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Essentially, KG is a sematic network, which models the
entities (including properties) and the relation between
each other.



What is a knowledge graph?
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What is a knowledge graph?
• Knowledge in graph form!
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• Captures entities, attributes, 
and relationships

17



What is a knowledge graph?
• Knowledge in graph form!

• Captures entities, attributes, 
and relationships

• Nodes are entities

18

E1

E2

E3



What is a knowledge graph?
• Knowledge in graph form!

• Captures entities, attributes, 
and relationships

• Nodes are entities

• Nodes are labeled with 
attributes (e.g., types)
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What is a knowledge graph?
• Knowledge in graph form!

• Captures entities, attributes, 
and relationships

• Nodes are entities

• Nodes are labeled with 
attributes (e.g., types)

• Typed edges between two 
nodes capture a relationship 
between entities
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Example knowledge graph
• Knowledge in graph form!

• Captures entities, attributes, 
and relationships

• Nodes are entities

• Nodes are labeled with 
attributes (e.g., types)

• Typed edges between two 
nodes capture a relationship 
between entities

21
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Why knowledge graphs?
• Humans:

•Combat information overload
•Explore via intuitive structure
•Tool for supporting knowledge-driven tasks

• AIs:
•Key ingredient for many AI tasks
•Bridge from data to human semantics
•Use decades of work on graph analysis

23



Interdisciplinary	Research

Knowledge Engineering
KB construction

Rule-based Reasoning

Machine
Learning
Knowledge

Representation
(Graph Embedding)

Natural Language
Processing

Information Extraction
Semantic Parsing

Database
RDF Database

Data Integration�Knowledge Fusion

5



Knowledge Graphs & Industry
•Google Knowledge Graph

• Google Knowledge Vault

•Amazon Product Graph
•Facebook Graph API
•IBM Watson
•Microsoft Satori

• Project Hanover/Literome

•LinkedIn Knowledge Graph
•Yandex Object Answer
•Diffbot, GraphIQ, Maana, ParseHub, Reactor Labs, 

SpazioDati
27
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Where do knowledge graphs come from?
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Where do knowledge graphs come from?
• Structured Text

◦ Wikipedia Infoboxes, tables, 
databases, social nets
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Where do knowledge graphs come from?
• Structured Text

◦ Wikipedia Infoboxes, tables, 
databases, social nets

• Unstructured Text
◦ WWW, news, social media, 

reference articles
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Where do knowledge graphs come from?
• Structured Text

◦ Wikipedia Infoboxes, tables, 
databases, social nets

• Unstructured Text
◦ WWW, news, social media, 

reference articles

• Images

• Video
◦ YouTube, video feeds
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Knowledge Representation
•Decades of research into knowledge representation

•Most knowledge graph implementations use RDF triples
• <rdf:subject, rdf:predicate, rdf:object> : r(s,p,o)
• Temporal scoping, reification, and skolemization...

•ABox (assertions) versus TBox (terminology)

•Common ontological primitives
• rdfs:domain, rdfs:range, rdf:type, rdfs:subClassOf, rdfs:subPropertyOf, ...
• owl:inverseOf, owl:TransitiveProperty, owl:FunctionalProperty, ...
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• RDF is an de facto standard for
Knowledge Graph (KG).

• RDF is a language for the 
conceptual modeling of 
information about web resources

• A building block of semantic web
• Make the information on the web 

and the interrelationships among 
them "Machine Understandable"

3



RDF and Semantic Web

I RDF is a language for the conceptual modeling of information
about web resources

I A building block of semantic web
I Facilitates exchange of information
I Search engines can retrieve more relevant information
I Facilitates data integration (mashes)

I Machine understandable
I Understand the information on the web and the

interrelationships among them



RDF Uses

I Yago and DBPedia extract facts from Wikipedia & represent
as RDF ! structural queries

I Communities build RDF data
I E.g., biologists: Bio2RDF and Uniprot RDF

I Web data integration
I Linked Data Cloud

I . . .



RDF Data Volumes . . .
I . . . are growing – and fast

I Linked data cloud currently consists of 325 datasets with
>25B triples

I Size almost doubling every year

April ’14:
1091 datasets, ???

triples

Max Schmachtenberg, Christian Bizer, and Heiko Paulheim: Adoption of Linked
Data Best Practices in Di↵erent Topical Domains. In Proc. ISWC, 2014.



RDF Introduction

I Everything is an uniquely named
resource

I Namespaces can be used to scope
the names

I Properties of resources can be
defined

I Relationships with other resources
can be defined

I Resources can be contributed by
di↵erent people/groups and can be
located anywhere in the web

I Integrated web “database”

http://en.wikipedia.org/wiki/Abraham Lincoln

xmlns:y=http://en.wikipedia.org/wiki
y:Abraham Lincoln

Abraham Lincoln:hasName “Abraham Lincoln”
Abraham Lincoln:BornOnDate: “1809-02-12”
Abraham Lincoln:DiedOnDate: “1865-04-15”

y:Washington DC

Abraham Lincoln:DiedIn



RDF Data Model
I Triple: Subject, Predicate (Property),

Object (s, p, o)

Subject: the entity that is described
(URI or blank node)

Predicate: a feature of the entity (URI)
Object: value of the feature (URI,

blank node or literal)

I (s, p, o) 2 (U [ B)⇥ U ⇥ (U [ B [ L)

I Set of RDF triples is called an RDF graph

U

Subject Object

U B U B L

U: set of URIs
B : set of blank nodes
L: set of literals

Predicate

Subject Predicate Object
Abraham Lincoln hasName “Abraham Lincoln”
Abraham Lincoln BornOnDate “1809-02-12”
Abraham Lincoln DiedOnDate “1865-04-15”



RDF Example Instance
Prefix: y=http://en.wikipedia.org/wiki

Subject Predicate Object
y: Abraham Lincoln hasName “Abraham Lincoln”

y: Abraham Lincoln BornOnDate “1809-02-12”’
y: Abraham Lincoln DiedOnDate “1865-04-15”
y:Abraham Lincoln bornIn y:Hodgenville KY
y: Abraham Lincoln DiedIn y: Washington DC
y:Abraham Lincoln title “President”
y:Abraham Lincoln gender “Male”
y: Washington DC hasName “Washington D.C.”
y:Washington DC foundingYear “1790”
y:Hodgenville KY hasName “Hodgenville”
y:United States hasName “United States”
y:United States hasCapital y:Washington DC
y:United States foundingYear “1776”
y:Reese Witherspoon bornOnDate “1976-03-22”
y:Reese Witherspoon bornIn y:New Orleans LA
y:Reese Witherspoon hasName “Reese Witherspoon”
y:Reese Witherspoon gender “Female”
y:Reese Witherspoon title “Actress”
y:New Orleans LA foundingYear “1718”
y:New Orleans LA locatedIn y:United States
y:Franklin Roosevelt hasName “Franklin D. Roosevelt”
y:Franklin Roosevelt bornIn y:Hyde Park NY
y:Franklin Roosevelt title “President”
y:Franklin Roosevelt gender “Male”
y:Hyde Park NY foundingYear “1810”
y:Hyde Park NY locatedIn y:United States
y:Marilyn Monroe gender “Female”
y:Marilyn Monroe hasName “Marilyn Monroe”
y:Marilyn Monroe bornOnDate “1926-07-01”
y:Marilyn Monroe diedOnDate “1962-08-05”

URI

Literal

URI



RDF Graph

y:Abraham Lincoln

“Abraham Lincoln”

hasName

“1809-02-12”
bornOnDate

“1865-04-15”

diedOnDate

“President”

title

“Male”

gender

y:Washington D.C.

“1790”

foundYear

“Washington D.C.”

hasName

y:Hodgenville KY “Hodgenville”
hasName

y:United States

“United States”

hasName

“1776”

foundingYear

y:Reese Witherspoon

“1976-03-22”

bornOnDate

“Female”

gender

“Actress”

title

“Reese Witherspoon”

hasName

y:New Orleans LA

“1718”

foundingYear

y:Franklin Roosevelt

“Franklin D. Roosevelt”

hasName

“Male”

gender

“President”

title

y:Hyde Park NY

“1810”

foundingYear

y:Marilyn Monroe“1962-08-05”
diedOnDate

“1926-07-01”

bornOnDate

“Female”

gender

“Marilyn Monroe”
hasName

diedIn

bornIn

hasCapital

bornIn
locatedIn locatedIn

bornIn



A Distributed RDF Graph

s1:act4

Hank Azaria

refs:label

s1:fil7

actedIn

Mystery Men

refs:label

s2:act1actedIn

s2:fil3

actedIn Mary Hartman

refs:label

s4:fil4actedIn

s1:dir1

ismarriedTo

s2:pla1

livesIn
Louise Lasser

rdfs:label

Slither

rdfs:label

New Yorkrdfs:label

s4:dir2

livesIn

Edmond O’Brienrefs:label

s4:fil6

directed

Man-Traprdfs:label

s1:fil1

directed

Sleeper

rdfs:label

Woody Allen rdfs:label

s1:fil2

directed

Small Time Crooks

rdfs:label

s3:act3

actedIn

s3:awa1hasWonPrize

hasWonPrize

Hugh Grant

rdfs:label

Cesar Award

rdfs:label s3:act2

ismarriedTo

Nancy Kelly

rdfs:label

s1:fil5

actedIn

A Very Yong Lady

rdfs:label

001

029

027

028

005

007

014

016

026

015

008

011

009

018

002 010

019

017

013 020

006 012

004

025 024

023

003

030

021

022



Representative graph processing systems
Property
graphs

Online
query

Data
sharding

In-memory
storage

Atomicity &
Transaction

Neo4j Yes Yes No No Yes

Trinity Yes Yes Yes Yes Atomicity

Horton Yes Yes Yes Yes No

HyperGraphDB No Yes No No Yes

FlockDB No Yes Yes No Yes

TinkerGraph Yes Yes No Yes No

InfiniteGraph Yes Yes Yes No Yes

Cayley Yes Yes SB SB Yes

Titan Yes Yes SB SB Yes

MapReduce No No Yes No No

PEGASUS No No Yes No No

Pregel No No Yes No No

Giraph No No Yes No No

GraphLab No No Yes No No

GraphChi No No No No No

GraphX No No Yes No No



DB-Engines Ranking of Graph 
DBMS

118

� Cypher query language is 
used by Neo4j.

� Gremlin is used by most of 
graph DBMSs.

� GSQL is used by TigerGraph.

https://db-engines.com/en/ranking/graph+dbms
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What is a knowledge graph?
• Knowledge in graph form!

• Captures entities, attributes, 
and relationships

• Nodes are entities

• Nodes are labeled with 
attributes (e.g., types)

• Typed edges between two 
nodes capture a relationship 
between entities

40
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Basic problems
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Basic problems

• Who are the entities 
(nodes) in the graph?
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Basic problems

• Who are the entities 
(nodes) in the graph?

• What are their attributes 
and types (labels)?
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Basic problems

• Who are the entities 
(nodes) in the graph?

• What are their attributes 
and types (labels)?

• How are they related 
(edges)?
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Basic problems

• Who are the entities 
(nodes) in the graph?

• What are their attributes 
and types (labels)?

• How are they related 
(edges)?
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Knowledge Graph Construction
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Knowledge 
Extraction

Graph 
Construction



Two perspectives

8

Extraction graph Knowledge graph

Who are the entities? 
(nodes)

• Named Entity 
Recognition

• Entity Coreference

• Entity Linking
• Entity Resolution

What are their 
attributes? (labels)

• Entity Typing • Collective 
classification

How are they related? 
(edges)

• Semantic role 
labeling

• Relation Extraction

• Link prediction



What	is	NLP?

Information	
Extraction

Unstructured
Ambiguous
Lots	and	lots	of	it!

Humans	can	read	them,	but
… very	slowly
… can’t	remember	all
… can’t	answer	questions

“Knowledge”

Structured
Precise,	Actionable
Specific	to	the	task

Can	be	used	for	downstream
applications,	such	as	creating
Knowledge	Graphs!

4



Knowledge	Extraction

5

John	
Lennon

Alfred	
Lennon

Julia	
Lennon

Liverpool
birthplace

childOf

childOf

John was born in Liverpool, to Julia and Alfred Lennon.

John was born in Liverpool, to Julia and Alfred Lennon.
Person Location Person Person

NNP VBD VBD IN NNP TO NNP CC NNP NNP

Lennon..
John	Lennon...

Mrs.	Lennon..
..	his	mother	..

his	father
Alfredhe

the	Pool
NLP

Information
Extraction

Extraction	graph

Annotated	text

Text



Breaking	it	Down

John	was	born	in	Liverpool,	to	Julia	and	Alfred	Lennon.
NNP VBD VBD IN NNP TO NNP CC NNP NNP

Person Location Person Person
John	was	born	in	Liverpool,	to	Julia	and	Alfred	Lennon.

Lennon..
John	Lennon...

Mrs.	Lennon..
..	his	mother	..

his	father
Alfredhe

the	Pool

Se
nt
en

ce Dependency	Parsing,
Part	of	speech	tagging,
Named	entity	recognition…

Do
cu
m
en

t

Coreference Resolution...

John	
Lennon

Alfred	
Lennon

Julia	
Lennon

Liverpool
birthplace

childOf

childOf

spouse

In
fo
rm

at
io
n

Ex
tra

ct
io
n Entity	resolution,

Entity	linking,
Relation	extraction…

6



Tagging	the	Parts	of	Speech

John	was	born	in	Liverpool,	to	Julia	and	Alfred	Lennon.
NNP VBD VBD IN NNP TO NNP CC NNP NNP

7

Nouns	are	entities

Verbs	are	relations

• Common	approaches	include	CRFs,	CNNs,	LSTMs



Detecting	Named	Entities

John	was	born	in	Liverpool,	to	Julia	and	Alfred	Lennon.
Person Location Person Person

8

• Structured	prediction	approaches
• Capture	entity	mentions	and	entity	types



NLP	annotations	à features	for	IE

Combine	tokens,	dependency	paths,	and	entity	types	to	define	rules.

Argument	1 Argument	2,
Person Organization

DT CEO of

appos nmod

casedet

Bill	Gates,	the	CEO	of	Microsoft,	said	…
Mr.	Jobs,	the	brilliant	and	charming	CEO	of	Apple	Inc.,	said	…
… announced	by	Steve	Jobs,	the	CEO	of	Apple.
… announced	by	Bill	Gates,	the	director	and	CEO	of	Microsoft.
… mused	Bill,	a	former	CEO	of	Microsoft.
and	many	other	possible	instantiations…

9



Entity	Names:	Two	Main	Problems

Different	Names	for	Entities

Inconsistent	References
MSFT,	APPL,	GOOG…

Typos/Misspellings
Baarak,	Barak,	Barrack,	…

Nick	Names
Bam	Bam,	Drumpf,	…

Entities	with	Same	Name

Partial	Reference

Things	named	after	each	other

First	names	of	people,	Location	
instead	of	team	name,	Nick	names

Clinton,	Washington,	Paris,	
Amazon,	Princeton,	Kingston,	…

Same	type	of	entities	share	names
Kevin	Smith,	John	Smith,	
Springfield,	…

12



Entity	Linking	Approach

13

Washington drops 10 points after game with UCLA Bruins.

Candidate	Generation
Washington	DC,	George	Washington,	Washington	state,
Lake	Washington,	Washington	Huskies,	Denzel	Washington,
University	of	Washington,	Washington	High	School,	…

Entity	Types
Washington	DC,	George	Washington,	Washington	state,
Lake	Washington,	Washington	Huskies,	Denzel	Washington,
University	of	Washington,	Washington	High	School,	…

LOC/ORG

Coreference
Washington	DC,	George	Washington,	Washington	state,
Lake	Washington,	Washington	Huskies,	Denzel	Washington,
University	of	Washington,	Washington	High	School,	…

UWashington,
Huskies

Coherence UCLA	Bruins,
USC	Trojans

Washington	DC,	George	Washington,	Washington	state,
Lake	Washington,	Washington	Huskies,	Denzel	Washington,
University	of	Washington,	Washington	High	School,	…

Vinculum,	Ling,	Singh,	Weld,	TACL	(2015)



Information	Extraction

John	
Lennon

Alfred	
Lennon

Julia	
Lennon

Liverpool
birthplace

childOf

childOf

spouse

Information	Extraction

NNP VBD VBD IN NNP TO NNP CC NNP NNP

John	was	born	in	Liverpool,	to	Julia	and	Alfred	Lennon.
Person Location Person Person

Lennon..
John	Lennon...

Mrs.	Lennon..
..	his	mother	..

his	father
Alfredhe

the	Pool

14



Information	Extraction

3	CONCRETE	SUB-PROBLEMS

Defining	domain
Learning	extractors	

Scoring	the	facts

3	LEVELS	OF	SUPERVISION

Supervised

Semi-supervised

Unsupervised

15



27

Defining	
domain

Learning
extractors

Scoring
candidate	
facts

Fusing	
extractors

ConceptNet

NELL

Knowledge	
Vault

OpenIE

IE	systems	in	practice

Heuristic	rules

Classifier



Knowledge	Extraction:	Key	Points
• Built	on	the	foundation	of	NLP	techniques
• Part-of-speech	tagging,	dependency	parsing,	named	
entity	recognition,	coreference	resolution…

• Challenging	problems	with	very	useful	outputs

• Information	extraction	techniques	use	NLP	to:
• define	the	domain
• extract	entities	and	relations
• score	candidate	outputs

• Trade-off	between	manual	&	automatic	methods

28



Knowledge Graph Construction

46

Knowledge 
Extraction

Graph 
Construction



Knowledge	Graph	
Construction

TOPICS:

PROBLEM SETTING

PROBABILISTIC MODELS

EMBEDDING TECHNIQUES
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Knowledge	Graph	
Construction

TOPICS:

PROBLEM SETTING
PROBABILISTIC MODELS

EMBEDDING TECHNIQUES
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Reminder:	Basic	problems

•Who	are	the	entities	
(nodes)	in	the	graph?

•What are	their	attributes	
and	types	(labels)?

• How	are	they	related	
(edges)?

6
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Graph	Construction	Issues
Extracted	knowledge	is:

• ambiguous:
◦ Ex:	Beetles,	beetles,	Beatles
◦ Ex:	citizenOf,	livedIn,	bornIn

7



Graph	Construction	Issues
Extracted	knowledge	is:

• ambiguous

• incomplete
◦ Ex:	missing	relationships
◦ Ex:	missing	labels
◦ Ex:	missing	entities

8



Graph	Construction	Issues
Extracted	knowledge	is:

• ambiguous

• incomplete

• inconsistent
◦ Ex:	Cynthia	Lennon,	Yoko	Ono
◦ Ex:	exclusive	labels	(alive,	dead)
◦ Ex:	domain-range	constraints

9
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Graph	Construction	Issues
Extracted	knowledge	is:

• ambiguous

• incomplete

• inconsistent

10



Graph	Construction	approach
•Graph	construction	cleans	and	completes	extraction	graph

•Incorporate	ontological	constraints	and	relational	patterns

•Discover	statistical	relationships	within	knowledge	graph

11



Knowledge	Graph	
Construction

TOPICS:

PROBLEM SETTING

PROBABILISTIC MODELS

EMBEDDING TECHNIQUES

12



Graph	Construction
Probabilistic	Models

TOPICS:

OVERVIEW

GRAPHICAL MODELS

RANDOM WALK METHODS

13



Graph	Construction
Probabilistic	Models

TOPICS:

OVERVIEW

GRAPHICAL MODELS

RANDOM WALK METHODS
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Beyond	Pure	Reasoning

•Classical	AI	approach	to	knowledge:	reasoning
Lbl(Socrates,	Man)	&	Sub(Man,	Mortal)	->	Lbl(Socrates,	Mortal)

15



Beyond	Pure	Reasoning

•Classical	AI	approach	to	knowledge:	reasoning
Lbl(Socrates,	Man)	&	Sub(Man,	Mortal)	->	Lbl(Socrates,	Mortal)

•Reasoning	difficult	when	extracted	knowledge	has	errors
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Beyond	Pure	Reasoning

•Classical	AI	approach	to	knowledge:	reasoning

Lbl(Socrates,	Man)	&	Sub(Man,	Mortal)	->	Lbl(Socrates,	Mortal)

•Reasoning	difficult	when	extracted	knowledge	has	errors

•Solution:	probabilistic	models	

P(Lbl(Socrates,	Mortal)|Lbl(Socrates,Man)=0.9)

17



Graph	Construction
Probabilistic	Models

TOPICS:

OVERVIEW

GRAPHICAL MODELS

RANDOM WALK METHODS

18



Graphical	Models:	Overview
•Define	joint	probability	distribution on	knowledge	graphs

•Each	candidate	fact	in	the	knowledge	graph	is	a	variable

•Statistical	signals,	ontological	knowledge	and	rules	
parameterize	the	dependencies	between	variables

•Find	most	likely	knowledge	graph	by	optimization/sampling

19



Knowledge	Graph	Identification
Define	a	graphical	model	to	
perform	all	three	of	these	
tasks	simultaneously!

•Who	are	the	entities	
(nodes)	in	the	graph?

•What are	their	attributes	
and	types	(labels)?

• How	are	they	related	
(edges)?

20
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Knowledge	Graph	Identification

P(Who,	What,	How|Extractions)

21
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Probabilistic	Models
•Use	dependencies	between	facts	in	KG	

•Probability	defined	jointly over	facts

22

P=0 P=0.25 P=0.75



What	determines	probability?
•Statistical	signals	from	text	extractors	and	classifiers

23



What	determines	probability?
•Statistical	signals	from	text	extractors	and	classifiers
• P(R(John,Spouse,Yoko))=0.75;	P(R(John,Spouse,Cynthia))=0.25
• LevenshteinSimilarity(Beatles,	Beetles)	=	0.9

24



What	determines	probability?
•Statistical	signals	from	text	extractors	and	classifiers

•Ontological	knowledge	about	domain
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What	determines	probability?
•Statistical	signals	from	text	extractors	and	classifiers

•Ontological	knowledge	about	domain
• Functional(Spouse)	&	R(A,Spouse,B)	->	!R(A,Spouse,C)
• Range(Spouse,	Person)	&	R(A,Spouse,B)	->	Type(B,	Person)

26



What	determines	probability?
•Statistical	signals	from	text	extractors	and	classifiers

•Ontological	knowledge	about	domain

•Rules	and	patterns	mined	from	data
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What	determines	probability?
•Statistical	signals	from	text	extractors	and	classifiers

•Ontological	knowledge	about	domain

•Rules	and	patterns	mined	from	data
• R(A,	Spouse,	B)	&	R(A,	Lives,	L)	->	R(B,	Lives,	L)
• R(A,	Spouse,	B)	&	R(A,	Child,	C)	->	R(B,	Child,	C)

28



What	determines	probability?
•Statistical	signals	from	text	extractors	and	classifiers
• P(R(John,Spouse,Yoko))=0.75;	P(R(John,Spouse,Cynthia))=0.25
• LevenshteinSimilarity(Beatles,	Beetles)	=	0.9

•Ontological	knowledge	about	domain
• Functional(Spouse)	&	R(A,Spouse,B)	->	!R(A,Spouse,C)
• Range(Spouse,	Person)	&	R(A,Spouse,B)	->	Type(B,	Person)

•Rules	and	patterns	mined	from	data
• R(A,	Spouse,	B)	&	R(A,	Lives,	L)	->	R(B,	Lives,	L)
• R(A,	Spouse,	B)	&	R(A,	Child,	C)	->	R(B,	Child,	C)

29



Example:	The	Fab	Four

30



Illustration	of	KG	Identification
Uncertain Extractions:

.5: Lbl(Fab Four, novel)

.7: Lbl(Fab Four, musician)

.9: Lbl(Beatles, musician)

.8: Rel(Beatles,AlbumArtist, 

Abbey Road)

PUJARA+ISWC13;	PUJARA+AIMAG15



Illustration	of	KG	Identification
Uncertain Extractions:

.5: Lbl(Fab Four, novel)

.7: Lbl(Fab Four, musician)

.9: Lbl(Beatles, musician)

.8: Rel(Beatles,AlbumArtist, 

Abbey Road)
musician

Fab	Four Beatles

novel

Abbey	Road

(Annotated)	Extraction	Graph
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Illustration	of	KG	Identification

Ontology:
Dom(albumArtist, musician)

Mut(novel, musician)

Uncertain Extractions:
.5: Lbl(Fab Four, novel)

.7: Lbl(Fab Four, musician)

.9: Lbl(Beatles, musician)

.8: Rel(Beatles,AlbumArtist, 

Abbey Road)
musician

Fab	Four Beatles

novel

Abbey	Road

Extraction	Graph
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Illustration	of	KG	Identification

Ontology:
Dom(albumArtist, musician)

Mut(novel, musician)

Uncertain Extractions:
.5: Lbl(Fab Four, novel)

.7: Lbl(Fab Four, musician)

.9: Lbl(Beatles, musician)

.8: Rel(Beatles,AlbumArtist, 

Abbey Road)

Entity Resolution:
SameEnt(Fab Four, Beatles)

musician

Fab	Four Beatles

novel

Abbey	Road

SameEnt

(Annotated)	Extraction	Graph

PUJARA+ISWC13;	PUJARA+AIMAG15



Illustration	of	KG	Identification

Ontology:
Dom(albumArtist, musician)

Mut(novel, musician)

Uncertain Extractions:
.5: Lbl(Fab Four, novel)

.7: Lbl(Fab Four, musician)

.9: Lbl(Beatles, musician)

.8: Rel(Beatles,AlbumArtist, 

Abbey Road)

Entity Resolution:
SameEnt(Fab Four, Beatles)

Beatles

Fab	Four
Abbey	Roadmusician

Rel(AlbumArtist)Lbl

musician

Fab	Four Beatles

novel

Abbey	Road

SameEnt

(Annotated)	Extraction	Graph

After	Knowledge	Graph	Identification

PUJARA+ISWC13;	PUJARA+AIMAG15



Probabilistic	graphical	model	for	KG

Lbl(Fab	Four,	
musician)

Lbl(Beatles,	
musician)

Rel(Beatles,	
AlbumArtist,	
Abbey	Road)

Rel(Fab	Four,	
AlbumArtist,	
Abbey	Road)

Lbl(Beatles,	novel)

Lbl(Fab	Four,	novel)



Defining	graphical	models
•Many	options	for	defining	a	graphical	model

•We	focus	on	two	approaches,	MLNs	and	PSL,	that	use	rules

•MLNs	treat	facts	as	Boolean,	use	sampling	for	satisfaction

•PSL	infers	a	“truth	value”	for	each	fact	via	optimization

37



100: Subsumes(L1,L2) & Label(E,L1) -> Label(E,L2)
100: Exclusive(L1,L2) & Label(E,L1) -> !Label(E,L2)

100: Inverse(R1,R2) & Relation(R1,E,O) -> Relation(R2,O,E)
100: Subsumes(R1,R2) & Relation(R1,E,O) -> Relation(R2,E,O)
100: Exclusive(R1,R2) & Relation(R1,E,O) -> !Relation(R2,E,O)

100: Domain(R,L) & Relation(R,E,O) ->  Label(E,L)
100: Range(R,L) & Relation(R,E,O) -> Label(O,L)

10: SameEntity(E1,E2) & Label(E1,L) -> Label(E2,L)
10: SameEntity(E1,E2) & Relation(R,E1,O) -> Relation(R,E2,O)

1: Label_OBIE(E,L) -> Label(E,L)
1: Label_OpenIE(E,L) -> Label(E,L)
1: Relation_Pattern(R,E,O) -> Relation(R,E,O)
1: !Relation(R,E,O)
1: !Label(E,L)

Rules	for	KG	Model

JIANG+ICDM12;	PUJARA+ISWC13,	PUJARA+AIMAG15 38



Rules	to	Distributions
•Rules	are	grounded by	substituting	literals	into	formulas

•Each	ground	rule	has	a	weighted	satisfaction	derived	
from	the	formula’s	truth	value

•Together,	the	ground	rules	provide	a	joint	probability	
distribution	over	knowledge	graph	facts,	conditioned	on	
the	extractions

P (G|E) =

1

Z
exp

"
X

r2R

wr�r(G,E)

#

wr : SameEnt(Fab Four,Beatles) ^
Lbl(Beatles,musician) ) Lbl(Fab Four,musician)

JIANG+ICDM12;	PUJARA+ISWC13



Probability	Distribution	over	KGs

P(G | E) = 1
Z
exp − wrr∈R∑ ϕr (G)$

%
&
'

CandLblT (FabFour, novel) ) Lbl(FabFour, novel)

Mut(novel, musician) ^ Lbl(Beatles, novel)

) ¬Lbl(Beatles, musician)

SameEnt(Beatles, FabFour) ^ Lbl(Beatles, musician)

) Lbl(FabFour, musician)



Lbl(Fab	Four,
musician)

φ1

Lbl(Fab	Four,
novel)

Lbl(Beatles,
novel)

Lbl(Beatles,
musician)

Rel(Beatles,	
albumArtist,	
Abbey	Road)

φ5 φ

φ2

φ3 φ4

φ

φ

φ

φ[�1] CandLblstruct(FabFour, novel)

) Lbl(FabFour, novel)

[�2] CandRelpat(Beatles, AlbumArtist, AbbeyRoad)

) Rel(Beatles, AlbumArtist, AbbeyRoad)

[�3] SameEnt(Beatles, FabFour)

^ Lbl(Beatles, musician)

) Lbl(FabFour, musician)

[�4] Dom(AlbumArtist, musician)

^Rel(Beatles, AlbumArtist, AbbeyRoad)

) Lbl(Beatles, musician)

[�5] Mut(musician, novel)

^ Lbl(FabFour, musican)

) ¬Lbl(FabFour, novel)

PUJARA+ISWC13;	PUJARA+AIMAG15



How	do	we	get	a	knowledge	graph?
Have:	P(KG)	forall KGs Need:	best	KG

42

MAP	inference:	optimizing	over	distribution	to	
find	the	best	knowledge	graph	

A1
A2

E2

E3

A1
A2

A1
A2

E1

P( )
A1
A2

E2

E3

A1
A2

A1
A2

E1



Inference	and	KG	optimization
•Finding	the	best	KG	satisfying	weighed	rules:	NP	Hard

•MLNs	[discrete]:	Monte	Carlo	sampling	methods
•Solution	quality	dependent	on	burn-in	time,	iterations,	etc.

•PSL	[continuous]:	optimize	convex	linear	surrogate
•Fast	optimization,	¾-optimal	MAX	SAT	lower	bound	

43



Graphical	Models	Experiments
Data:	~1.5M	extractions,	~70K	ontological	relations,	~500	relation/label	types

Task:	Collectively	construct	a	KG	and	evaluate	on	25K	target	facts

Comparisons:
Extract Average	confidences	of	extractors	for	each	fact	in	the	NELL	candidates

Rules Default,	rule-based	heuristic	strategy	used	by	the	NELL	project

MLN Jiang+,	ICDM12	– estimates	marginal	probabilities	with	MC-SAT

PSL Pujara+,	ISWC13	– convex	optimization	of	continuous	truth	values	with	ADMM

Running	Time:	Inference	completes	in	10	seconds,	values	for	25K	facts

JIANG+ICDM12;	PUJARA+ISWC13

AUC F1

Extract .873 .828

Rules .765 .673

MLN	(Jiang, 12) .899 .836

PSL	(Pujara,	13) .904 .853



Graphical	Models:	Pros/Cons
BENEFITS
• Define	probability	
distribution	over	KGs

• Easily	specified	via	rules

• Fuse	knowledge	from	many	
different	sources

DRAWBACKS

45

• Requires	optimization	over	
all	KG	facts	- overkill

• Dependent	on	rules	from	
ontology/expert

• Require	probabilistic	
semantics	- unavailable



Graph	Construction
Probabilistic	Models

TOPICS:

OVERVIEW

GRAPHICAL MODELS

RANDOM WALK METHODS

46



Random	Walk	Overview
•Given:	a	query	of	an	entity	and relation

•Starting	at	the	entity,	randomly	walk	the	KG

•Random	walk	ends	when	reaching	an	appropriate	goal

•Learned	parameters	bias	choices	in	the	random	walk

•Output	relative	probabilities	of	goal	states



Random	Walk	Illustration

48

Query:	R(Lennon,	PlaysInstrument,	?)



Random	Walk	Illustration

49

Query:	R(Lennon,	PlaysInstrument,	?)

albumArtist

hasInstrum
entplaysInstrument



Random	Walk	Illustration
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Query:	R(Lennon,	PlaysInstrument,	?)



Random	Walk	Illustration
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Query	Q:	R(Lennon,	PlaysInstrument,	?)



Random	Walk	Illustration
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Query	Q:	R(Lennon,	PlaysInstrument,	?)



Random	Walk	Illustration
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Query	Q:	R(Lennon,	PlaysInstrument,	?)



Random	Walk	Illustration
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Query	Q:	R(Lennon,	PlaysInstrument,	?)

P(Q|!=<coworker,playsInstrument>)	W!

Path Weight	of	path



Random	Walk	Illustration
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Query	Q:	R(Lennon,	PlaysInstrument,	?)

P(Q|!=<coworker,playsInstrument>)	W!



Random	Walk	Illustration
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P(Q|!=<coworker,playsInstrument>)	W!

Query	Q:	R(Lennon,	PlaysInstrument,	?)



Random	Walk	Illustration
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Query	Q:	R(Lennon,	PlaysInstrument,	?)



Random	Walk	Illustration

58

P(Q|!=<albumArtist,hasInstrument>)	W!

Query	Q:	R(Lennon,	PlaysInstrument,	?)



Random	Walk	Illustration
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P(Q|!=<albumArtist,hasInstrument>)	W!

Query	Q:	R(Lennon,	PlaysInstrument,	?)



Random	Walk	Illustration
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Query:	R(Lennon,	PlaysInstrument,	?)



Recent	Random	Walk	Methods
PRA:	Path	Ranking	Algorithm
• Performs	random	walk	of	imperfect	knowledge	graph

• Estimates	transition	probabilities	using	KG

• For	each	relation,	learns	parameters	for	paths	through	the	KG

ProPPR:	Programming	with	Personalized	PageRank
• Constructs	proof	graph
• Nodes	are	partially-ground	clauses	with	one	or	more	facts
• Edges	are	proof-transformations

• Parameters are	learned	for	each	ground	entity	and	rule

61



Recent	Random	Walk	Methods
PRA:	Path	Ranking	Algorithm
• Performs	random	walk	of	imperfect	knowledge	graph

• Estimates	transition	probabilities	using	KG

• For	each	relation,	learns	parameters	for	paths	through	the	KG

ProPPR:	Programming	with	Personalized	PageRank
• Constructs	proof	graph
• Nodes	are	partially-ground	clauses	with	one	or	more	facts
• Edges	are	proof-transformations

• Parameters are	learned	for	each	ground	entity	and	rule
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PRA	in	a	nutshell

63

score(q.s ! e; q) =
X

⇡i2⇧b

P (q.s ! e;⇡i)W⇡i

LAO+EMNLP11



PRA	in	a	nutshell

LAO+EMNLP11 64

score(q.s ! e; q) =
X

⇡i2⇧b

P (q.s ! e;⇡i)W⇡i

Filter	paths	based	on	HITS	and	accuracy



PRA	in	a	nutshell
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score(q.s ! e; q) =
X

⇡i2⇧b

P (q.s ! e;⇡i)W⇡i

Filter	paths	based	on	HITS	and	accuracy

Estimate	probabilities	efficiently	with	dynamic	programming

LAO+EMNLP11



PRA	in	a	nutshell

66

score(q.s ! e; q) =
X

⇡i2⇧b

P (q.s ! e;⇡i)W⇡i

Filter	paths	based	on	HITS	and	accuracy

Estimate	probabilities	efficiently	with	dynamic	programming

Path	weights	are	learned	with	logistic	regression

LAO+EMNLP11



Recent	Random	Walk	Methods
PRA:	Path	Ranking	Algorithm
• Performs	random	walk	of	imperfect	knowledge	graph

• Estimates	transition	probabilities	using	KG

• For	each	relation,	learns	parameters	for	paths	through	the	KG

ProPPR:	ProbLog +	Personalized	PageRank
• Constructs	proof	graph
• Nodes	are	partially-ground	clauses	with	one	or	more	facts
• Edges	are	proof-transformations

• Parameters are	learned	for	each	ground	entity	and	rule

67



ProPPR-ized PRA	example

68

Query	Q:	R(Lennon,	PlaysInstrument,	?)

R(									,Coworker,X)
R(X,PlaysInstrument,Y)

R(									,AlbumArtist,J)
R(J,HasInstrument,K)

Unbound	variables	in	proof	tree!



ProPPR-ized PRA	example

69

Query	Q:	R(Lennon,	PlaysInstrument,	?)

R(									,Coworker,X)
R(X,PlaysInstrument,Y)

R(									,AlbumArtist,J)
R(J,HasInstrument,K)

R(									,Coworker,								)
R(					,PlaysInstrument,Y)



ProPPR-ized PRA	example
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Query	Q:	R(Lennon,	PlaysInstrument,	?)

R(									,Coworker,X)
R(X,PlaysInstrument,Y)

R(									,AlbumArtist,J)
R(J,HasInstrument,K)

R(									,Coworker,								)
R(					,PlaysInstrument,Y)



ProPPR-ized PRA	example
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Query	Q:	R(Lennon,	PlaysInstrument,	?)

R(									,Coworker,X)
R(X,PlaysInstrument,Y)

R(									,AlbumArtist,J)
R(J,HasInstrument,K)

R(									,Coworker,								)
R(					,PlaysInstrument,Y)



ProPPR-ized PRA	example
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Query	Q:	R(Lennon,	PlaysInstrument,	?)

R(									,Coworker,X)
R(X,PlaysInstrument,Y)

R(									,AlbumArtist,J)
R(J,HasInstrument,K)

R(									,Coworker,								)
R(					,PlaysInstrument,Y)

R(									,Coworker,								)
R(					,PlaysInstrument,					)



ProPPR-ized PRA	example
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Query	Q:	R(Lennon,	PlaysInstrument,	?)

R(									,Coworker,X)
R(X,PlaysInstrument,Y)

R(									,AlbumArtist,J)
R(J,HasInstrument,K)

R(									,Coworker,								)
R(					,PlaysInstrument,Y)

R(									,Coworker,								)
R(					,PlaysInstrument,					)

R(									,AlbumArtist,							)
R(							,HasInstrument,K)



ProPPR-ized PRA	example

74

Query	Q:	R(Lennon,	PlaysInstrument,	?)

R(									,Coworker,X)
R(X,PlaysInstrument,Y)

R(									,AlbumArtist,J)
R(J,HasInstrument,K)

R(									,Coworker,								)
R(					,PlaysInstrument,Y)

R(									,Coworker,								)
R(					,PlaysInstrument,					)

R(									,AlbumArtist,							)
R(							,HasInstrument,K)

R(									,AlbumArtist,							)
R(							,HasInstrument,					)



ProPPR-ized PRA	example
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Query	Q:	R(Lennon,	PlaysInstrument,	?)

R(									,Coworker,X)
R(X,PlaysInstrument,Y)

R(									,AlbumArtist,J)
R(J,HasInstrument,K)

R(									,Coworker,								)
R(					,PlaysInstrument,Y)

R(									,Coworker,								)
R(					,PlaysInstrument,					)

R(									,AlbumArtist,							)
R(							,HasInstrument,K)

R(									,AlbumArtist,							)
R(							,HasInstrument,					)



ProPPR in	a	nutshell
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min
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X
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• Input:	queries,	positive	answers,	negative	answers

• Goal: (page	rank	from	RW)

• Learn:	random	walk	weights

• Train	via	stochastic	gradient	descent

p⌫0 [u
k
+] � p⌫0 [u

k
�]

WANG+MLJ15



Results	from	PRA	and	ProPPR
• Task:	
• 1M	extractions	for	3	domains;
• ~100s	of	training	queries
• ~1000s	of	test	queries
• AUC	of	extractions	alone	is	0.7

77

0.92

0.93

0.94

0.95

0.96

Google Beatles Baseball

Relation	Prediction	AUC

PRA	(1M) 
ProPPR	(1M)

WANG+MLJ15



Random	Walks:	Pros/Cons
BENEFITS
• KG	query	estimation	
independent	of	KG	size

•Model	training	produces	
interpretable,	logical	rules

• Robust	to	noisy	extractions	
through	probabilistic	form

DRAWBACKS

78

• Full	KG	completion	task	
inefficient

• Training	data	difficult	to	
obtain	at	scale

• Input	must	follow	
probabilistic	semantics



Two	classes	of	Probabilistic	Models

GRAPHICAL	MODELS

◦ Possible	facts	in	KG	are	
variables

◦ Logical	rules	relate	facts

◦ Probability							satisfied	
rules

◦ Universally-quantified

RANDOM	WALK	METHODS

◦ Possible	facts	posed	as	
queries

◦ Random	walks	of	the	KG	
constitute	“proofs”

◦ Probability							path	
lengths/transitions

◦ Locally	grounded

79



MATRICES, TENSORS, AND NEURAL NETWORKS



Probabilistic Models: Downsides

Limitation to Logical Relations

• Representation restricted by manual design
• Clustering? Assymetric implications?
• Information flows through these relations

• Difficult to generalize to unseen entities/relations

Computational Complexity of Algorithms

• Complexity depends on explicit dimensionality
• Often NP-Hard, in size of data
• More rules, more expensive inference

• Query-time inference is sometimes NP-Hard
• Not trivial to parallelize, or use GPUs

Embeddings

• Everything as dense vectors
• Can capture many relations
• Learned from data

• Complexity depends on 
latent dimensions

• Learning using stochastic 
gradient, back-propagation

• Querying is often cheap
• GPU-parallelism friendly

2



Two Related Tasks

relation

Graph 
Completion

relation

relation

relation
relation

relationrelation

relation

relation

Relation
Extraction

surface pattern

surface pattern

relation

relation

relation

relation

3



Two Related Tasks

Relation
Extraction

Graph 
Completion

surface pattern

surface pattern

relation

relation

relation

relation

relation

relation

relation

relation

relationrelation

relation

relation

relation
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What is NLP?

John was born in Liverpool, to Julia and Alfred Lennon.

Natural Language
Processing

NNP VBD VBD IN NNP TO NNP CC NNP NNP

John was born in Liverpool, to Julia and Alfred Lennon.
Person Location Person Person

Lennon..
John Lennon...

Mrs. Lennon..
.. his mother ..

his father
Alfredhe

the Pool

5



What is Information Extraction?

John 
Lennon

Alfred 
Lennon

Julia 
Lennon

Liverpool
birthplace

childOf

childOf

spouse

Information Extraction

6

NNP VBD VBD IN NNP TO NNP CC NNP NNP

John was born in Liverpool, to Julia and Alfred Lennon.
Person Location Person Person

Lennon..
John Lennon...

Mrs. Lennon..
.. his mother ..

his father
Alfredhe

the Pool



Relation Extraction From Text
John was born in Liverpool, to Julia and Alfred Lennon.

John 
Lennon

Alfred 
Lennon

Julia 
Lennon

Liverpool
“was born in”

“was born to”

“was born to”

“and”

“born in __, to”

“born in __, to”

7



Relation Extraction From Text

John 
Lennon

Alfred 
Lennon

Julia 
Lennon

Liverpool
birthplace

John was born in Liverpool, to Julia and Alfred Lennon.

“was born in”
“was born to”

“was born to”

childOf

childOf
“and”

“born in __, to”

“born in __, to”

livedIn

livedIn

8



“Distant” Supervision

9

John 
LennonLiverpool

birthplace

“was born in”

No direct supervision gives us this information.
Supervised: Too expensive to label sentences
Rule-based: Too much variety in language
Both only work for a small set of relations, i.e. 10s, not 100s

Barack 
ObamaHonolulu birthplace

“was born in”

“is native to”

“visited”

“met the senator from”



Relation Extraction as a Matrix

John was born in Liverpool, to Julia and Alfred Lennon.

John Lennon, Liverpool

John Lennon, Julia Lennon

John Lennon, Alfred Lennon

Julia Lennon, Alfred Lennon

1

1

1

1

Barack Obama, Hawaii

Barack Obama, Michelle Obama

1

1 1

1

?

?

En
tit

y 
Pa

irs

10Universal Schema, Riedel et al, NAACL (2013)



≈
n

k
k
m

X

relations

pa
irs

Matrix Factorization

n
m

Universal Schema, Riedel et al, NAACL (2013)

bornIn(John,Liverpool)bornIn(John,Liverpool)

11

relations
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Training: Stochastic Updates

Pick an observed cell, :

◦ Update         &      such that         is higher

Pick any random cell, assume it is negative:

◦ Update         &      such that is lower

relations

pa
irs

pa
irs

relations

12



Relation Embeddings

13



Embeddings ~ Logical Relations
Relation Embeddings, w
◦ Similar embedding for 2 relations denote they are paraphrases

◦ is married to, spouseOf(X,Y), /person/spouse

◦ One embedding can be contained by another
◦ w(topEmployeeOf) ⊂ w(employeeOf)
◦ topEmployeeOf(X,Y) → employeeOf(X,Y)

◦ Can capture logical patterns, without needing to specify them!

From Sebastian Riedel 14

Entity Pair Embeddings, v
Similar entity pairs denote similar 
relations between them
Entity pairs may describe multiple 
“relations”

independent foundedBy and employeeOf
relations



Similar Embeddings

X own percentage of Y X buy stake in Y

Time, Inc
Amer. Tel. and Comm. 1 1

Volvo
Scania A.B. 1

Campeau
Federated Dept Stores

Apple
HP

Successfully predicts “Volvo owns percentage of Scania A.B.”
from “Volvo bought a stake in Scania A.B.”

similar underlying embedding

sim
ila

r e
m

be
dd

in
g

From Sebastian Riedel 15



Implications

X professor at Y X historian at Y

Kevin Boyle
Ohio State 1

R. Freeman
Harvard 1

Learns asymmetric entailment:
PER historian at UNIV → PER professor at UNIV

But,
PER professor at UNIV → PER historian at UNIV

X historian at Y → X professor at Y

(Freeman,Harvard) 
→ (Boyle,OhioState)

From Sebastian Riedel 16



Two Related Tasks

Relation
Extraction

Graph 
Completion

surface pattern

surface pattern

relation

relation

relation

relation

relation

relation

relation

relation

relationrelation

relation

relation

relation

17



Graph Completion

John 
Lennon

Alfred 
Lennon

Julia 
Lennon

Liverpool
birthplace

“was born in”
“was born to”

“was born to”

childOf

childOf
“and”

“born in __, to”

“born in __, to”

livedIn

livedIn

18



spouse

spouse

Graph Completion

John 
Lennon

Alfred 
Lennon

Julia 
Lennon

Liverpool
birthplace

childOf

childOf

livedIn

livedIn
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|R|

|E|

Tensor Formulation of KG

e1

e2r

|E|

Does an unseen
relation exist?
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|R|

|E|

Factorize that Tensor

|E|

|E|

|E|
|R|

k
k

k
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Many Different Factorizations

CANDECOMP/PARAFAC-Decomposition

Tucker2 and RESCAL Decompositions

Model E

HOLE: Nickel et al, AAAI (2016), Model E: Riedel et al, NAACL (2013), RESCAL: Nickel et al, WWW (2012), CP: Harshman (1970), Tucker2: Tucker (1966)

Not tensor
factorization
(per se)

22
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Translation Embeddings

e1

e2

r

TransE

TransE: Bordes et al. XXX (2011), TransH: Bordes et al. XXX (2011), TransR: Bordes et al. XXX (2011) 23

TransH

TransR

Liverpool

John Lennon

birthplace

birthplace

Barack Obama

Honolulu



|R|

|E|

Parameter Estimation

e1

e2r

|E|

24

Observed cell: increase score

Unobserved cell: decrease score



Matrix vs Tensor Factorization

• Vectors for each entity pair
• Can only predict for entity pairs that 

appear in text together
• No sharing for same entity in different 

entity pairs

• Vectors for each entity
• Assume entity pairs are “low-rank”

• But many relations are not!
• Spouse: you can have only ~1

• Cannot learn pair specific information

25



What they can, and can’t, do..

From Singh et al. VSM (2015), http://sameersingh.org/files/papers/mftf-vsm15.pdf 26



Joint Extraction+Completion
surface pattern

surface pattern

Relation
Extraction

relation

relation

relation

Graph 
Completion

relation

relation

relation

relation

relation

relationrelation

relation

relation

relation

Joint Model
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Compositional Neural Models
So far, we’re learning vectors for each entity/surface pattern/relation..

But learning vectors independently ignores “composition”

Composition in Surface Patterns

• Every surface pattern is not unique

• Synonymy:

• Inverse:

• Can the representation learn this?

A is B’s spouse.
A is married to B.

X is Y’s parent.
Y is one of X’s children.

Composition in Relation Paths

• Every relation path is not unique

• Explicit:

• Implicit:

• Can the representation capture this?

X “bornInState” Z
X bornInCity Y, Y cityInState Z

A grandparent C
A parent B, B parent C

28



Composing Dependency Paths

… was born to … … ‘s parents are … \parentsOf

(never appears in 
training data)

But we don’t need linked data to know they mean similar things…

Use neural networks to produce the embeddings from text!

… was born to … … ‘s parents are … \parentsOf

NN NN

Verga et al (2016), https://arxiv.org/pdf/1511.06396v2.pdf 29



Composing Relational Paths

Microsoft Seattle Washington USA
isBasedIn stateLocatedIn countryLocatedIn

NN

stateBasedIn

countryBasedIn

NN

Neelakantan et al (2015), http://www.aaai.org/ocs/index.php/SSS/SSS15/paper/viewFile/10254/10032
Lin et al, EMNLP (2015), https://arxiv.org/pdf/1506.00379.pdf
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Review: Embedding Techniques
Two Related Tasks:

• Relation Extraction from Text
• Graph (or Link) Completion

Relation Extraction:
• Matrix Factorization Approaches

Graph Completion:
• Tensor Factorization Approaches

Compositional Neural Models
• Compose over dependency paths
• Compose over relation paths

31



Logic-centric 
knowledge

9 serving via 
reasoning

Relation-centric 
knowledge

9 serving via 
graph

Facts-centric 
knowledge

9 serving via 
indexes

Graph serving

Entity serving

The evolution of knowledge representation

Symbolic Reasoning



Why is a big knowledge graph not enough?

• Large knowledge graphs have billions of facts

• However, it doesn’t provide much help in logic reasoning

o The knowledge is not symbolized logic knowledge

o Lack of reasoning rules allow machines to do reasoning automatically

o More importantly, lack of common sense



The pyramid of knowledge

concrete

abstract

Freebase, etc.
(Facts Base)

ConceptNet
(Common Sense Base)

Logic
Rule
Base



Knowledge in symbolic logic form

• Symbols are abstract identifiers can be manipulated in an algebra system
• Variables 
• Functions 

• Symbolic expression is a finite combination of symbols

• Symbolic transformation: a symbolic expression can be transformed into 
another symbolic expression according to the rules of a predefined 
reasoning algebra
• An inference engine tries to derive answers for a logic question by performing logical 

deductions



Pal

Satori

Common sense

dog

actor

bark
AnimalCapableOf, 0.8

IsA, 0.98

Lassie 

Jan Clayton

person

logic rules

Satori
(Facts Base)

ConceptNet
(Common Sense Base)

Represents Satori facts and common sense 
knowledge in RHHG 



Functions and relations are just hyperedges!

• is just a hyperedge connecting 
three nodes .

• A logical expression can be 
written as .

• Symbolic transformation is just graph 
pattern matching and graph transformation!

Hyperedges



Pal

Satori

Common sense

dog

actor

bark
AnimalCapableOf, 0.8

IsA, 0.98

Lassie 

Jan Clayton

person
Logic
rule
base

logic rules



Use graph transformation to do logic deduction

Dog AnimalIsAPal IsA

Pal AnimalIsA

The logical deduction of a transitive relation 

Graph transformation: whenever we see a graph ௔ with a certain 
pattern , replace it with a graph ௕.



Our “shallow” yet reasonable answer 

• Why can Albert Einstein think, computer can’t
• [brain] is Capable Of [think]
• [person] have [brain]
• [Albert Einstein] is a [person]

• [think] requires [brain]
• [computer] does not have [brain]

computer

person

?x ?y ?z
PartOf PartOf

HasPrerequisite

think

CapableOf

Albert 
Einstein

IsA



Multimodal KB Embeddings

EncoderObject

Lookup

CNN

LSTM

FeedFwd

Entity

Images

Text

Numbers, etc.



Knowledge as Supervision

Learning
Algorithm

Learned Model

User
Update Model

X husband of Y => spouseOf(X,Y)✔

45

Learning
Algorithm

Learned Model

User
Update Model

spouseOf(Barack, Michelle)✔

Problem 1: Each annotation takes time
Problem 2: Each annotation is a drop in the ocean

Many different options
- Generalized Expectation
- Posterior Regularization
- Labeling functions in SNORKEL



(2) Future research directions: 
Online KG Construction

• One shot KG construction Æ Online KG construction
• Consume online stream of data
• Temporal scoping of facts
• Discovering new concepts automatically
• Self-correcting systems
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(2) Future research directions: 
Online KG Construction

• Continuously learning and self-correcting systems
• [Selecting Actions for Resource-bounded Information Extraction using 

Reinforcement Learning, Kanani and McCallum, WSDM 2012]
• Presented a reinforcement learning framework for budget constrained information extraction

• [Never-Ending Learning, Mitchell et al. AAAI 2015]
• Tom Mitchell says “Self reflection and an explicit agenda of learning subgoals” is an important 

direction of future research for continuously learning systems.
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