Tutorial:
Monte Carlo Game Tree Search

CSC384 - Introduction to Artificial Intelligence
March 17, 2017

by Alberto Camacho and Amit Kadan

These slides have been obtained from the following sources:

. AAAI-14 Games Tutorial, by Martin Muller:
. https://webdocs.cs.ualberta.ca/“mmueller/courses/2014-AAAl-games-tutorial/slides/AAAI-14-Tutorial-Games-5-

MCTS.pdf
. International Seminar on New Issues in Artificial Intelligence, by Simon. Lucas:
. http://scalab.uc3m.es/~seminarios/seminarl1/slides/lucas2.pdf

. Constraint Programming 2012, Tutorial on Monte-Carlo Tree Search, by Michele Sebag:
. https://www.Iri.fr/~sebag/Slides/InvitedTutorial CP12.pdf

. Artificial Intelligence course at Swarthmore College, by Bryce Wiedenbeck
. https://www.cs.swarthmore.edu/~bryce/cs63/s16/slides/2-15 MCTS.pdf

. Introduction to Monte Carlo Tree Search, by Jeff Bradberry
. https://jeffbradberry.com/posts/2015/09/intro-to-monte-carlo-tree-search/

Conventional Game Tree Search

https://en.wikipedia.org/wiki/Alpha—beta_pruning

* Minimax with alpha-beta
pruning, transposition tables

e Works well when:

— A good heuristic value function
is known

— The branching factor is modest

* E.g. Chess, Deep Blue, Rybka
etc.

Whenever the maximum score that the minimizing player(beta) is assured of becomes less than the
minimum score that the maximizing player(alpha) is assured of (i.e. beta <= alpha), the maximizing
player need not consider the descendants of this node as they will never be reached in actual play.

https://en.wikipedia.org/wiki/Alpha–beta_pruning

 Whenever the maximum score that the minimizing player(beta) is assured of becomes less than the minimum score that the maximizing player(alpha) is assured of (i.e. beta <= alpha), the maximizing player need not consider the descendants of this node as they will never be reached in actual play.

An illustration of alpha–beta pruning. The grayed-out subtrees need not be explored (when moves are evaluated from left to right), since we know the group of subtrees as a whole yields the value of an equivalent subtree or worse, and as such cannot influence the final result.

Go

* Much tougher for
computers

* High branching factor

* No good heuristic value
function

“Although progress has been
steady, it will take many decades
of research and development
before world-championship—
calibre go programs exist”.
Jonathan Schaeffer, 2001

Monte Carlo Tree Search (MCTS)

Revolutionised the world of computer go
Best GGP players (2008, 2009) use MCTS

More CPU cycles leads to smarter play

— Typically lin / log: each doubling of CPU time adds
a constant to playing strength

Uses statistics of deep look-ahead from
randomised roll-outs

Anytime algorithm

General game playing (GGP) is the design of artificial intelligence programs to be able to play more than one game successfully

MCTS

* Builds and searches an asymmetric game tree
to make each move

* Phases are:
— Tree search: select node to expand using tree
policy
— Perform random roll-out to end of game when
true value is known

— Back the value up the tree

Sample MCTS Tree

(fig from CadiaPlayer,
Bjornsson and Finsson, IEEE T-CIAIG)

Not just a game: same approaches apply to optimal energy
policy

Sample Games
o AW

Brief History of Monte Carlo Methods

Monte Carlo methods (or Monte Carlo experiments) are a broad class of computational algorithms that rely on repeated random sampling to obtain numerica
results. Their essential idea is using randomness to solve problems that might be deterministic in principle.

1940’s — now
1990

1993

2003 -05
2006

2006

2007 — now
2012 — now

Popular in Physics, Economics, ...
to simulate complex systems

(Abramson 1990) expected-outcome
Brigmann, Gobble

Bouzy, Monte Carlo experiments
Coulom, Crazy Stone, MCTS

(Kocsis & Szepesvari2006) UCT
MoGo, Zen, Fuego, many others

MCTS survey paper (Browne et al 2012);
huge number of applications

https://jeffbradberry.com/posts/2015/09/intro-to-monte-carlo-tree-search/

Monte Carlo methods (or Monte Carlo experiments) are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. Their essential idea is using randomness to solve problems that might be deterministic in principle.

https://jeffbradberry.com/posts/2015/09/intro-to-monte-carlo-tree-search/

(Very) Basic Monte Carlo Search

Play lots of random games
start with each possible legal move

Keep winning statistics

? Separately for each startingmove
Keep going as long as you have time, then...

Play move with best winning percentage

Dan Pei

Example — Basic Monte Carlo Search

Qe state s;
T V(m) =2/4=0.5
Seo | [See | oo | [
teon o o [
ll} fr # 11
gnz o i«»% %; Simulations
1 ply tree i s e s
" s e S e
root = current position s e ey b
s, = state after move m, L
_ 0 &5 B BE
S, = ... e fiec
1 1 O 0 Outcomes

Naive Approach

Use simulations directly as an evaluation function for a8

Problems
7 Single simulation is very noisy, only 0/1 signal
72 running many simulations for one evaluation is very slow

72 Example:
typical speed of chess programs 1 million eval/second

Go: 1 million moves/second, 400 moves/simulation,
100 simulations/eval = 25 eval/second

Result: Monte Carlo was ignored for over 10 years in Go

Monte Carlo Tree Search

ldea: use results of simulations to guide growth of
the game tree

Exploitation: focus on promising moves

Exploration: focus on moves where uncertainty
about evaluation is high

Two contradictory goals?
72 Theory of bandits can help

Bandits

Multi-armed bandits
(slot machines in Casino)

Assumptions:
A Choice of several arms

2 each arm pull is independent of other pulls

?2 Each arm has fixed, unknown average payoff
Which arm has the best average payoff?

Want to minimize regret = loss from playing
non-optimal arm

Explore and Exploit with Bandits

Explore all arms, but also:
Exploit: play promising arms more often

Minimize regret from playing poor arms

in order to ensure that the optimal arm is not missed due to temporarily promising rewards from a sub-optimal arm.
It is thus important to place an upper confidence bound on the rewards observed so far that ensures this.

Upper confidence bound (UCB)

Pick each node with probability proportional to:

parent node visits

(e C X ln(Ng\

value estimate
tunable parameter

number of visits

e probability is decreasing in the number of visits (explore)
e probability is increasing in a node’s value (exploit)

Dan Pei

in order to ensure that the optimal arm is not missed due to temporarily promising rewards from a sub-optimal arm.
It is thus important to place an upper confidence bound on the rewards observed so far that ensures this.

UCB2 Formula (Auer et al 2002)

Name UCB stands for Upper Confidence Bound
Policy:
First, try each arm once

Then, at each time step:

2 choose arm i that maximizes the UCB1 formula for
the upper confidence bound:

_ 2In(n
Xj + ()
n;

Theoretical Properties of UCB1

Main question: rate of convergence to optimal arm

Huge amount of literature on different bandit
algorithms and their properties

Typical goal: regret O(log n) for n trials

For many kinds of problems, cannot do better
asymptotically (Lai and Robbins 1985)

UCB1 is a simple algorithm that achieves this
asymptotic bound for many input distributions

The case of Trees: From UCB to UCT

Upper Confidence Bound 1 applied to trees

UCB makes a single decision

What about sequences of decisions (e.g. planning,
games)?

Answer: use a lookahead tree (as in games)

Scenarios
7 Single-agent (planning, all actions controlled)

our r ? Adversarial (as in games, or worst-case analysis)
z H : o V24 H
FOCUS Probabilistic (average case, “neutral” environment)

Dan Pei

Upper Confidence Bound 1 applied to trees

MCTS Operation

(fig from CadiaPlayer,
Bjornsson and Finsson, IEEE T-CIAIG)

Each iteration starts at
the root ser

Follows tree policy to \ selection
reach a leaf node ’

Then perform a
random roll-out from
there

Node ‘N’ is then added
to tree | Fartiom

Value of ‘T’ back- y oeeen,
propagated up tree

Generic Monte Carlo Tree Search

Select leaf node L in game tree
Expand children of L
Simulate a randomized game from (new) leaf node

Update (or backpropagate) statistics on path to

root
Selection Expansmn Simulation Backpropagation
& 00 @ @ @ A
@) G9) (2) @ @ @ @ @) (2) @) C2)
@) 3

Image source: http://en.wikipedia.org/wiki/Monte-Carlo_tree_search o:

Selection

The first phase, selection, lasts while you have the statistics
necessary to treat each position you reach as a multi-armed
bandit problem. The move to use, then, would be chosen by
the UCB1 algorithm instead of randomly, and applied to
obtain the next position to be considered. Selection would
then proceed until you reach a position where not all of the
child positions have statistics recorded.

The second phase, expansion, occurs when you can no
longer apply UCB1. An unvisited child position is randomly

chosen, and a new record node is added to the tree of
statistics.

Expansion

Simulation

g b 4 : " g i - I nsd b 4. P
Once the new record is added, the Monte Carlo

— s s oudnd —L . L —- - . ’ o L ', _ 7
simulation begins, here depicted with a dashed

- y ~ ~ 19 [.~ BT -~ r M P / Iy s
arrow. Moves in the simulation may be completely

I y— - Ny Juy ¥ = 7 ——t b
random, or may use calcuiations (o Wf.'g.}/f the

randomness in favor of moves that may be better.

After expansion occurs, the remainder of the playout is in
phase 3, simulation. This is done as a typical Monte Carlo
simulation, either purely random or with some simple
weighting heuristics if a /ight playout is desired, or by using
some computationally expensive heuristics and evaluations
for a heavy playout. For games with a lower branching factor,
a light playout can give good results.

Finally, the fourth phase is the update or back-propagation
phase. This occurs when the playout reaches the end of the
game. All of the positions visited during this playout have
their play count incremented, and if the player for that

position won the playout, the win count is also incremented.

Back-Propagation

Dan Pei

3

2

Summary — MCTS So Far

UCB, UCT are very important algorithms in both
theory and practice

Well founded, convergence guarantees under
relatively weak conditions

Basis for extremely successful programs for games
and many other applications

Impact - Applications of MCTS

Classical Board Games
A Go, Hex

A Amazons
2 Lines of Action, Arimaa, Havannah, NoGo, Konane,...

Multi-player games, card games, RTS, video games

Probabilistic Planning, MDP, POMDP

Optimization, energy management, scheduling,
distributed constraint satisfaction, library
performance tuning, ...

Impact — Strengths of MCTS

Very general algorithm for decision making

Works with very little domain-specific knowledge

72 Need a simulator of the domain
Can take advantage of knowledge when present

Successful parallelizations for both shared memory
and massively parallel distributed systems

