A Brief Introduction to Machine Translation

Excerpt from <u>CS224N</u>, Natural Language Processing with Deep Learning, Stanford & <u>CMSC 723</u>, Computational Linguistics I, UMIACS

Historical Background

Rule-based & Statistical Machine Translation

Machine Translation

• **Machine Translation (MT)** is the task of translating a sentence *x* from one language (the source language) to a sentence *y* in another language (the target language).

x: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

Early Machine Translation

- Early 1950s
 - Rule-based Machine Translation: Build dictionaries to map words in one language into their counterparts in another language

- Approach:
 - Build dictionaries
 - Write transformation rules
 - Refine, refine, refine

Statistical Machine Translation (SMT)

- 1990s 2010s
 - Statistical Machine Translation (SMT): Learn a probabilistic model from data
 - We want to find best English sentence y, given French sentence x

$$argmax_y P(y|x)$$

Use Bayes Rule to break this down into two components to be learnt separately:

$$= argmax_y P(x|y)P(y)$$

Translation Model*

Models how words and phrases should be translated (fidelity). **Learnt from parallel data.**

Language Model

Models how to write good English (fluency). Learnt from monolingual data.

^{*} Translation Model does not consider order of words.

Learning Alignment for SMT

- Question: How to learn translation model P(x|y) from the parallel corpus?
- Break it down further: we actually want to consider

- where a is the alignment, i.e. word-level correspondence between French sentence x and English sentence y
- alignment can be one-to-one, one-to-many or many-to-many

Statistical Machine Translation (SMT)

- SMT was a huge research field
- The best systems were extremely complex
 - Hundreds of important details we haven't mentioned here
 - Systems had many separately-designed subcomponents
 - Lots of feature engineering
 - Need to design features to capture particular language phenomena
 - Require compiling and maintaining extra resources
 - Like tables of equivalent phrases
 - Lots of human effort to maintain
 - Repeated effort for each language pair!

Neural Machine Translation

Sequence-to-sequence model

Neural Machine Translation (NMT)

Neural machine translation (NMT) is an approach to machine translation that
uses an artificial neural network to predict the likelihood of a sequence of words,
typically modeling entire sentences in a single integrated model.

- Sutskever, I., O. Vinyals, and Q. V. Le. "Sequence to sequence learning with neural networks." Advances in NIPS (2014).
- The neural network architecture is called sequence-to-sequence (aka seq2seq) and it involves two RNNs.

Sometimes called encoder-decoder network

Sequence to Sequence Model

Sequence to Sequence Model

Ideally we want to find a (length T) translation y that maximizes

$$P(y|x) = P(y_1|x)P(y_2|y_1,x) \dots P(y_T|y_1,\dots,y_{T-1},x)$$

$$= \prod_{t=1}^T P(y_t|y_1,\dots,y_{t-1},x) \text{ Probability of next target word, given target words so far and source sentence } x$$

- We could try computing all possible sequences y
 - Far too expansive!
- Beam search decoding*
 - On each step of decoder, keep track of the k most probable partial translations (which we call hypotheses)
 - k is the beam size (in practice around 5 to 10)

Neural Machine Translation (NMT)

Advantages of NMT

- Better performance
 - More fluent
 - Better use of context
 - Better use of phrase similarities
- A single neural network to be optimized end-to-end
 - No subcomponents to be individually optimized
- Requires much less human engineering effort
 - No feature engineering
 - Same method for all language pairs

Neural Machine Translation (NMT)

Disadvantages of NMT?

- NMT is less interpretable
 - Hard to debug
- NMT is difficult to control
 - For example, can't easily specify rules or guidelines for translation

NMT: success story of NLP Deep Learning

- Neural Machine Translation went from a fringe research activity in 2014 to the leading standard method in 2016
 - 2014: First seq2seq paper published
 - 2016: Google Translate switches from SMT to NMT
- SMT systems, built by hundreds of engineers over many years, outperformed by NMT systems trained by a handful of engineers in a few months
- However, many difficulties still remain
 - Out-of-vocabulary words
 - Domain mismatch between train and test data
 - Maintaining context over longer text
 - Low-resource language pairs

Evaluation

How good is a translation?

Precision & Recall of Words

SYSTEM A: <u>Israeli officials responsibility of airport safety</u>

REFERENCE: Israeli officials are responsible for airport security

Precision
$$\frac{correct}{output\text{-length}} = \frac{3}{6} = 50\%$$

Recall
$$\frac{correct}{reference-length} = \frac{3}{7} = 43\%$$

F-measure
$$\frac{precision \times recall}{(precision + recall)/2} = \frac{.5 \times .43}{(.5 + .43)/2} = 46\%$$

Precision & Recall of Words

SYSTEM A: <u>Israeli officials responsibility of airport safety</u>

REFERENCE: Israeli officials are responsible for airport security

SYSTEM B: <u>airport security Israeli officials are responsible</u>

Metric	System A	System B
precision	50%	100%
recall	43%	100%
f-measure	46%	100%

Flaw: no penalty for re-ordering

How do we evaluate Machine Translation?

- BLEU (Bilingual Evaluation Understudy) Metric
 - Papineni, Kishore, et al. "BLEU: a method for automatic evaluation of machine translation." Proceedings of the 40th annual meeting on association for computational linguistics. Association for Computational Linguistics, 2002.

- BLEU compares the machine-written translation to one or several human-written translation(s), and computes a similarity score based on:
 - n-gram precision (usually for 1, 2, 3 and 4-grams)
 - Plus a penalty for too-short system translations

Bilingual Evaluation Understudy (BLEU)

- BLEU compares the machine-written translation to one or several human-written translation(s), and computes a similarity score based on:
 - n-gram precision (usually for 1, 2, 3 and 4-grams)
 - Plus a penalty for too-short system translations

$$BLEU = \min\left(1, \frac{len(output)}{len(reference)}\right) \left(\prod_{i=1}^{4} precision_i\right)^{1/4}$$

Bilingual Evaluation Understudy (BLEU)

SYSTEM A: Israeli officials responsibility of airport safety
2-GRAM MATCH
1-GRAM MATCH

REFERENCE: Israeli officials are responsible for airport security

SYSTEM B: airport security Israeli officials are responsible 2-GRAM MATCH 4-GRAM MATCH

Metric	System A	System B
precision (1gram)	3/6	6/6
precision (2gram)	1/5	4/5
precision (3gram)	0/4	2/4
precision (4gram)	0/3	1/3
brevity penalty	6/7	6/7
BLEU	0%	52%

How do we evaluate Machine Translation?

- BLEU is useful but imperfect
 - There are many valid ways to translate a sentence
 - So a good translation can get a poor BLEU score because it has low n-gram overlap with the human translation

- Many other metrics
 - GLEU
 - NIST
 - CHRF
 - METEOR
 - ...