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Supervised Classification

• How can we classify the population into groups that differ from each 
other with respect to some quantity of interest?

• Informative attributes
• Find knowable attributes that correlate with the target of interest

• Increase accuracy
• Alleviate computational problems
• E.g., tree induction
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Supervised Classification

• How can we judge whether a variable contains important information 
about the target variable?

• How much?
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Selecting Informative Attributes

Objective: Based on customer attributes, partition the customers into 
subgroups that are less impure – with respect to the class (i.e., such 
that in each group as many instances as possible belong to the 
same class)

No Yes Yes Yes Yes No Yes No
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Selecting Informative Attributes

• The most common splitting criterion is called information gain (IG)
• It is based on a purity measure called entropy

• 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −p+ log/ 𝑝+ − 𝑝/ log/ 𝑝/ − . .
• Measures the general disorder of a set
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Information Gain

• Information gain measures the change in entropy due to any amount 
of new information being added
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Information Gain

=0.79
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Information Gain

Relative IG = IG/entropy(parent)=0.37/0.99=0.37
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Attribute Selection

Reasons for selecting only a subset of attributes:

• Better insights and business understanding

• Better explanations and more tractable models

• Reduced cost

• Faster predictions

• Better predictions!
• Over-fitting (to be continued..)

and also determining the most informative attributes.
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Example: Attribution Selection with Information Gain

• This dataset includes descriptions of hypothetical samples 
corresponding to 23 species of gilled mushrooms in the Agaricus
and Lepiota Family

• Each species is identified as definitely edible, definitely poisonous, 
or of unknown edibility and not recommended

• This latter class was combined with the poisonous one

• The Guide clearly states that there is no simple rule for determining 
the edibility of a mushroom; no rule like “leaflets three, let it be” for 
Poisonous Oak and Ivy
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Example: Attribution Selection with Information Gain
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Example: Attribution Selection with Information Gain
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Example: Attribution Selection with Information Gain
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Example: Attribution Selection with Information Gain
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Multivariate Supervised Classification

• If we select the single variable that gives the most information gain, 
we create a very simple classification

• If we select multiple attributes each giving some information gain, 
how do we put them together?
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Tree-Structured Models

Write-off: not to pay off their account balances. i.e., defaulting on one’s phone bill or credit card balance
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Tree-Structured Models

• Classify ‘John Doe’
• Balance=115K, Employed=No, and Age=40
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Tree-Structured Models: “Rules”

• No two parents share descendants 

• There are no cycles

• The branches always “point downwards” 

• Every example always ends up at a leaf node with some specific 
class determination

• Probability estimation trees, regression trees (to be continued..)
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Tree Induction

• How do we create a classification tree from data?
• divide-and-conquer approach
• take each data subset and recursively apply attribute selection to find 

the best attribute to partition it

• When do we stop?
• The nodes are pure,
• there are no more variables, or

• even earlier (over-fitting – to be continued..)
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Why trees?

• Decision trees (DTs), or classification trees, are one of the most 
popular data mining tools 

• (along with linear and logistic regression)

• They are:
• Easy to understand
• Easy to implement
• Easy to use
• Computationally cheap

• Almost all data mining packages include DTs

• They have advantages for model comprehensibility, which is 
important for:

• model evaluation
• communication to non-DM-savvy stakeholders
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Visualizing Classifications

No No
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Visualizing Classifications
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Income

Age

No Write-off(Default)

Write-off(No default)

Split over age

Split over income

50K

45

Pattern:
IF Balance >= 50K & Age > 45
THEN Write-off = ‘yes’ 
ELSE Write-off = ‘no’

Geometric interpretation of a model
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Income

Age

Did not buy life insurance 

Bought life insurance

50K

45

What alternatives are there to partitioning this way?

Geometric interpretation of a model

“True” boundary may not be 
closely approximated by a 

linear boundary!
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Trees as Sets of Rules

• The classification tree is equivalent to this rule set

• Each rule consists of the attribute tests along the path connected 
with AND
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Trees as Sets of Rules

• IF (Employed = Yes) THEN Class=No Write-off

• IF (Employed = No) AND (Balance < 50k) THEN Class=No Write-off

• IF (Employed = No) AND (Balance ≥ 50k) AND (Age < 45) THEN Class=No Write-off

• IF (Employed = No) AND (Balance ≥ 50k) AND (Age ≥ 45) THEN Class=Write-off
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NO

Income

Age

Did not buy life insurance 

Bought life insurance

Split over age

Split over income

50K

45

Income

>=50K<50K

Age

>=45<45

NO

YES

Classification tree 

Interested in LI? = NO 

?

What are we predicting? 
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p(LI)=0.43

Income

Age

Did not buy life insurance 

Bought life insurance

Split over age

Split over income

50K

45

Income

>=50K<50K

Age

>=45<45

p(LI)=0.15

p(LI)=0.83

Classification tree 

Interested in LI? = 3/7

?

What are we predicting? 
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Questions?


