Knowledge Graph Tutorial

Jay Pujara jaypujara.org jay@cs.umd.edu @jay_mlr

Sameer Singh sameersingh.org sameer@uci.edu @sameer

Knowledge Graph Primer

TOPICS:

- What is a Knowledge Graph?
- Why are Knowledge Graphs Important?
- Where do Knowledge Graphs come from?
- Knowledge Representation Choices
- Problem Overview

Knowledge Graph Primer

TOPICS:

WHAT IS A KNOWLEDGE GRAPH?

Why are Knowledge Graphs Important?

Where do Knowledge Graphs come from?

Knowledge Representation Choices

Problem Overview

Knowledge Graph

Essentially, KG is a sematic network, which models the entities (including properties) and the relation between each other.

• Knowledge in graph form!

- Knowledge in graph form!
- Captures entities, attributes, and relationships

- Knowledge in graph form!
- Captures entities, attributes, and relationships
- Nodes are entities

- Knowledge in graph form!
- Captures entities, attributes, and relationships
- Nodes are entities
- Nodes are labeled with attributes (e.g., types)

- Knowledge in graph form!
- Captures entities, attributes, and relationships
- Nodes are entities
- Nodes are labeled with attributes (e.g., types)
- Typed edges between two nodes capture a relationship between entities

Example knowledge graph

- Knowledge in graph form!
- Captures entities, attributes, and relationships
- Nodes are entities
- Nodes are labeled with attributes (e.g., types)
- Typed edges between two nodes capture a relationship between entities

Knowledge Graph Primer

TOPICS:

What is a Knowledge Graph?

Why are Knowledge Graphs Important?

Where do Knowledge Graphs come from?

Knowledge Representation Choices

Problem Overview

Why knowledge graphs?

• Humans:

- Combat information overload
- Explore via intuitive structure
- Tool for supporting knowledge-driven tasks

• Als:

- Key ingredient for many AI tasks
- Bridge from data to human semantics
- Use decades of work on graph analysis

Interdisciplinary Research

Database

RDF Database Data Integration 、 Knowledge Fusion

Natural Language Processing Information Extraction Semantic Parsing

Machine Learning Knowledge Representation (Graph Embedding)

Knowledge Engineering KB construction Rule-based Reasoning

Knowledge Graphs & Industry

- Google Knowledge Graph
 - Google Knowledge Vault
- Amazon Product Graph
- Facebook Graph API
- IBM Watson
- Microsoft Satori
 - Project Hanover/Literome
- LinkedIn Knowledge Graph
- Yandex Object Answer
- Diffbot, GraphIQ, Maana, ParseHub, Reactor Labs, SpazioDati

Knowledge Graph Primer

TOPICS:

What is a Knowledge Graph?

Why are Knowledge Graphs Important?

WHERE DO KNOWLEDGE GRAPHS COME FROM?

KNOWLEDGE REPRESENTATION CHOICES

Problem Overview

- Structured Text
 - Wikipedia Infoboxes, tables, databases, social nets

and the second se		100 0131	00.00	07.40	10.14	20.10		
C. Color	1 Caral		9.18m H	1.36m L	9.49m H	1.25m L		
Pec 1		Wed 1st	01:33	08:21	13:53	20:47		
		Feb 2017	9.10m H	1.51m L	9.37m H	1.42m L		
		Thu 2nd	02:14	08:59	14:36	21:27		
			8.91m H	1.76m L	9.15m H	1.70m L		
		Fri 3rd	03:00	09:42	15:24	22:12		
			8.63m H	2.08m L	8.84m H	2.04m L		
	TOPENS	Sat 4th	03:52	10:34	16:21	23:09		
and the	AT S	0	8.27m H	2.43m L	8.45m H	2.39m L		
		Sun 5th	04:59	11:42	17:34			
		Man Cth	7.95m H	2.71m L	8.13m H	10.57		
		WON OUT	00.24 2.62m l	7 92m H	2 72m I	10.57		
The "Fab Fo	ur" Beatles lineun in 1964	Tue 7th	01:49	07:39	14:31	20.13		
Clashuiza from		100 / 11	2 56m I	8 03m H	2 42m I	8 29m H		
Clockwise from	n top left: John Lennon, Paul	Wed 8th	03:03	08:49	15:43	21.18		
McCartney, Rin	go Starr and George Harrison	free out	2.23m L	8.46m H	1.93m L	8.69m H		
Backo	round information	Thu 9th	04:08	09:47	16:45	22:14		
			1.82m L	8.94m H	1.41m L	9.07m H		
Origin	Liverpool, England, United	Fri 10th	05:03	10:36	17:38	23:01		
	Kingdom		1.44m L	9.34m H	0.99m L	9.35m H		
Genres	Bock · non	Sat 11th	05:51	11:21	18:24	23:44		
	Hook pop		1.17m L	9.61m H	0.75m L	9.47m H		
Years active	1960-1970 The Beatles Total Album Sales S	Statistics	100200000		Sector Contractor	Data		
Labels	EMI . Polyc Total number of Beatles albums so	OIVC Total number of Beatles albums sold 2.						
	Swan . Vec Total Albums Sold on iTunes	Total Albums Sold on iTunes						
	United Artic	Total Singles Sold on iTunes						
	Sales By Available Markets	Sales By Available Marketa						
Associated acts The Quarry United States						209.1 M	illion	
	Preston · P Canada	P Canada						
Website	thebeatles. United Kingdom					7.5 Millio	2n	
	Germany					7.3 Millio	on .	
Past members	John Lenne France					3.1 Milli	n	
	Paul McCa Australia					2.8 Milli	on	
	George Ha Japan					1.9 Milli	on	
	Ringo Stari Argentina					1.6 Milli	on	
	Brazil					600,000		
	Sweden					684,000		
	Austria					570,000		
	Switzerland					450,000		
	ADVERTMENTATION							

07:06

12:36

9.15m H 1.34m L 9.50m H 1.20m L

19:32

Mon 30th 00:18

Jan 2017

Beaties Biliboard Chart Statistics	
Total weeks on chart	1,278 weeks
Total number ones	15
Total weeks at number one	175 weeks
Album with longest time spent at number one ("Please Please Me")	30 weeks
O PREV DATA SET	NEXT DATA SET O

- Structured Text
 - Wikipedia Infoboxes, tables, databases, social nets
- Unstructured Text
 - WWW, news, social media, reference articles

Beatles last live performance

Published: Thursday, January 26th 2017, 5:24 am PST Updated: Monday, January 30th 2017, 4:06 am PST Written by Jim Eftink, Producer CONNECT

(KFVS) - How about a little Beatles history. It was on this date in 1969, the band performed their last live public performance.

Allan Williams, First Manager of the Beatles, Dies at 86

(Source: Stock ime By ALLAN KOZINN DEC. 31, 2016

- Structured Text
 - Wikipedia Infoboxes, tables, databases, social nets
- Unstructured Text
 - WWW, news, social media, reference articles
- Images

- Structured Text
 - Wikipedia Infoboxes, tables, databases, social nets
- Unstructured Text
 - WWW, news, social media, reference articles
- Images
- Video
 - YouTube, video feeds

The Beatles - Topic

Knowledge Representation

Decades of research into knowledge representation

- Most knowledge graph implementations use RDF triples
 - <rdf:subject, rdf:predicate, rdf:object> : r(s,p,o)
 - Temporal scoping, reification, and skolemization...
- ABox (assertions) versus TBox (terminology)
- Common ontological primitives
 - rdfs:domain, rdfs:range, rdf:type, rdfs:subClassOf, rdfs:subPropertyOf, ...
 - owl:inverseOf, owl:TransitiveProperty, owl:FunctionalProperty, ...

Resource Description Framework (RDF)

- RDF is an **de facto standard** for Knowledge Graph (KG).
- RDF is a **language** for the conceptual modeling of information about web resources
- A building block of semantic web
- Make the information on the web and the interrelationships among them "**Machine Understandable**"

RDF and Semantic Web

- RDF is a language for the conceptual modeling of information about web resources
- A building block of semantic web
 - Facilitates exchange of information
 - Search engines can retrieve more relevant information

- Facilitates data integration (mashes)
- Machine understandable
 - Understand the information on the web and the interrelationships among them

RDF Uses

 Yago and DBPedia extract facts from Wikipedia & represent as RDF → structural queries

- Communities build RDF data
 - ► E.g., biologists: Bio2RDF and Uniprot RDF
- Web data integration
 - Linked Data Cloud

▶ ...

RDF Data Volumes ...

- ...are growing and fast
 - Linked data cloud currently consists of 325 datasets with >25B triples
 - Size almost doubling every year

April '14: 1091 datasets, ??? triples

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Max Schmachtenberg, Christian Bizer, and Heiko Paulheim: Adoption of Linked Data Best Practices in Different Topical Domains. In *Proc. ISWC*, 2014.

RDF Introduction

- Everything is an uniquely named resource
- Namespaces can be used to scope the names
- Properties of resources can be defined
- Relationships with other resources can be defined
- Resources can be contributed by different people/groups and can be located anywhere in the web
 - Integrated web "database"

xmlns:y=http://en.wikipedia.org/wiki y:Abraham_Lincoln

Abraham_Lincoln:hasName "Abraham Lincoln" Abraham_Lincoln:BornOnDate: "1809-02-12" Abraham_Lincoln:DiedOnDate: "1865-04-15"

Abraham_Lincoln:DiedIn

y:Washington_DC

RDF Data Model

 Triple: Subject, Predicate (Property), Object (s, p, o)
Subject: the entity that is described (URI or blank node)
Predicate: a feature of the entity (URI)
Object: value of the feature (URI, blank node or literal)

► $(s, p, o) \in (U \cup B) \times U \times (U \cup B \cup L)$

- U: set of URIs
- B: set of blank nodes
- L: set of literals

Set of RDF triples is called an RDF graph

Subject	Predicate	Object
Abraham_Lincoln	hasName	"Abraham Lincoln"
Abraham_Lincoln	BornOnDate	"1809-02-12"
$Abraham_Lincoln$	DiedOnDate	"1865-04-15"

RDF Example Instance

Prefix: y=http://en.wikipedia.org/wiki Subject Predicate Object v: Abraham_Lincoln basName "Abraham Lincoln" Literal v: Abraham_Lincoln BornOnDate "1809-02-12" v: Abraham_Lincoln DiedOnDate "1865-04-15" UR v:Abraham_Lincoln bornIn v:Hodgenville_KY v: Abraham Lincoln DiedIn y: Washington_DC y:Abraham_Lincoln title "President" y:Abraham_Lincoln gender "Male" y: Washington_DC hasName "Washington D.C." URI y:Washington_DC foundingYear "1790" y:Hodgenville_KY hasName "Hodgenville" y:United_States hasName "United States" y:United_States hasCapital < y:Washington_DC y:United_States foundingYear "1776" y:Reese_Witherspoon bornOnDate "1976-03-22" y:Reese_Witherspoon bornIn y:New_Orleans_LA y:Reese_Witherspoon hasName "Reese Witherspoon" y:Reese_Witherspoon gender "Female" y:Reese_Witherspoon title "Actress" v:New_Orleans_LA foundingYear "1718" v:New_Orleans_LA locatedIn v:United_States v:Franklin_Roosevelt hasName "Franklin D. Roosevelt" v:Franklin_Roosevelt v:Hvde_Park_NY bornIn v:Franklin_Roosevelt title "President" v:Franklin_Roosevelt "Male" gender v:Hvde_Park_NY foundingYear "1810" v:Hvde_Park_NY locatedIn v:United_States v:Marilvn_Monroe "Female" gender v:Marilvn_Monroe hasName "Marilyn Monroe" v:Marilvn_Monroe hornOnDate "1926-07-01" v:Marilvn_Monroe diedOnDate "1962-08-05"

Sac

RDF Graph

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

A Distributed RDF Graph

Representative graph processing systems

		Property graphs	Online query	Data sharding	In-memory storage	Atomicity & Transaction
\star	Neo4j	Yes	Yes	No	No	Yes
\star	Trinity	Yes	Yes	Yes	Yes	Atomicity
\star	Horton	Yes	Yes	Yes	Yes	No
\star	HyperGraphDB	No	Yes	No	No	Yes
\star	FlockDB	No	Yes	Yes	No	Yes
\star	TinkerGraph	Yes	Yes	No	Yes	No
\star	InfiniteGraph	Yes	Yes	Yes	No	Yes
\star	Cayley	Yes	Yes	SB	SB	Yes
\star	Titan	Yes	Yes	SB	SB	Yes
\star	MapReduce	No	No	Yes	No	No
\star	PEGASUS	No	No	Yes	No	No
\star	Pregel	No	No	Yes	No	No
\star	Giraph	No	No	Yes	No	No
\star	GraphLab	No	No	Yes	No	No
\star	GraphChi	No	No	No	No	No
\star	GraphX	No	No	Yes	No	No

DB-Engines Ranking of Graph DBMS 31 systems in ranking, September 2018 Rank Score

- Cypher query language is used by Neo4j.
- Gremlin is used by most of graph DBMSs.
- GSQL is used by TigerGraph.

Rank		£			Score		
Sep 2018	Aug 2018	Sep 2017	DBMS Database Model		Sep 2018	Aug 2018	Sep 2017
1.	1.	1.	Neo4j 🗄	Graph DBMS	40.10	-0.83	+1.67
2.	2.	2.	Microsoft Azure Cosmos DB 🗄	Multi-model 🔃	19.18	-0.35	+7.95
3.	3.		Datastax Enterprise 🗄	Multi-model 🔟	7.76	+0.46	
4.	4.	₩3.	OrientDB 🗄	Multi-model 🚺	5.48	+0.57	-0.42
5.	5.	5.	ArangoDB	Multi-model 🚺	4.05	+0.71	+1.05
6.	6.	6.	Virtuoso	Multi-model 🚺	2.06	+0.01	+0.17
7.	^ 8.		Amazon Neptune	Multi-model 🚺	1.12	+0.31	
8.	4 7.	4 7.	Giraph	Graph DBMS	1.02	+0.03	-0.05
9.	† 11.	个 16.	JanusGraph	Graph DBMS	0.90	+0.36	+0.68
10.	10.	4 9.	GraphDB 🗄	Multi-model 🔃	0.63	+0.06	+0.02
11.	4 9.	₩8.	AllegroGraph 🗄	Multi-model 🚺	0.60	+0.02	-0.04
12.	12.	4 10.	Stardog	Multi-model 🚺	0.54	+0.01	-0.04
13.	1 7.	13.	Dgraph	Graph DBMS	0.41	+0.17	+0.14
14.	† 15.	个 15.	Blazegraph	Multi-model 🚺	0.36	+0.08	+0.12
15.	4 13.	4 11.	Sqrrl	Multi-model 🔟	0.34	-0.00	-0.17
16.	16.	4 14.	Graph Engine	Multi-model 🔟	0.29	+0.02	+0.02
17.	4 14.	4 12.	InfiniteGraph	Graph DBMS	0.28	-0.02	-0.01
18.	18.		TigerGraph 🗄	Graph DBMS	0.22	+0.02	
19.	19.	19.	FaunaDB 🗄	Multi-model 🚺	0.17	+0.02	+0.00
20.	† 21.	^ 22.	VelocityDB	Multi-model 🚺	0.14	+0.01	+0.03

Knowledge Graph Primer

TOPICS:

- What is a Knowledge Graph?
- Why are Knowledge Graphs Important?
- Where do Knowledge Graphs come from?
- Knowledge Representation Choices

PROBLEM OVERVIEW

- Knowledge in graph form!
- Captures entities, attributes, and relationships
- Nodes are entities
- Nodes are labeled with attributes (e.g., types)
- Typed edges between two nodes capture a relationship between entities

Basic problems

• Who are the entities (nodes) in the graph?

- Who are the entities (nodes) in the graph?
- What are their attributes and types (labels)?

- Who are the entities (nodes) in the graph?
- What are their attributes and types (labels)?
- How are they related (edges)?

- Who are the entities (nodes) in the graph?
- What are their attributes and types (labels)?
- How are they related (edges)?

Knowledge Graph Construction

Two perspectives

	Extraction graph	Knowledge graph
Who are the entities? (nodes)	 Named Entity Recognition Entity Coreference 	Entity LinkingEntity Resolution
What are their attributes? (labels)	 Entity Typing 	Collective classification
How are they related? (edges)	Semantic role labelingRelation Extraction	Link prediction

What is NLP?

Knowledge Extraction

John was born in Liverpool, to Julia and Alfred Lennon.

Text

Breaking it Down

Tagging the Parts of Speech

• Common approaches include CRFs, CNNs, LSTMs

Detecting Named Entities

- Structured prediction approaches
- Capture entity mentions and entity types

NLP annotations \rightarrow features for IE

Combine tokens, dependency paths, and entity types to define rules.

Bill Gates, the CEO of Microsoft, said ...

Mr. Jobs, the brilliant and charming CEO of Apple Inc., said ...

... announced by Steve Jobs, the CEO of Apple.

... announced by Bill Gates, the director and CEO of Microsoft.

... mused Bill, a former CEO of Microsoft.

and many other possible instantiations...

Entity Names: Two Main Problems

Entities with Same Name

Same type of entities share names

Kevin Smith, John Smith, Springfield, ...

Things named after each other

Clinton, Washington, Paris, Amazon, Princeton, Kingston, ...

Partial Reference

First names of people, Location instead of team name, Nick names

Different Names for Entities

Nick Names

Bam Bam, Drumpf, ...

Typos/Misspellings Baarak, Barak, Barrack, ...

Inconsistent References

MSFT, APPL, GOOG...

Entity Linking Approach

Washington drops 10 points after game with UCLA Bruins.

Information Extraction

Information Extraction

IE systems in practice

	Defining domain	Learning extractors	Scoring candidate facts	Fusing extractors
ConceptNet	22	22	22	
NELL				Heuristic rules
Knowledge Vault				Classifier
OpenIE				

Knowledge Extraction: Key Points

- Built on the foundation of NLP techniques
 - Part-of-speech tagging, dependency parsing, named entity recognition, coreference resolution...
 - Challenging problems with very useful outputs
- Information extraction techniques use NLP to:
 - define the domain
 - extract entities and relations
 - score candidate outputs
- Trade-off between manual & automatic methods

Knowledge Graph Construction

Knowledge Graph Construction

TOPICS:

- PROBLEM SETTING
- PROBABILISTIC MODELS
- Embedding Techniques

Knowledge Graph Construction

TOPICS:

PROBLEM SETTING

Probabilistic Models

Embedding Techniques

Reminder: Basic problems

- Who are the entities (nodes) in the graph?
- What are their attributes and types (labels)?
- **How** are they related (edges)?

Extracted knowledge is:

- ambiguous:
 - Ex: Beetles, beetles, Beatles
 - Ex: citizenOf, livedIn, bornIn

Extracted knowledge is:

• ambiguous

- incomplete
 - Ex: missing relationships
 - Ex: missing labels
 - Ex: missing entities

Extracted knowledge is:

• ambiguous

• incomplete

- inconsistent
 - Ex: Cynthia Lennon, Yoko Ono
 - Ex: exclusive labels (alive, dead)
 - Ex: domain-range constraints

Extracted knowledge is:

ambiguous

• incomplete

• inconsistent

Graph Construction approach

• Graph construction cleans and completes extraction graph

Incorporate ontological constraints and relational patterns

• Discover statistical relationships within knowledge graph

Knowledge Graph Construction

TOPICS:

PROBLEM SETTING

PROBABILISTIC MODELS

Embedding Techniques

Graph Construction Probabilistic Models

TOPICS:

Overview

GRAPHICAL MODELS

Random Walk Methods

Graph Construction Probabilistic Models

TOPICS:

OVERVIEW

GRAPHICAL MODELS

Random Walk Methods

Beyond Pure Reasoning

Classical AI approach to knowledge: reasoning

Lbl(Socrates, Man) & Sub(Man, Mortal) -> Lbl(Socrates, Mortal)

Beyond Pure Reasoning

- Classical AI approach to knowledge: reasoning
- Lbl(Socrates, Man) & Sub(Man, Mortal) -> Lbl(Socrates, Mortal)
- Reasoning difficult when extracted knowledge has errors

Beyond Pure Reasoning

Classical AI approach to knowledge: reasoning

Lbl(Socrates, Man) & Sub(Man, Mortal) -> Lbl(Socrates, Mortal)

- Reasoning difficult when extracted knowledge has errors
- Solution: probabilistic models

P(Lbl(Socrates, Mortal)|Lbl(Socrates, Man)=0.9)

Graph Construction Probabilistic Models

TOPICS:

Overview

GRAPHICAL MODELS

Random Walk Methods

Graphical Models: Overview

• Define joint probability distribution on knowledge graphs

• Each candidate fact in the knowledge graph is a **variable**

• Statistical signals, ontological knowledge and rules parameterize the **dependencies** between variables

• Find most likely knowledge graph by **optimization/sampling**

Knowledge Graph Identification

Define a graphical model to perform all three of these tasks simultaneously!

- Who are the entities (nodes) in the graph?
- What are their attributes and types (labels)?
- **How** are they related (edges)?

Knowledge Graph Identification

Probabilistic Models

• Use dependencies between facts in KG

• Probability defined *jointly* over facts

Statistical signals from text extractors and classifiers

Statistical signals from text extractors and classifiers

- P(R(John,Spouse,Yoko))=0.75; P(R(John,Spouse,Cynthia))=0.25
- LevenshteinSimilarity(Beatles, Beetles) = 0.9

• Statistical signals from text extractors and classifiers

Ontological knowledge about domain

Statistical signals from text extractors and classifiers

Ontological knowledge about domain

- Functional(Spouse) & R(A,Spouse,B) -> !R(A,Spouse,C)
- Range(Spouse, Person) & R(A,Spouse,B) -> Type(B, Person)

Statistical signals from text extractors and classifiers

Ontological knowledge about domain

Rules and patterns mined from data

Statistical signals from text extractors and classifiers

Ontological knowledge about domain

Rules and patterns mined from data

- R(A, Spouse, B) & R(A, Lives, L) -> R(B, Lives, L)
- R(A, Spouse, B) & R(A, Child, C) -> R(B, Child, C)

Statistical signals from text extractors and classifiers

- P(R(John,Spouse,Yoko))=0.75; P(R(John,Spouse,Cynthia))=0.25
- LevenshteinSimilarity(Beatles, Beetles) = 0.9

Ontological knowledge about domain

- Functional(Spouse) & R(A,Spouse,B) -> !R(A,Spouse,C)
- Range(Spouse, Person) & R(A,Spouse,B) -> Type(B, Person)

Rules and patterns mined from data

- R(A, Spouse, B) & R(A, Lives, L) -> R(B, Lives, L)
- R(A, Spouse, B) & R(A, Child, C) -> R(B, Child, C)

Example: The Fab Four

Uncertain Extractions:

- .5: Lbl(Fab Four, novel)
- .7: Lbl(Fab Four, musician)
- .9: Lbl(Beatles, musician)
- .8: Rel(Beatles, AlbumArtist, Abbey Road)

PUJARA+ISWC13; PUJARA+AIMAG15

PUJARA+ISWC13; PUJARA+AIMAG15

Uncertain Extractions: .5: Lbl(Fab Four, novel) .7: Lbl(Fab Four, musician)

- .9: Lbl(Beatles, musician)
- .8: Rel(Beatles,AlbumArtist, Abbey Road) Ontology: Dom(albumArtist, musician) Mut(novel, musician)

Entity Resolution: SameEnt(Fab Four, Beatles)

PUJARA+ISWC13; PUJARA+AIMAG15

Probabilistic graphical model for KG

Defining graphical models

Many options for defining a graphical model

- We focus on two approaches, MLNs and PSL, that use **rules**
- MLNs treat facts as Boolean, use sampling for satisfaction
- **PSL** infers a "truth value" for each fact via optimization

Rules for KG Model

100:	<pre>Subsumes(L1,L2) Exclusive(L1,L2)</pre>	&	Label(E,L1)	->	Label(E,L2)
100:		&	Label(E,L1)	->	!Label(E,L2)
100: 100: 100:	<pre>Inverse(R1,R2) Subsumes(R1,R2) Exclusive(R1,R2)</pre>	& & &	<pre>Relation(R1,E,0) Relation(R1,E,0) Relation(R1,E,0)</pre>	-> -> ->	<pre>Relation(R2,0,E) Relation(R2,E,0) !Relation(R2,E,0)</pre>
100:	<pre>Domain(R,L) Range(R,L)</pre>	&	Relation(R,E,O)	->	Label(E,L)
100:		&	Relation(R,E,O)	->	Label(O,L)
10:	<pre>SameEntity(E1,E2) SameEntity(E1,E2)</pre>	&	Label(E1,L)	->	Label(E2,L)
10:		&	Relation(R,E1,O)	->	Relation(R,E2,O)
1: 1: 1: 1: 1:	Label_OBIE(E,L) Label_OpenIE(E,L) Relation_Pattern(F	R,E	,0)	-> -> ->	Label(E,L) Label(E,L) Relation(R,E,O) !Relation(R,E,O) !Label(E,L)

Rules to Distributions

•Rules are *grounded* by substituting literals into formulas $\mathbf{w_r} : SAMEENT(Fab Four, Beatles) \land$

 $LBL(Beatles, musician) \Rightarrow LBL(Fab Four, musician)$

 $r \in R$

 $w_r \phi_r$

G, E)

•Each ground rule has a weighted *satisfaction* derived from the formula's truth value

exp

 Together, the ground rules provide a joint probability distribution over knowledge graph facts, conditioned on the extractions

JIANG+ICDM12; PUJARA+ISWC13

Probability Distribution over KGs

 $P(G \mid E) = \frac{1}{Z} \exp\left[-\sum_{r \in R} w_r \varphi_r(G)\right]$ $\operatorname{CANDLBL}_T(\texttt{FabFour},\texttt{novel})$ \Rightarrow LBL(FabFour, novel) Mut(novel, musician) \wedge LBL(Beatles, novel) $\Rightarrow \neg LBL(Beatles, musician)$ SAMEENT(Beatles, FabFour) \wedge LBL(Beatles, musician) \Rightarrow LBL(FabFour,musician)

PUJARA+ISWC13; PUJARA+AIMAG15

How do we get a knowledge graph?

MAP inference: optimizing over distribution to find the best knowledge graph

Inference and KG optimization

• Finding the best KG satisfying weighed rules: NP Hard

MLNs [discrete]: Monte Carlo sampling methods
Solution quality dependent on burn-in time, iterations, etc.

PSL [continuous]: optimize convex linear surrogate
 Fast optimization, ¾-optimal MAX SAT lower bound

Graphical Models Experiments

Data: ~1.5M extractions, ~70K ontological relations, ~500 relation/label types **Task:** Collectively construct a KG and evaluate on 25K target facts

Comparisons:

- **Extract** Average confidences of extractors for each fact in the NELL candidates
- **Rules** Default, rule-based heuristic strategy used by the NELL project
- MLN Jiang+, ICDM12 estimates marginal probabilities with MC-SAT
- **PSL** Pujara+, ISWC13 convex optimization of continuous truth values with ADMM

Running Time: Inference completes in 10 seconds, values for 25K facts

	AUC	F1
Extract	.873	.828
Rules	.765	.673
MLN (Jiang, 12)	.899	.836
PSL (Pujara, 13)	.904	.853

Graphical Models: Pros/Cons

BENEFITS

 Define probability distribution over KGs

DRAWBACKS

 Requires optimization over all KG facts - overkill

- Easily specified via rules
- Fuse knowledge from many different sources
- Dependent on rules from ontology/expert
- Require probabilistic semantics - unavailable

Graph Construction Probabilistic Models

TOPICS:

Overview

GRAPHICAL MODELS

RANDOM WALK METHODS

Random Walk Overview

• Given: a query of an **entity** and **relation**

• Starting at the entity, **randomly walk** the KG

• Random walk ends when reaching an appropriate goal

• Learned **parameters** bias choices in the random walk

• Output **relative probabilities** of goal states

Recent Random Walk Methods

PRA: Path Ranking Algorithm

- Performs random walk of imperfect knowledge graph
- Estimates transition probabilities using KG
- For each relation, learns **parameters for paths** through the KG

ProPPR: Programming with Personalized PageRank

- Constructs proof graph
 - Nodes are partially-ground clauses with one or more facts
 - Edges are proof-transformations
- Parameters are learned for each ground entity and rule

Recent Random Walk Methods

PRA: Path Ranking Algorithm

- Performs random walk of imperfect knowledge graph
- Estimates transition probabilities using KG
- For each relation, learns **parameters for paths** through the KG

ProPPR: Programming with Personalized PageRank

- Constructs proof graph
 - Nodes are partially-ground clauses with one or more facts
 - Edges are proof-transformations
- Parameters are learned for each ground entity and rule

PRA in a nutshell

score
$$(q.s \to e; q) = \sum_{\pi_i \in \Pi_b} P(q.s \to e; \pi_i) W_{\pi_i}$$

LAO+EMNLP11

PRA in a nutshell

$$\operatorname{score}(q.s \to e; q) = \sum_{\pi_i \in \Pi_b} P(q.s \to e; \pi_i) W_{\pi_i}$$

Filter paths based on HITS and accuracy

Estimate probabilities efficiently with dynamic programming

Path weights are learned with logistic regression

Recent Random Walk Methods

PRA: Path Ranking Algorithm

- Performs random walk of imperfect knowledge graph
- Estimates transition probabilities using KG
- For each relation, learns **parameters for paths** through the KG

ProPPR: ProbLog + Personalized PageRank

- Constructs proof graph
 - Nodes are partially-ground clauses with one or more facts
 - Edges are proof-transformations
- Parameters are learned for each ground entity and rule

Query Q: R(Lennon, PlaysInstrument, ?)

Unbound variables in proof tree!

ProPPR in a nutshell

- Input: queries positive answers, negative answers
- Goal: $\mathbf{p}_{
 u_0}[u_+^k] \geq \mathbf{p}_{
 u_0}[u_-^k]$ (page rank from RW)
- Learn: random walk weights
- Train via stochastic gradient descent

Results from PRA and ProPPR

• Task:

- 1M extractions for 3 domains;
- ~100s of training queries
- ~1000s of test queries
- AUC of extractions alone is 0.7

Random Walks: Pros/Cons

BENEFITS

• KG query estimation independent of KG size

DRAWBACKS

• Full KG completion task inefficient

- Model training produces interpretable, logical rules
- Training data difficult to obtain at scale

- Robust to noisy extractions through probabilistic form
- Input must follow probabilistic semantics

Two classes of Probabilistic Models

GRAPHICAL MODELS

- Possible facts in KG are variables
- Logical rules relate facts

- Universally-quantified

RANDOM WALK METHODS

- Possible facts posed as queries
- Random walks of the KG constitute "proofs"
- Probability ∝ path lengths/transitions
- Locally grounded

Embedding-Based Techniques

MATRICES, TENSORS, AND NEURAL NETWORKS

Probabilistic Models: Downsides

Limitation to Logical Relations

- Representation restricted by manual design
 - Clustering? Assymetric implications?
 - Information flows through these relations
- Difficult to generalize to unseen entities/relations

Computational Complexity of Algorithms

- Complexity depends on explicit dimensionality
 - Often NP-Hard, in size of data
 - More rules, more expensive inference
- Query-time inference is sometimes NP-Hard
- Not trivial to parallelize, or use GPUs

Embeddings

- Everything as dense vectors
- Can capture many relations
- Learned from data
- Complexity depends on latent dimensions
- Learning using stochastic gradient, back-propagation
- Querying is often cheap
- GPU-parallelism friendly

Two Related Tasks

Two Related Tasks

What is NLP?

John was born in Liverpool, to Julia and Alfred Lennon.

What is Information Extraction?

Relation Extraction From Text

John was born in Liverpool, to Julia and Alfred Lennon.

Relation Extraction From Text

John was born in Liverpool, to Julia and Alfred Lennon.

"Distant" Supervision

No direct supervision gives us this information. Supervised: Too expensive to label sentences Rule-based: Too much variety in language Both only work for a small set of relations, i.e. 10s, not 100s

Relation Extraction as a Matrix

Entity Pairs

Universal Schema, Riedel et al, NAACL (2013)

Matrix Factorization

Training: Stochastic Updates

Pick an observed cell, R(i, j):

• Update \mathbf{p}_{ij} & \mathbf{r}_R such that R(i,j) is higher

Pick any random cell, assume it is negative:

• Update \mathbf{p}_{xy} & $\mathbf{r}_{R'}$ such that R'(x,y) is lower

Relation Embeddings

Embeddings ~ Logical Relations

Relation Embeddings, w

- Similar embedding for 2 relations denote they are paraphrases
 - is married to, spouseOf(X,Y), /person/spouse
- One embedding can be contained by another
 - w(topEmployeeOf) \subset w(employeeOf)
 - topEmployeeOf(X,Y) \rightarrow employeeOf(X,Y)
- Can capture logical patterns, without needing to specify them!

Entity Pair Embeddings, v

Similar entity pairs denote similar relations between them Entity pairs may describe multiple "relations" independent foundedBy and employeeOf relations

Similar Embeddings

similar underlying embedding

Successfully predicts "Volvo owns percentage of Scania A.B." from "Volvo bought a stake in Scania A.B."

Implications

X professor at Y X historian at Y

Learns asymmetric entailment: PER historian at UNIV → PER professor at UNIV But,

PER professor at UNIV → PER historian at UNIV

Two Related Tasks

Graph Completion

Graph Completion

Tensor Formulation of KG

Factorize that Tensor

$$S(r(a,b)) = f(\mathbf{v}_r, \mathbf{v}_a, \mathbf{v}_b)$$

Many Different Factorizations

CANDECOMP/PARAFAC-Decomposition

$$S(r(a,b)) = \sum_{k} R_{r,k} \cdot e_{a,k} \cdot e_{b,k}$$

Tucker2 and RESCAL Decompositions

$$S(r(a,b)) = (\mathbf{R}_r \times \mathbf{e}_a) \times \mathbf{e}_b$$

Model E

$$S(r(a,b)) = \mathbf{R}_{r,1} \cdot \mathbf{e}_a + \mathbf{R}_{r,2} \cdot \mathbf{e}_b$$

Not tensor factorization (per se)

Holographic Embeddings

$$S(r(a,b)) = \mathbf{R}_r \times (\mathbf{e}_a \star \mathbf{e}_b)$$

Translation Embeddings

TransE

$$S(r(a,b)) = -\|\mathbf{e}_a + \mathbf{R}_r - \mathbf{e}_b\|_2^2$$

TransH

$$S(r(a,b)) = -\|\mathbf{e}_a^{\perp} + \mathbf{R}_r - \mathbf{e}_b^{\perp}\|_2^2$$
$$\mathbf{e}_a^{\perp} = \mathbf{e}_a - \mathbf{w}_r^T \mathbf{e}_a \mathbf{w}_r$$

TransR

$$S(r(a,b)) = -\|\mathbf{e}_a\mathbf{M}_r + \mathbf{R}_r - \mathbf{e}_b\mathbf{M}_r\|_2^2$$

Parameter Estimation

Matrix vs Tensor Factorization

- Vectors for each entity pair
- Can only predict for entity pairs that appear in text together
- No sharing for same entity in different entity pairs

- Vectors for each entity
- Assume entity pairs are "low-rank"
 - But many relations are not!
 - Spouse: you can have only ~1
- Cannot learn pair specific information

What they can, and can't, do..

- Red: deterministically implied by Black
 - needs pair-specific embedding
 - Only F is able to generalize
- Green: needs to estimate entity types
 - needs entity-specific embedding
 - Tensor factorization generalizes, F doesn't
- Blue: implied by Red and Green
 - Nothing works much better than random

Joint Extraction+Completion

Compositional Neural Models

So far, we're learning vectors for each entity/surface pattern/relation..

But learning vectors independently ignores "composition"

Composition in Surface Patterns

- Every surface pattern is not unique
- Synonymy:
- A is B's spouse. A is married to B.
- Inverse: X is Y's parent.
 Y is one of X's children.
- Can the representation learn this?

Composition in Relation Paths

- Every relation path is not unique
- Explicit: A parent B, B parent C A grandparent C
- Implicit: X bornInCity Y, Y cityInState Z X "bornInState" Z
- Can the representation capture this?

Composing Dependency Paths

But we don't need linked data to know they mean similar things...

Use neural networks to produce the embeddings from text!

Composing Relational Paths

Neelakantan et al (2015), http://www.aaai.org/ocs/index.php/SSS/SSS15/paper/viewFile/10254/10032 Lin et al, EMNLP (2015), https://arxiv.org/pdf/1506.00379.pdf

Review: Embedding Techniques

Two Related Tasks:

- Relation Extraction from Text
- Graph (or Link) Completion

Relation Extraction:

• Matrix Factorization Approaches

Graph Completion:

• Tensor Factorization Approaches

Compositional Neural Models

- Compose over dependency paths
- Compose over relation paths

Logic-centric knowledge	✓	serving via reasoning	Symbolic Reasoning
Relation-centric knowledge	✓	serving via graph	Graph serving
Facts-centric knowledge	~	serving via indexes	Entity serving

The evolution of knowledge representation

Why is a big knowledge graph not enough?

- Large knowledge graphs have billions of facts
- *However*, it doesn't provide much help in logic reasoning
 - The knowledge is not symbolized logic knowledge
 - $\circ~$ Lack of reasoning rules allow machines to do reasoning automatically
 - $\circ~$ More importantly, lack of common sense

The pyramid of knowledge

Knowledge in symbolic logic form

- Symbols are abstract identifiers can be manipulated in an algebra system
 - Variables
 - Functions
- Symbolic **expression** is a finite combination of symbols
- Symbolic transformation: a symbolic expression can be transformed into another symbolic expression according to the rules of a predefined reasoning algebra
 - An inference engine tries to derive answers for a logic question by performing logical deductions

Functions and relations are just hyperedges!

- f(x, y, z) is just a hyperedge f connecting three nodes x, y, z.
- A logical expression *a* AND *b* AND *c* can be written as AND(*a*, *b*, *c*).
- Symbolic transformation is just graph pattern matching and graph transformation!

Hyperedges

Use graph transformation to do logic deduction

Graph transformation: whenever we see a graph G_a with a certain pattern p, replace it with a graph G_b .

Our "shallow" yet reasonable answer

Multimodal KB Embeddings

Knowledge as Supervision

(2) Future research directions: Online KG Construction

- One shot KG construction ightarrow Online KG construction
 - Consume online stream of data
 - Temporal scoping of facts
 - Discovering new concepts automatically
 - Self-correcting systems

(2) Future research directions: Online KG Construction

- Continuously learning and self-correcting systems
 - [Selecting Actions for Resource-bounded Information Extraction using Reinforcement Learning, Kanani and McCallum, WSDM 2012]
 - Presented a reinforcement learning framework for budget constrained information extraction
 - [Never-Ending Learning, Mitchell et al. AAAI 2015]
 - Tom Mitchell says "Self reflection and an explicit agenda of learning subgoals" is an important direction of future research for continuously learning systems.