Logistic Regression
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Classification Based on Probability

* |nstead of just predicting the class, give the probability
of the instance being that class
— i.e,, learn p(y | )

e Comparison to perceptron:

— Perceptron doesn’t produce probability estimate

e Recall that:
0 < p(event) <1

p(event) + p(—event) = 1




Logistic Regression

* Takes a probabilistic approach to learning
discriminative functions (i.e., a classifier)

e hg(x) should give p(y =1 | «;0) | Can’tjustuse linear
regression with a
— Want 0 < he(z) <1 threshold

e Logistic regression model:

he(x) = g (07x) Logistic / Sigmoid Function
1 9(2)
9(2) = 1+ e 7

1
h@(w) — 1 _I_e_ng | )/




Interpretation of Hypothesis Output

hg(x) = estimated p(y =1 | x;0)

Example: Cancer diagnosis from tumor size

L L0 . 1
L= r1 | | tumorSize

hg(il?) = 0.7
- Tell patient that 70% chance of tumor being malignant

Notethat: p(y=0|x;0)+ply=1|x;0) =1

Therefore, p(y =0 | x;0)=1—p(y=1| x;0)




Another Interpretation

* Equivalently, logistic regression assumes that

ply=1]|x;0)

| — 0 0 ..+ 6

Ogﬂa(y:O\w;Hﬂ ot 011 + + 0qxq
oddsofy=1

Side Note: the odds in favor of an event is the quantity
p/ (1 -p), where p is the probability of the event

E.g., If | toss a fair dice, what are the odds that | will have a 6?

* |In other words, logistic regression assumes that the
log odds is a linear function of x

Based on slide by Xiaoli Fern



The Perceptron: Forward Propagation

Activation Functions
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Logistic Regression

he(x) = g (07x)
1

. -

g9(2)

g(z) = T+ o
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0T should be large negative
values for negative instances

|
0T should be large positive
values for positive instances

e Assume a threshold and...
— Predicty=1if hg(x) > 0.5
— Predicty =0if hg(x) < 0.5

Based on slide by Andrew Ng




Non-Linear Decision Boundary

e Can apply basis function expansion to features, same
as with linear regression




Logistic Regression

. Given {(mu),y(l)) | (m<2>7y<2>) (mm)’y(n))}

where () ¢ R4, ¢y < {0,1}

* Model: hg(x) =g (07x)
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Logistic Regression Objective Function

 Can’tjust use squared loss as in linear regression:

0= 3 1))

1=1

— Using the logistic regression model

1
h@(w) — 1+ e_gTa3

results in a non-convex optimization




Deriving the Cost Function via
Maximum Likelihood Estimation

* Likelihood of data is given by: [(9) = Hp(y(i) | 2V 9)
i=1

* So, looking for the @ that maximizes the likelihood

Orip = arg max[(9) = arg max Hp(y(i) | z("); 6)

* Can take the log without changing the solution:

_ (i) | ().
OrirE argmguxlog}:[lp(y |z 6)

_ () | (0). g
argmgxglogp(y |z 6)



Deriving the Cost Function via
Maximum Likelihood Estimation

* Expand as follows:

_ () | (6.
OMLE al‘gmgbxi_zllogp(y | z';0)

— arg mgxz {y(i) logp(y'W=1|z;0) + (1 - y(i)) log (1 —p(y =1z 0))}
i=1

e Substitute in model, and take negative to yield

Logistic regression objective:

min J(0)

n

J(0) = — Z [y(i) log hg (') + ( — y(i)) log (1 — hg(m(i)))]

1=1




Intuition Behind the Objective
J(0) = — zn: {y(i) log he (V) + (1 — y(i)) log (1 — hg(m(i)))]

1=1

* Cost of a single instance:

—log(hg(x)) ify=1
cost (he(x),y) = { —log(1 % hZ(m)) if z =0

* Can re-write objective function as
n

J(0) = Zcost (hg(ib(i)), y(i))

1=1

1 . A\ 2
Compare to linear regression: J(0) = — Z (ho (m(z)) — y(z))



Intuition Behind the Objective

—log(hg(x)) ify=1
cost (he(x),y) = { —log(1 % hz(;p)) if z =0

Aside: Recall the plot of log(z)
/
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Intuition Behind the Objective

—log(hg(x)) ify=1
cost (he(x),y) = { —log(1 % hz(g;)) if z =0

Ify=1

* Cost =0 if prediction is correct
fy=1 * As hg(x) — 0, cost — o

* Captures intuition that larger

mistakes should get larger
penalties

cost

0 he () ! — e.g., predict hg(x) =0, buty=1

Based on example by Andrew Ng



Intuition Behind the Objective

_ —log(he(x)) ify=1
cost (he(z),y) = { —log(1 — hg(x)) ify=0
Ify=0
* Cost =0 if prediction is correct
Ify=1 * As (1 —hg(x)) — 0,cost — oo

Ify=0
* Captures intuition that larger
mistakes should get larger

penalties

cost

0 he (CE) 1

Based on example by Andrew Ng
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Binary Cross Entropy Loss

Cross entropy loss can be used with models that output a probability between O and |

: @y
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J(0) = %zlly(i} log (f(x(i); 9)) +(1—yW) log(l — £(x®; 9))

Actual Predicted Actual Predicted

¢ loss = tf.reduce mean( tf.nn.softmax cross entropy with logits (model.y, model.pred) )



Regularized Logistic Regression

1(6) = — 3[4 log ho(a®) + (1 = y) log (1 — ho(=)

1=1

* We can regularize logistic regression exactly as before:

d
Jregularized(g) — ‘]<9) + A Z 932
j=1

= J(0) + A[0)1.q)ll3



Gradient Descent for Logistic Regression

Jgl6) =~ 3 4 log ho(a) + (1 =y log (1 = ho(@D)| + X|6}1.01]3

1=1

Want mein J(0)

e |nitialize @
* Repeat until convergence

O :
_ Oé—J(B) simultaneous update

Hj — Hj aej fory=0...d

Use the natural logarithm (In = log,) to cancel with the exp() in hg(x)



Gradient Descent for Logistic Regression

Jgl6) =~ 3 4 log ho(a) + (1 =y log (1 = ho(@D)| + X|6}1.01]3

1=1

Want mein J(0)

* Initialize @

* Repeat until convergence (simultaneous update forj=0 ... d)

o 00— 'S (ho (29 — )
1=1

b 0;—a | (ko (a) — 49 2 — 20,

1=1




Gradient Descent for Logistic Regression

e |nitialize @

* Repeat until convergence (simultaneous update forj=0 ... d)

o 00— 'S (ho () = )
1=1

93' <— 6)]' — X Z (he (CIJ(Z)) (Z)) 52) — %9]

L1=1

This looks IDENTICAL to linear regression!!!

* lIgnoring the 1/n constant
* However, the form of the model is very different:

1
h9( ) 1 Lo 0T




Multi-Class Classification

Binary classification: Multi-class classification:
OO
- . o ®
; O - - .
¢ -
X4 »
Disease diagnosis:  healthy / cold / flu / pneumonia

Object classification: desk / chair / monitor / bookcase
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Multi-Class Logistic Regression

* For 2 classes:

ho () !

Rt exp(—0Tx)

weight assigned

e ForCclasses{], ..., C}

ply=c|x;01,...,0c) =

— Called the softmax function

N

exp(0'x)

+exp(60'x)

\

‘\\\\\\\

toy=0

exp(6, x)

weight assigned

toy=1

Zle exp(0] x)
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Multi-Class Logistic Regression

Split into One vs Rest:

* Train a logistic regression classifier for each class 1 to
predict the probability that y =1 with

exp(0, x)
S exp(6]x)

he(x) =

22



Implementing Multi-Class
Logistic Regression

exp(6, z)
chzl exp(0/ x)

* Use h.(x) = as the model for class ¢

* Gradient descent simultaneously updates all parameters

for all models
— Same derivative as before, just with the above h_(x)

* Predict class label as the most probable label

max h.(x)



