L7: Kernel density estimation

Non-parametric density estimation
Histograms

Parzen windows

Smooth kernels

Product kernel density estimation
The naive Bayes classifier

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU



PDFs and CDFs Overview

Density Functions

Suppose we have some variable X ~ f(x) where f(x) is the probability
density function (pdf) of X.

Note that we have two requirements on f(x):
@ f(x) > 0forall x € X, where X is the domain of X
o [, f(x)dx =1

Example: normal distribution pdf has the form

1 (x—m)?

oV2nr

e 202
which is well-defined for all x, x € R and o € R*.

f(x) =
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PDFs and CDFs Overview

Standard Normal Distribution
If X ~N(0,1), then X follows a standard normal distribution:

f(x) = —e */2 (1)
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Non-parametric density estimation

In the previous two lectures we have assumed that either

— The likelihoods p(x|w;) were known (LRT), or

— At least their parametric form was known (parameter estimation)
The methods that will be presented in the next two lectures

do not afford such luxuries

— Instead, they attempt to estimate the density directly from the data
without assuming a particular form for the underlying distribution

— Sounds challenging? You bet!
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The histogram

The simplest form of non-parametric DE is the histogram

— Divide the sample space into a number of bins and approximate the
density at the center of each bin by the fraction of points in the
training data that fall into the corresponding bin

1 [# of x* in same bin as x|

Pr(x) =g [width of bin]

— The histogram requires two “parameters” to be defined: bin width and
starting position of the first bin
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The histogram is a very simple form of density estimation,
but has several drawbacks

— The density estimate depends on the starting position of the bins

* For multivariate data, the density estimate is also affected by the
orientation of the bins

— The discontinuities of the estimate are not due to the underlying
density; they are only an artifact of the chosen bin locations

* These discontinuities make it very difficult (to the naive analyst) to grasp
the structure of the data

— A much more serious problem is the curse of dimensionality, since the
number of bins grows exponentially with the number of dimensions

* In high dimensions we would require a very large number of examples or
else most of the bins would be empty

— These issues make the histogram unsuitable for most practical
applications except for quick visualizations in one or two dimensions

— Therefore, we will not spend more time looking at the histogram
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Parzen windows

Problem formulation

— Assume that the region ‘R that encloses
the k examples is a hypercube with sides
of length h centered at x

h R
* Then its volume is given by V = h?,
where D is the number of dimensions h

h

A
v

— To find the number of examples that
fall within this region we define a kernel function K (u)

K(w) :{1 lui| <1/2 vj=1...D
0 otherwise

e This kernel, which corresponds to a unit hypercube centered at the origin,
is known as a Parzen window or the naive estimator

e The quantity K((x — x(™)/h) is then equal to unity if x(™ is inside a
hypercube of side h centered on x, and zero otherwise

[Bishop, 1995]
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— The total number of points inside the
hypercube is then

N x — x(
ko= Yn=a K\ —5—

Substituting back into the expression for
the density estimate

1 —x(n
Pxpe(X) = N_hng=1K (x :lc )

— Notice how the Parzen window
estimate resembles the histogram,
with the exception that the bin
locations are determined by the data

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU

x@ | x@ x@& x(
® *—o——o
\ ' Y] T
Vol?J(m e
I
[}
:/K(X-X
v xC
—@
E/K(X-X
x
o
i K (x-x
1
® :
:
” i K (x-x
: |
i
]
!

—
-
~—
Il
—

—
N
~—
Il
—

—
w
~—"
I
—

=

N
]

o



Smooth kernels

The Parzen window has several drawbacks
— It yields density estimates that have discontinuities

— It weights equally all points x;, regardless of their distance to the
estimation point x

For these reasons, the Parzen window is commonly replaced
with a smooth kernel function K (u)
Jop K(x)dx =1
— Usually, but not always, K (u) will be a radially symmetric and

_ir
unimodal pdf, such as the Gaussian K(x) = (2m) P/2¢72* *

— Which leads to the density estimate

1 x—xk
pxpe(X) = N_hDZrA{=1K( " )
1

-1/2 -1/2 u -1/2 -1/2 u
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Interpretation

— Just as the Parzen window estimate can be seen as a sum of boxes
centered at the data, the smooth kernel estimate is a sum of “bumps”

— The kernel function determines the shape of the bumps

— The parameter h, also called the smoothing parameter or bandwidth,
determines their width
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Bandwidth selection

The problem of choosing h is crucial in density estimation

— Alarge h will over-smooth the DE and mask the structure of the data

— Asmall h will yield a DE that is spiky and very hard to interpret
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Multivariate density estimation

For the multivariate case, the KDE is

1 —x(n
pxpe(x) = N—hDZﬁﬂK (x ,): )

— Notice that the bandwidth h is the same for all the axes, so this density
estimate will be weight all the axis equally

— If one or several of the features has larger spread than the others, we

should use a vector of smoothing parameters or even a full covariance
matrix, which complicates the procedure

There are two basic alternatives to solve the scaling problem
without having to use a more general KDE
— Pre-scaling each axis (normalize to unit variance, for instance)

— Pre-whitening the data (linearly transform so X = I), estimate the density,
and then transform back [Fukunaga]

—_— —~ <

* The whitening transformisy = A=/2MTx, T N
where A and M are the eigenvalue and //@ ]

eigenvector matrices of X
* Fukunaga’s method is equivalent to / 0
using a hyper-ellipsoidal kernel !

e
—— ——
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Product kernels

A good alternative for multivariate KDE is the product kernel
1
Ppkpe(x) = N N K(x,x™ hy,...hp)

ha
— The product kernel consists of the product of one-dimensional kernels

* Typically the same kernel function is used in each dimension (K;(x) =
K (x)), and only the bandwidths are allowed to differ

* Bandwidth selection can then be performed with any of the methods
presented for univariate density estimation

— Note that although K(x, x(™ hy, .. hD) uses kernel independence, this
does not imply we assume the features are independent

* If we assumed feature independence, the DE would have the expression

G

hq

* Notice how the order of the summation and product are reversed
compared to the product kernel

(n
_ 11D 1 N Xd—Xq
PFEAT—-IND (x) = d=1 D Zi=1Kd ( )
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P

Example |

— This example shows the product KDE of a bivariate unimodal Gaussian

e 100 data points were drawn from the distribution
* The figures show the true density (left) and the estimates using
h = 1.060N /5 (middle) and h = 0.9AN ~/> (right)
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Example Il

— This example shows the product KDE of a bivariate bimodal Gaussian
e 100 data points were drawn from the distribution

* The figures show the true density (left) and the estimates using
h = 1.060N /> (middle) and h = 0.9AN ~1/5 (right)
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