Introduction to Time Series (1)

ZHANG RONG

Department of Social Networking Operations
Social Networking Group
Tencent Company

November 20, 2017

https://zhuanlan.zhihu.com/p/32584136

ZHANG RONG — Introduction to Time Series (I) 1/69





Algorithms Control Chart Theory Opprentice System TSFRESH python package

Outline —

Time Series Algorithms
Control Chart Theory
Opprentice System

TSFRESH python package

ZHANG RONG — Introduction to Time Series (I) 2/69



Time Series Algorithms Control Chart Theory Opprentice System TSFRESH python pack

u Outline

Time Series Algorithms

ZHANG RONG — Introduction to Time Series (I) 3/69



Time Series Algorithms Control Chart Theory Opprentice System TSFRESH python package

Time Series @

Definition and Methods

Definition of Time Series

A time series is a series of data points indexed in time order.
Methods for time series analysis may be divided into two classes:
m Frequency-domain methods: spectral analysis and wavelet

analysis;
m Time-domain methods: auto-correlation and cross-correlation
analysis.

Methods of Time Series
Methods for time series analysis may be divided into another two
classes:

| A

m Parametic methods

m Non-parametic methods
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{r‘ Moving Average ©

Moving Average

Let {x; : i > 1} be an observed data sequence. A simple moving
average (SMA) is the unweighted mean of the previous w data. If
the w-days’ values are x;, Xj—1, ..., X;_(w—1), then the formula is

Xi+ Xji—1 4+ X (w-1)

When calculating successive values, a new value comes into the
sum and an old value drops out, that means

Xi—

XI
M; = MiflﬁL* =

w
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m Moving Average

the original time series

o 10 20 30 a0 s0 60

the time series and its features
black: original time series
red: the first feature:

Figure: Moving Average Method for w =5
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Cumulative Moving Average ©

Cumulative Moving Average

Let {xj : i > 1} be an observed data sequence. A cumulative
moving average is the unweighted mean of all datas. If the w-days
values are xi, - - -, x;, then
CMA; = A
i
If we have a new value x; 1, then the cumulative moving average is

34 =F © © ° 9F 3§ AF Gl
I+1
Xi+1 + - CMA,'
i+ 1
— CMA, + LCMA’
I+ 1

CMA; 41 =
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Weighted Moving Average ©

Weighted Moving Average

A weighted moving average is the weighted mean of the previous
w-datas. Suppose Z —0 We/ghtJ = 1 with all weight; > 0, then
the weighted moving average is

w—1
WMA; = Z Weightj * Xi—j-
j=0
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Weighted Moving Average ©

A Special Case
In particular, let {weight; : 0 < j < w — 1} be a weight with
w—J
wH(w—1)+---+
In this situation,

weight; = 1forogjgw—l.

wx; + (W — 1)xi—1 + -+ 2Xi—w42 + Xi—wt1

WMA; =
wt+(w—1)+---+1

Figure: WMA weights w = 15
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Weighted Moving Average ©

A Special Case

Weighted Moving Average

Suppose

Tota/,- = Xj+ -+ Xi—w+1,
Numerator; = wx; + (w — 1)xj—1 + -+ + Xi—w+1,

then the update formulas are

Totaliy1 = Totali + Xj+1 — Xi—w+1,
Numeratorj.1 = Numerator; + wxj1 — Total;,
Numerator;
WMA; 1 =

w+(w—1)+--+1
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Exponential Weighted Moving Average ©

Exponential Weighted Moving Average

Suppose {Y; : t > 1} is an observed data sequence, the
exponential weighted moving average series {S; : t > 1} is defined

as
Y].a t:].
St:
a- Y1+ (1—a) Semq1, t>2

m o € [0,1] is a constant smoothing factor.
m Y; is the observed value at a time period t.
m S; is the value of the EMWA at any time period t.
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Exponential Weighted Moving Average ©

Moreover, from above definition,
Se = ofYer+(1—a)Yea+ -+ (1 =) Ve (ki)
Jr(l - a)k+15t_(k+1)

for any suitable k € {0,1,2,---}. The weight of the point Y;_; is
a(l — )1

Figure: EMA weights k = 20
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Exponential Weighted Moving Average ©

Exponential Weighted Moving Average

Suppose {Y; : t > 1} is an observed data sequence, the alternated
exponential weighted moving average series {S; : t > 1} is defined

as
S Yl7 t - 1
t,alternate —
a- Y+ (1 - a) : Sl“—l,ah:ernal“e» t>2

Here, we use Y; instead of Y;_1.
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. Exponential Weighted Moving Average ©

the original time series
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the time series and its features
black: original time series
red: the first feature;
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Figure: Exponential Weighted Moving Average Method for o = 0.6
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. Double Exponential Smoothing ©

Double Exponential Smoothing

Suppose {Y; : t > 1} is an observed data sequence, there are two
equations associated with double exponential smoothing:

St = Oéyt+(1 —Oé)(st_]_ +bt_1),
b: = pB(St— St—1) + (1 —B)be_1,

where a € [0,1] is the data smoothing factor and 5 € [0, 1] is the
trend smoothing factor.
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Double Exponential Smoothing

Double Exponential Smoothing

Here, the initial values are S; = Y7 and b; has three possibilities:

by = Y-,

b — (Yo-N)+(Vz3-Yo)+(Ya—Y3) Ya—V

1 g 2 ’
Yo— Y1

T

v

Forecast

m The one-period-ahead forecast is given by Fi11 = S; + by.
m The m-period-ahead forecast is given by Fiip = St + mb;.
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. Double Exponential Smoothing

the original time series
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the time series and its features
black: original time series
red: the first feature;
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Figure: Double Exponential Smoothing for « = 0.6 and § = 0.4
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Triple Exponential Smoothing ©

Additive Seasonallty

Trlple Exponential Smoothing (Additive Seasonality)

Suppose {Y; : t > 1} is an observed data sequence, then the triple
exponential smoothing is

St = a(Ye—c—1)+ (1 — a)(St—1 + bt—1), Overall Smoothing
b: = B(S:— St-1)+ (1 — B)bt—1, Trend Smoothing

¢ = Y(Yer—St—1—bt—1) + (1 —y)ct—y, Seasonal Smoothing
where a € [0,1] is the data smoothing factor, 8 € [0, 1] is the

trend smoothing factor, v € [0,1] is the seasonal change
smoothing factor.

The m-period-ahead forecast is given by
Fiym = St + mby + C(t—L+m) mod L-
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- Triple Exponential Smoothing @

Multiplicative Seasonality

Triple Exponential Smoothing (Multiplicative Seasonality)

Suppose {Y; : t > 1} is an observed data sequence, then the triple
exponential smoothing is

Y;
S = a- L+ (1 — a)(Se—1 + be_1), Overall Smoothing
t—L
b: = B(S:— Si—1) + (1 — B)bt—1, Trend Smoothing
Y,
Ct q/?t + (1 — 7y)ct—r, Seasonal Smoothing
t

where a € [0,1] is the data smoothing factor, 5 € [0, 1] is the
trend smoothing factor, v € [0, 1] is the seasonal change
smoothing factor.
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- Triple Exponential Smoothing @

Multiplicative Seasonality

The m-period-ahead forecast is given by
Feim = (St + mbt)c(t—L+m) mod L-

y

Triple Exponential Smoothing

Initial values are

S$1 = Y1,
by — (Yer1 = Y1)+ (Yo = Y2) + -+ (Y — V1)
L )
N 1
+l
¢ = NZ J V 6{1 L}7
Aj wvwe{l?...,/\/}.

L
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i Introduction

= One approach to the analysis of time series
data 1s based on smoothing past data in

order to separate the unc
the data series from ranc

erlying pattern in
lomness.

= The underlying pattern t

projected into the future
forecast.

hen can be
and used as the



i Introduction

s The underlying pattern can also be broken down
into sub patterns to identify the component factors
that influence each of the values 1n a series.

= This procedure 1s called decomposition.

s Decomposition methods usually try to identify two
separate components of the basic underlying
pattern that tend to characterize economics and
business series.

= Trend Cycle
= Seasonal Factors



Decomposition of additive time series
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i Introduction

s The Trend Cycle represents long term changes in
the level of series.

s The Seasonal factor 1s the periodic fluctuations of
constant length that 1s usually caused by known
factors such as rainfall, month of the year,
temperature, timing of the Holidays, etc.

s The decomposition model assumes that the data
has the following form:

Data = Pattern + Error
= f (trend cycle, Seasonality , error)




i Decomposition Model

s Mathematical representation of the decomposition
approach iS'

=/ (5,1, E)

= Y, isthe tlme series value (actual data) at period t.

= S, 1s the seasonal component ( index) at period t.

= T, 1sthe trend cycle component at period t.

= E, 1sthe irregular (remainder) component at period t.



i Decomposition Model

= The exact functional form depends on the
decomposition model actually used. Two
common approaches are:

s Additive Model vt s
Y =8 +T+E /“J Y=T+S+]

= Multiplicative Model

Y, =5, xT,xE,



i Decomposition Model

s An additive model 1s 70,000
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Yt —_ Tt + St + Et
Yt —_ TtXStXEt
i Trend-Cycle Estimation

= How to estimate Trend-Cycle

= Moving Average
= Simple moving average

= Centered moving average

s Local Regression Smoothing
= Least squares estimates



Trend-Cycle Estimation

= Instead of fitting one straight line to the entire dataset, a
series of straight lines will be fitted to sections of the data.

= A straight trend line 1s not always appropriate, there are
many time series where some curved trend 1s better. Then

the trend maybe like these:

16 250
D_O/O/{\O\ —O—sales
200
12 U/O/)’MO/ \O\)\( trend
150 2
)
h 100
/
4 —O— sales 50 o) N
trend (I)—-O—'O’
0 1 0 | | | | | | | | | | | | | | | Il
1978 1980 1982 1984 1986 1988 1990 1992 1981 1985 1989 1997
_ 2 — at?b
T = a+ bt + ct It = at



Yt:Tt‘l‘St‘l‘Et Yt_Tt:St-I_Et
Yt — TtXStXEt Yt/Tt — StXEt

Seasonal Adjustment

= How to determine the seasonal factors
= For Additive model
= Average by seasons

= For multiplicative model

= Calculate the seasonal indexes use the average
by seasons



i Additive Seasonal Adjustment

s If the original data contains trend cycle, excludes
it at first. Then the data only consist of seasonal
factor and errors:

Y, =5; + E;
= According to original time series through simple
average computation to get seasonal values:
St =1 — STt
S, is the average value of the same season at
period t.


Dan Pei
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i Conclude: : Seasonal Adjustment

= This part only introduced one of the simplest
methods to calculate the seasonal factor.

= There are some more complex approaches:
moving average by seasons with weights,
curve fitting algorithm using cos(x) .etc.



Yt —_ Tt + St + Et
YL’ —_ TtXStXEt

conclusion

s Till now, we finish decomposition of the
original time series.

= We can use the estimation of T; and S;for
forecasting.

= Use the E; for anomaly detection.

Decomposition of additive time series
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Definition of Control Chart Theory

©

Control Chart

The control chart is a graphical display of a quality characteristic
that has been measured from a sample versus the sample number

or time.

m Center Line: the average value of the quality characteristic
m Upper Control Limit (UCL) and Lower Control Limit (LCL):

two horizontal lines.

Upper control limit

VAW

Lower control limit

cemecne p_/\ A /\
A/ VY

N

Sample quality characteristic

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

Sample number or time
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30 Control Chart @

Simplest Control Chart

30 Control Chart

Suppose that w is a sample statistic that measures some quality
characteristic, the mean of w is u, and the standard deviation of
w is o,,. Then the center line, the upper control limit and the
lower control limit becomes:

UCL = puw+ Loy
Center line = py,
LCL = pw — Loy

where L is the "distance” of the control limits from the center line,
expressed in standard deviation units. In particular, if L = 3, then
it is the 30 control chart.
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30 Control Chart

Simplest Control Chart

S

Distribution of
individual
measurements x:

Normal
with mean
u=1.5and
0=0.15

Distribution
of x:
Normal with

0,=0.0671

UCL =1.7013

\/\AM/

Center _ 1 5

Sample:
n=5

VN IR/

Line

LCL = 1.2987

Figure: How the control chart works
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The Cumulative Sum Control Chart @

CUSUM Control Chart

Let x; be the i-th observation on the process {x; : 1 < i < n},
{x;i : 1 <i < n} has a normal distribution with mean x and
standard deviation o. The cumulative sum control chart is
calculated by, for all 1 </ < n,

G = (% — mo) = Gi1 + (% — po),
=1

where Cp = 0 and pyg is the target for the process mean.

m If |G| exceed the decision interval H, then the process is
considered to be out of control.

m [ he decision interval H is 30 or 50.
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The Cumulative Sum Control Chart @

Data for the Cusum Example

Data for the Cusum Example

Sample, i (@) x; (b) x; — 10 (© C; = (x; — 10) + C;_,
1 9.45 —0.55 -0.55
2 7.99 —2.01 -2.56
3 9.29 —0.71 -3.27
4 11.66 1.66 —1.61
5 12.16 2.16 0.55
6 10.18 0.18 0.73
7 8.04 —-1.96 —1.23
8 11.46 1.46 0.23
9 9.20 —0.80 —0.57

10 10.34 0.34 —0.23
11 9.03 —0.97 —1.20
12 11.47 1.47 027
13 10.51 0.51 0.78
14 9.40 —0.60 0.18
15 10.08 0.08 0.26
16 9.37 —0.63 -0.37
17 10.62 0.62 0.25
18 1031 0.31 0.56
19 8.52 —1.48 -0.92
20 10.84 0.84 —-0.08
21 10.90 0.90 0.82
22 9.33 —0.67 0.15
23 12.29 2.29 244
24 11.50 1.50 3.94
25 10.60 0.60 4.54
26 11.08 1.08 5.62
27 10.38 0.38 6.00
28 11.62 1.62 7.62
29 1131 131 8.93
30 10.52 0.52 9.45
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The Cumulative Sum Control Chart @

The first 20 of these observations were drawn at random from a
normal distribution with ¢ = 10 and standard deviation o = 1.
They are plotted on a Shewhart control chart.

20

15

10

e e
u=10 u=11

S I N I A i |

2 4 6 8 1012 14 16 18 20 22 24 26 28 30
Sample number

Figure: A Shewhart control chart for the data
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u The Cumulative Sum Control Chart @

10
8l
G 6
al
Py
0 M . e A
\/\/ YV
2+
. =10 p=11—>
gl vl
2 4 6 8 101214161820 22 24 26 28 30

Sample number

Figure: Plot of the cumulative sum from column (c) in above table
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The Cumulative Sum Control Chart @

Comparison to three-sigma control limit

Difference

m [hree-sigma control limit: one or more points beyond a
three-sigma control limit

m CUSUM control limit: it is a good choice when small shifts
are important.
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TSFRESH python package ©

TSFRESH python package
m tsfresh is used to to extract characteristics from time series.

m Paper: Time Series Feature extraction based on scalable
hypothesis tests

m Spend less time on feature engineering
m Automatic extraction of 100s of features
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TSFRESH python package ©

TSFRESH python package

Let {x1,---,xn} be a time series, some features are
B max, min, median, mean w, variance o2, standard deviation o,
B range is maximum minus minimum

m skewness is the third standardized moment:

I xi—p\3
skewness:z< ! '1/) ,
o

i=1

m kurtosis is the fourth standardized moment:

n 4
kurtosis = Z <X' H >
o

i=1
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TSFRESH python package

e

TSFRESH python package

Let {x1,---,xn} be a time series, some features are
m absolute energy: E=5)7 ;x
m absolute sum of changes: E = Z

m aggregate autocorrelation:

’Xl+1 1

1 n n—/

n—1 Z (n —16)0'2 Z(Xt - :u)(XtJrf - :U’)v

=i t=1

m autocorrelation: parameter is lag /4,

1 n—~¢
3 D (xe = ) (xee — ).
(n — 6)0'2 tz_; 2 +¢ — |
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TSFRESH python package ©

TSFRESH python package

Let {x1,- - ,xn} be a time series, some features are

count above mean, count below mean
variance larger than standard deviation

first location of maximum, first location of minimum

n
[
m last location of maximum, last location of minimum
m has duplicate, has duplicate max, has duplicate min
n

longest strike above mean, longest strike below mean
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TSFRESH python package ©

TSFRESH python package

Let {x1, -+ ,xn} be a time series, some features are
-1
m mean change: > 777 (Xit1 — Xi)/n = (Xa — x1)/n
m mean second derivative central:

131
. Z E(Xi+2 =2 X1 + X)
i=1

percentage of reoccurring data points to all data points
percentage of reoccurring values to all values
ratio value number to time series length

sum of reoccurring data points

sum of reoccurring values
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TSFRESH python package ©

Initialization of Time Series

Let {x1,---,xn} be a time series, some initialization methods are,
forl1 <j<n,
Xi
Yi = i f )
mean({x; : 1 < i < n})
s median({x; : 1 < i < n})’
Xi
Yi =

max — min’
Xi

(max —min)/10’

Yi =

where max and min denotes the maximum and minimum value of
the time series, respectively.
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TSFRESH python package

Example of Two Lists

the first time series

T T T T T T T T

T
0 5 10 15 20 25 30 35 40
the second time series
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Features of the Above Two Lists

n TSFRESH python package

nonParametersFeatures
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature
feature

feature

00 e W =0 e
L4

(-]

value_listl
60

o

T.19512195122
85. 0350981559
922114772559

1. 71450748799
265796091617
6.0

5609

61

1

15

26

0. 975609756098
0.0

1.0
0.0213902139021

625
853658536585

0.3902139021390211

188

61

295

80

1
1
0. 589743589711
o
o

value_list2
&0

1
T.51219512195
84. 193753718
9. 1920183962
167091571882
26. 2152662595

0.0213902139021
0.0213902139021
0.170731 317

True

False

True

15

25

1.875

-1.175

0. 75611025611
0. 666666666667
0.878048780488
0. 36585365853658536
201

61

308

59
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©

Thank you for watching!

https://zhuanlan.zhihu.com/p/32584136

ZHANG RONG
zr95580@gmail.com

zr9558.wordpress.com
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