



Problem formulation
To formulate the margin, we further requires that for all
Yy, = +1,

> +1,
Vy,- = -1

samples
S _]-a

f(X,',CY) = <Xi>W>+b{
or
Yi(bw) 4 B) 21, =1, N,

@ We have introduced two additional hyperplanes
(x,w) + b = +£1 parallel to the separation hyperplane

(x,w)+b=0

by
S
+
o]
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What is the margin? The distance between the two new
hyperplanes.
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What is the margin? The distance between the two new
hyperplanes.

@ The minimum distance between the hyperplane
(x,w) + b =1 and the origin is p; = ﬁ. (why?)

@ The minimum distance between the hyperplane
(x,w) + b = —1 and the origin is p, = T*-£

fwll

@ The margin is |p1 — p2| = 2/||w||.



How to calculate p; and p,?

Note X = pyw/||w/||, where w/||w/|| is the unit vector along
the direction w. Since X is on the blue hyperplane, then

(w/lwll,w) +b=1

_b

which follows p; = Wl Similarly, we obtain p, = W'



Maximizing the margin is the same thing as minimizing the norm of w

Our goal is to maximize the margin. Among all possible hyperplanes meeting the con-
straints, we will choose the hyperplane with the smallest ||w]|| because it is the one which will
have the biggest margin.
This give us the following optimization problem:
Minimize in (w, b)
fIwll
subjectto y;(w - X; + b) > 1
(foranyi=1,...,n)
Solving this problem is like solving and equation. Once we have solved it, we will have found the

couple (w, b) for which ||w|| is the smallest possible and the constraints we fixed are met.
Which means we will have the equation of the optimal hyperplane !
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The kernel-based function is exactly equivalent to preprocessing the data by applying
similarity function to all inputs, then learning a linear model in the new transformed space.

‘We start with the dataset in the above figure, and project it into a three-

dimensional space where the new coordinates are:

X, = .l;f
Xy =13
X3 = V2x129

This is what the projected data looks like. Do you see a place where we just
might be able to slip in a plane?

e —_—



The kernel-based function is exactly equivalent to preprocessing the data by applying similarity function to all inputs, then learning a linear model in the new transformed space.
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The kernel-based function is exactly
equivalent to preprocessing the data
by applying similarity function to all
inputs, then learning a linear model
in the new transformed space.
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Commonly used kernels

@ Homogeneous polynomials
k(x,y) = ({x, )
@ Inhomogeneous polynomials
k(x,y) = ((x.y) +1)

@ Gaussian Kernel

K(x,y) = exp (_u)

2072

e Sigmoid Kernel

k(X’y) = ta”h(77<X7Y> + V)



Polynomial kernel

k(x,y) = ({(x,y))?

Example: n=2,d =2, x = (x1, %)
o O(x) = (X12»\/§X1X2,X22)




Polynomial kernel

k(x,y) = ({(x,y))?

Example: n=2,d =2, x = (x1, %)
o O(x) = (X12a \/§X1X2,X22)

@ Neither the mapping ® nor the feature space is unique
o O(x) = (xlz,xle,xle,x%)

o O(x) = % (X — X3, 2x1%0, X + x3)
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