
CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 1 

L7: Kernel density estimation 
• Non-parametric density estimation 
• Histograms 
• Parzen windows 
• Smooth kernels 
• Product kernel density estimation 
• The naïve Bayes classifier 



PDFs and CDFs Overview

Density Functions

Suppose we have some variable X ⇠ f (x) where f (x) is the probability
density function (pdf) of X .

Note that we have two requirements on f (x):
f (x) � 0 for all x 2 X , where X is the domain of X
R
X f (x)dx = 1

Example: normal distribution pdf has the form

f (x) =
1

�
p

2⇡
e� (x�µ)2

2�2

which is well-defined for all x , µ 2 R and � 2 R+.
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PDFs and CDFs Overview

Standard Normal Distribution
If X ⇠ N(0, 1), then X follows a standard normal distribution:

f (x) =
1p
2⇡

e�x2/2 (1)
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Non-parametric density estimation 
• In the previous two lectures we have assumed that either 

– The likelihoods 𝑝(𝑥|𝜔𝑖) were known (LRT), or 

– At least their parametric form was known (parameter estimation) 

• The methods that will be presented in the next two lectures 
do not afford such luxuries 
– Instead, they attempt to estimate the density directly from the data 

without assuming a particular form for the underlying distribution 

– Sounds challenging? You bet! 

 
 

P(x1, x2| wi) 
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density estimation 
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The histogram 
• The simplest form of non-parametric DE is the histogram 

– Divide the sample space into a number of bins and approximate the 
density at the center of each bin by the fraction of points in the 
training data that fall into the corresponding bin 

𝑝𝐻 𝑥 =
1
𝑁

# 𝑜𝑓 𝑥(𝑘 𝑖𝑛 𝑠𝑎𝑚𝑒 𝑏𝑖𝑛 𝑎𝑠 𝑥
𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑏𝑖𝑛

 

– The histogram requires two “parameters” to be defined: bin width and 
starting position of the first bin 
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• The histogram is a very simple form of density estimation, 
but has several drawbacks 
– The density estimate depends on the starting position of the bins 

• For multivariate data, the density estimate is also affected by the 
orientation of the bins 

– The discontinuities of the estimate are not due to the underlying 
density; they are only an artifact of the chosen bin locations 
• These discontinuities make it very difficult (to the naïve analyst) to grasp 

the structure of the data 

– A much more serious problem is the curse of dimensionality, since the 
number of bins grows exponentially with the number of dimensions 
• In high dimensions we would require a very large number of examples or 

else most of the bins would be empty 

– These issues make the histogram unsuitable for most practical 
applications except for quick visualizations in one or two dimensions 

– Therefore, we will not spend more time looking at the histogram 
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Parzen windows 
• Problem formulation 

– Assume that the region ℜ that encloses  
the 𝑘 examples is a hypercube with sides  
of length ℎ centered at 𝑥 
• Then its volume is given by 𝑉 = ℎ𝐷,  

where 𝐷 is the number of dimensions 

 

– To find the number of examples that  
fall within this region we define a kernel function 𝐾(𝑢) 

𝐾 𝑢 =  1 𝑢𝑗 < 1 2   ∀𝑗 = 1. . . 𝐷
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        

 

• This kernel, which corresponds to a unit hypercube centered at the origin, 
is known as a Parzen window or the naïve estimator 

• The quantity 𝐾((𝑥 − 𝑥(𝑛)/ℎ) is then equal to unity if 𝑥(𝑛 is inside a 
hypercube of side ℎ centered on 𝑥, and zero otherwise 

x 

h 

h 

h 

[Bishop, 1995] 
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– The total number of points inside the 
hypercube is then 

𝑘 = ∑𝑛=1
𝑁 𝐾

𝑥 − 𝑥(𝑛

ℎ
 

Substituting back into the expression for 
the density estimate 

 𝑝𝐾𝐷𝐸 𝑥 = 1
𝑁ℎ𝐷 ∑𝑛=1

𝑁 𝐾 𝑥−𝑥(𝑛

ℎ
 

 

– Notice how the Parzen window 
estimate resembles the histogram, 
with the exception that the bin 
locations are determined by the data 
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Smooth kernels 
• The Parzen window has several drawbacks 

– It yields density estimates that have discontinuities 

– It weights equally all points 𝑥𝑖, regardless of their distance to the 
estimation point 𝑥 

• For these reasons, the Parzen window is commonly replaced 
with a smooth kernel function 𝐾(𝑢) 

 𝐾 𝑥 𝑑𝑥𝑅𝐷 = 1  

– Usually, but not always, 𝐾(𝑢) will be a radially symmetric and 

unimodal pdf, such as the Gaussian 𝐾 𝑥 = 2𝜋 −𝐷/2𝑒−1
2𝑥

𝑇𝑥 

– Which leads to the density estimate 

 𝑝𝐾𝐷𝐸 𝑥 = 1
𝑁ℎ𝐷 ∑𝑛=1

𝑁 𝐾 𝑥−𝑥(𝑘

ℎ
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• Interpretation 
– Just as the Parzen window estimate can be seen as a sum of boxes 

centered at the data, the smooth kernel estimate is a sum of “bumps” 

– The kernel function determines the shape of the bumps 

– The parameter ℎ, also called the smoothing parameter or bandwidth, 
determines their width 
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• The problem of choosing 𝒉 is crucial in density estimation 
– A large ℎ will over-smooth the DE and mask the structure of the data 

– A small ℎ will yield a DE that is spiky and very hard to interpret 
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Multivariate density estimation 
• For the multivariate case, the KDE is 

𝑝𝐾𝐷𝐸 𝑥 = 1
𝑁ℎ𝐷

∑𝑛=1𝑁 𝐾 𝑥−𝑥(𝑛

ℎ
  

– Notice that the bandwidth ℎ is the same for all the axes, so this density 

estimate will be weight all the axis equally 

– If one or several of the features has larger spread than the others, we 

should use a vector of smoothing parameters or even a full covariance 

matrix, which complicates the procedure 

• There are two basic alternatives to solve the scaling problem 
without having to use a more general KDE 
– Pre-scaling each axis (normalize to unit variance, for instance) 

– Pre-whitening the data (linearly transform so Σ = 𝐼), estimate the density, 

and then transform back [Fukunaga] 

• The whitening transform is 𝑦 = Λ−1/2𝑀𝑇𝑥,  

where Λ and 𝑀 are the eigenvalue and  

eigenvector matrices of Σ 

• Fukunaga’s method is equivalent to  

using a hyper-ellipsoidal kernel  
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Product kernels 
• A good alternative for multivariate KDE is the product kernel 

𝑝𝑃𝐾𝐷𝐸 𝑥 = 1
𝑁
∑𝑖=1𝑁 𝐾 𝑥, 𝑥(𝑛, ℎ1, … ℎ𝐷   

𝑤ℎ𝑒𝑟𝑒  𝐾 𝑥, 𝑥(𝑛, ℎ1, …ℎ𝐷 = 1
ℎ1…ℎ𝐷

 𝐾𝑑
𝑥𝑑−𝑥𝑑

(𝑛

ℎ𝑑
𝐷
𝑑=1   

– The product kernel consists of the product of one-dimensional kernels 

• Typically the same kernel function is used in each dimension (𝐾𝑑(𝑥) =
𝐾(𝑥)), and only the bandwidths are allowed to differ 

• Bandwidth selection can then be performed with any of the methods 

presented for univariate density estimation 

– Note that although 𝐾 𝑥, 𝑥(𝑛, ℎ1,… ℎ𝐷  uses kernel independence, this 

does not imply we assume the features are independent 

• If we assumed feature independence, the DE would have the expression 

𝑝𝐹𝐸𝐴𝑇−𝐼𝑁𝐷 𝑥 =  1
𝑁ℎ𝐷

𝐷
𝑑=1 ∑𝑖=1𝑁 𝐾𝑑

𝑥𝑑−𝑥𝑑
(𝑛

ℎ𝑑
  

• Notice how the order of the summation and product are reversed 

compared to the product kernel 
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Example I 
– This example shows the product KDE of a bivariate unimodal Gaussian 

• 100 data points were drawn from the distribution  

• The figures show the true density (left) and the estimates using 

ℎ = 1.06𝜎𝑁−1/5 (middle) and ℎ = 0.9𝐴𝑁−1/5 (right) 

 



CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 24 

-2 0 2 4 6 

-4 

-2 

0 

2 

4 

6 

8 

x 
1 

x
 2

 

-2 0 2 4 6 

-4 

-2 

0 

2 

4 

6 

8 

x 
1 

x
 2

 

-2 0 2 4 6 

-4 

-2 

0 

2 

4 

6 

8 

x 
1 

x
 2

 

Example II 
– This example shows the product KDE of a bivariate bimodal Gaussian 

• 100 data points were drawn from the distribution  

• The figures show the true density (left) and the estimates using 

ℎ = 1.06𝜎𝑁−1/5 (middle) and ℎ = 0.9𝐴𝑁−1/5 (right) 

 
 


