XGBOOST: A SCALABLE
TREE BOOSTING SYSTEM

(T. CHEN, C. GUESTRIN, 2016)

NATALLIE BAIKEVICH

HARDWARE ACCELERATION FOR
DATA PROCESSING SEMINAR

ETH ZURICH

MOTIVATION

v Effective
statistical XGBoost
models eXtreme
v Scalable system - Gradient
v Successful Boosting
real-world
applications

Model Averaging I

Classification trees can be simple, but often produce noisy (bushy)

or weak (stunted) classifiers.

e Bagging (Breiman, 1996): Fit many large trees to
bootstrap-resampled versions of the training data, and classify
by majority vote.

e Boosting (Freund & Shapire, 1996): Fit many large or small
trees to reweighted versions of the training data. Classify by

weighted majority vote.
e Random Forests (Breiman 1999): Fancier version of bagging.

In general Boosting > Random Forests > Bagging > Single Tree.

Random Forest Classifier

Location
Similarity

M features

Neighbor

process similari

< Take he
a majority
P vote

Neighbor
Function Similari

Not interact

N examples

Neighbor
process similari

\ Not interact

Interact Not interact

Neighbor

Function Similari

Not interact

|

Training Sample

-

C]l\/[()
Cg (:l?)
CQ (:L')

Cl (:B)

Boosting I

e Average many trees, each
grown to re-weighted versions

of the training data.

e Final Classifier is weighted av-
erage of classifiers:

C(x) = sign [an/le amCm(:I:)]

‘AdaBoost (Freund & Schapire, 1996)'

1. Initialize the observation weights w; = 1/N, i =1,2,..., N.
2. For m = 1 to M repeat steps (a)—(d):

(a) Fit a classifier C,,(z) to the training data using weights w;.

(b) Compute weighted error of newest tree

Sty wil (i # C(21)

err,, = N

D e Wi

«—— 1 he smaller the error of a
(¢) Compute a,, = log[(1 — err,,)/err,,]. tree. the higherthe weight for

this tree
(d) Update weights for i =1,..., N:
w; — w; - explagy, - I(y; # Cp,(2;))]
and renormalize to w; to sum to 1.

3. Output C(x) = sign [an/‘le amCm(x)].

BIAS-VARIANCE TRADEOFF

A %:
g b3 ariance
Model 20mplexity =
Random Forest Boosting
Variance | Bias |

+

Voting

A BIT OF HISTORY

AdaBoost, 1996
Random Forests, 1999
Gradient Boosting Machine, 2001

A BIT OF HISTORY

AdaBoost, 1996
Random Forests, 1999
Gradient Boosting Machine, 2001

Various improvements in tree
boosting

XGBoost package

A BIT OF HISTORY

AdaBoost, 1996
Random Forests, 1999
Gradient Boosting Machine, 2001

Various improvements in tree
boosting

XGBoost package

1st Kaggle success: Higgs Boson
Challenge

17129 winning solutions in 2015

WHY DOES XGBOOST WIN "EVERY" MACHINE
LEARNING COMPETITION?
- (MASTER THESIS, D. NIELSEN, 2016)

e Maksims Volkovs, Guangwei Yu and Tomi Poutanen, 1st place of the 2017 ACM RecSys challenge. Link to paper.
e Vlad Sandulescu, Mihai Chiru, 1st place of the KDD Cup 2016 competition. Link to the arxiv paper.

e Marios Michailidis, Mathias Miiller and HJ van Veen, 1st place of the Dato Truely Native? competition. Link to the
Kaggle interview.

e Viad Mironov, Alexander Guschin, 1st place of the CERN LHCb experiment Flavour of Physics competition. Link to
the Kaggle interview.

e Josef Slavicek, 3rd place of the CERN LHCb experiment Flavour of Physics competition. Link to the Kaggle
interview.

e Mario Filho, Josef Feigl, Lucas, Gilberto, 1st place of the Caterpillar Tube Pricing competition. Link to the Kaggle
interview.

e Qingchen Wang, 1st place of the Liberty Mutual Property Inspection. Link to the Kaggle interview.
e Chenglong Chen, 1st place of the Crowdflower Search Results Relevance. Link to the winning solution.

e Alexandre Barachant (“Cat”) and Rafat Cycon (“Dog”), 1st place of the Grasp-and-Lift EEG Detection. Link to the
Kaggle interview.

e Halla Yang, 2nd place of the Recruit Coupon Purchase Prediction Challenge. Link to the Kaggle interview.
e Owen Zhang, 1st place of the Avito Context Ad Clicks competition. Link to the Kaggle interview.
o Keiichi Kuroyanagi, 2nd place of the Airbnb New User Bookings. Link to the Kaggle interview.

e Marios Michailidis, Mathias Miller and Ning Situ, 1st place Homesite Quote Conversion. Link to the Kaggle
interview.

Source: https://qgithub.com/dmic/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions

https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions

Regression Trees
¢ "Decision trees for regression”

Copyright © 2001, 2003, Andrew W. Moore

63

A regression tree leaf

Predict age = 4{\7&

Mean age of records
matching this leaf node

Copyright © 2001, 2003, Andrew W. Moore

64

A one-split regression tree

Gender?

Fwe

Predict age = 39 Predict age = 36

Copyright © 2001, 2003, Andrew W. Moore 65

Choosing the attribute to split on

Gender |Rich? Num. Num. Beany |Age
Children | Babies

Female | No 2 1 38
Male No 0 0 24

Male Yes 0 5+ 72

e We can't use
information gain.

¢ What should we use?

Copyright © 2001, 2003, Andrew W. Moore 66

Choosing the attribute to split on

Gender |Rich? Num. Num. Beany |Age
Children | Babies

Female | No 2 1 38
Male No 0 0 24

Male Yes 0 5+ 72

MSE(Y|X) = The expected squared error if we must predict a record’s Y
value given only knowledge of the record’s X value

If we're told x=j, the smallest expected error comes from predicting the
mean of the Y-values among those records in which x=j. Call this mean
quantity g

Then...

MSE(Y | X)=— Z D =)

] =1 (k such that x, =)

Copyright © 2001, 2003, Andrew W. Moore 67

Choosing the attribute to split on

Gender |Rich? Num. Num. Beany |Age
Childean | RDahinc

Female | Reégression tree attribute selection: greedily
Male N choose the attribute that minimizes MSE(Y|X)

Male Y] Guess what we do about real-valued inputs?

-{ Guess how we prevent overfitting

MSE(YlX) = T A>3 CI\IJCLLCU D\.IUGICU CIrrur mnmvve 1riuou IJI CUitLtadiIrCceuiu o 1
value given only knowledge of the record’s X value

If we're told x=j, the smallest expected error comes from predicting the
mean of the Y-values among those records in which x=j/. Call this mean
quantity u,*/

Then...

MSE(Y | X)=— Z 2 —p

j =1 (ksuch that x;, =)

Copyright © 2001, 2003, Andrew W. Moore 68

Pruning Decision

...property-owner = Yes

Gender?

Do I deserve

5 2

Predict age = 39

Predict age = 36

property-owning females = 56712
Mean age among POFs = 39
Age std dev among POFs = 12

property-owning males = 55800
Mean age among POMs = 36
Age std dev among POMs = 11.5

Use a standard Chi-squared test of the null-
hypothesis “these two populations have the same
mean” and Bob’s your uncle.

Copyright © 2001, 2003, Andrew W. Moore

69

Linear Regression Trees

...property-owner = Yes

Also known as

Gender?

“Model Trees”

Predict age =

26 + 6 * NumChildren -
2 * YearsEducation

Predict age =

24 + 7 * NumChildren -
2.5 * YearsEducation

Leaves contain linear
functions (trained using
linear regression on all
records matching that leaf)

Copyright © 2001, 2003, Andrew W. Moore

Split attribute chosen to minimize
MSE of regressed children.

Pruning with a different Chi-
squared

70

Linear Regression Trees

...property-owner = Yes

Also known as

Gender?

. \(
Leaves contain\ 0% e 55‘06 o e\oee“ osen to minimize
functions (traine¥® ety 0‘“ = gressed children
linear regression \%"_on ¥

runing with a different Chi-
squared

: N
records matching ©

Copyright © 2001, 2003, Andrew W. Moore 71

Test your understanding

Assuming regular regression trees, can you sketch a
graph of the fitted function y2sx) over this diagram?

X—>

Copyright © 2001, 2003, Andrew W. Moore 72

TREE ENSEMBLE

Use Computer
Dally

REGULARIZED LEARNING
OBJECTIVE

L izl(j}z’yz) +ZV\(]§C)<— regularization
' k

loss
A User's interest A User's interest
X X x X X X K
! A
X ! —
i Y, SUM (x)
X X : k
X X X e X [
: k=1
-t = - t
Observed user's interest on topic k bt bt ts
against time t Too many splits, Q(f) is high 1
A User's interest A User's interest Nf) _m—' + / HWH
X X g X—— g% 2
X X
X i x|
% X X ; . # of leaves
: :
! > { - > {
ts t,
|Y] Wrong split point, L(f) is high [7] Good balance of Q(f) and L(f)

Source: http://xgboost.readthedocs.io/en/latest/model.html

http://xgboost.readthedocs.io/en/latest/model.html
Dan Pei

SUM

So How do we Learn?

e Objective: > ", 1(yi, %i) + D) Qfw), fr € F

e We can not use methods such as SGD, to find f (since they are
trees, instead of just numerical vectors)
e Solution: Additive Training (Boosting)

= Start from constant prediction, add a new function each time

33,5” = fi(zi) = 331-(0) + fi(z;)
0 = (@) + fala) = 00V + fola)

Qi(t) — Zzzl fk(xz) — Qgt_l) + ft(xz)\ New function
/

Model at training round t Keep functions added in previous round

Additive Training

e How do we decide which f to add?
= Optimize the objective!!
e The prediction at round t is 337@ = ?th_l) + ft(mi)\

This is what we need to decide in round t

Obj;)

+ N+ constant

Goal: find ft to minimize this
e Consider square loss ,
Obj) =377 | (yz — @Y+ ft(:vz-))) + Q(f:) + const

= Z?:l t(x) + ft(CCi)Q] + Q(f:) + const

This is usually called residual from previous round

Taylor Expansion Approximation of Loss

e Goal Obj®) =>"" 1 (yz-,ﬁg_l) + ft(ch,,)) + Q(f:) + constant

= Seems still complicated except for the case of square loss

e Take Taylor expansion of the objective
= Recall f(z+Azx) =~ f(z)+ f/(z)Az + 5 f"(x)Az?
« Define gi = 9yu—vl(y;, g Y), hy = 3§(t_1)l(yz'739(t_1))

Obj® ~ S {l(yi, @Z(t—l)) + gi fe(x:) + %hsz(xz)} + Q(f:) + constant

e [f you are not comfortable with this, think of square loss
gi = Oge-0 (7Y —)2 =2 —y;) hi =0 (yi —§TV)? =2

e Compare what we get to previous slide

Our New Goal

e Objective, with constants removed
>y |gife(xi) + shafE(x)]| + Qf)

- where ¢ = 95— l(y:, 9071), hi:ay%(t—l)l(yiag(t_l))

e Why spendingso much efforts to derive the objective, why not
just grow trees ...

= Theoretical benefit: know what we are learning, convergence

= Engineering benefit, recall the elements of supervised learning
+ giand h;comes from definition of loss function
+ The learning of function only depend on the objective via g9i: and h;

+ Think of how you can separate modules of your code when you

are asked to implement boosted tree for both square loss and
logistic loss

so

Refine the definition of tree

e \We define tree by a vector of scores in leafs, and a leaf index
mapping function that maps an instance to a leaf

ft(:c) = Wy(z), W E RT,q :R% — {1,2,---,T}

\ The structure of the tree

The leaf weight of the tree

"

(7 N
V
)

9
v,

o

(T
an .2

Leaf 3 q(@)=3

W1=+2 w2=0.1 w3=-1

Define Complexity of a Tree (cont’)

e Define complexity as (this is not the only possible definition)

Q(ft) =T + %)\Z?:l w32

Number of leaves L2 norm of leaf scores

T

a
{ V
Q7L

v

: Q=73+ SA(4+0.01+ 1)

Leaf 3

W1=+2 w2=0.1 w3=-1

Revisit the Objectives

e Define the instance set in leaf j as I; = {i|q(x;) = j}

e Regroup the objective by each leaf

Obj)~ 30 [gifi(xi) + shafE ()] + Q(f)
n T
=2 iz Lgiwq(wz') T %hiwg(a:?;) +y1+)\% Zj:l wﬂz

T
= 2 j=1 _(Zz‘efj gi)wj + %(Ziefj hi + /\)’wgz-] + T

e This is sum of T independent quadratic functions

The Structure Score

e Two facts about single variable quadratic function

. 2
argming Gr+ $Hz? =—% H >0 min, Gz + tHr? = — 1%

* Letusdefine G;=>ic; 90 Hj=3c; hi

Obj) =51 [(Sier, 000ws + $(Siey, b+ Aw?| + 7
=31 [Gywy + 5(Hj + Nwi| +4T

e Assume the structure of tree (g(x)) is fixed, the optimal

weight in each leaf, and the resulting objective value are

* _ Gy - _ 1T G
Wi = TH,+x Obj = =5 2.1 moax T L

;

This measures how good a tree structure is!

SCORE CALCULATION

Instanceindex gradient statistics

-l i N
1 @ g1, h1 /\

I; = {2,3,5)

‘ . ‘Y_\ . _' L -»' - N/)
2 o g2, h2 /\ G3 = g2+ g3 + g5
I = {1} I = {4} Hs = ho + hs + hs

w
2D

93, h3 Gi =g Go = g4
H, =h; Hy = hy \
Statistics for each leaf

g4, hd
. ¥

: G7
Obj=—=2.; mix +37 Score
g5, h5 '

5 g
/ The smaller the scoreis, the betterthe structure is

1st order gradient 2nd order gradient

Recap: Boosted Tree Algorithm

e Add a new tree in each iteration

e Beginning of each iteration, calculate

gi — g(t—l)l(yz’ag(t_l))a h _az(t 1) (yuy(t 1))

e Use the statistics to greedily grow a tree f:(z)

. G?
Obj = — 223 1H+)\+7T

e Add f;(z) to the model i =g+ fia)
= Usually, instead we do y(®) = y(t=Y) 4 ¢f, (x;)

= ¢ is called step-size or shrinkage, usually set around 0.1

= This means we do not do full optimization in each step and
reserve chance for future rounds, it helps prevent overfitting

ALGORITHM FEATURES

v" Regularized objective
v" Shrinkage and column subsampling

v Split finding: exact & approximate,
global & local

v" Weighted quantile sketch

v' Sparsity-awareness

SYSTEM DESIGN:
BLOCK STRUCTURE

Layout Transformation of one Feature (Column) The Input Layout of Linear scan over presorted columns
Three Feature Columns to find best spiit
S _ sorted }
s o M- @mm of 6 2
- P N |
'8 o — - . e
(3 ' - % (3 4 V' Gr=m+m Ca=g:+m+9
> v . —

: | '8 @ '8 6

) Gradent statistics of each exampie Missing values are not stored

[| Feature values » Stomd pointer from feature vaiue 10 Instanc e Incex

Max depth Sorted structure —> linear scan

O(KdeH()logn) - O([fd“x‘o+“yf‘ologB)

trees # non-missing entries

Blocks can be
v" Distributed across machines
v Stored on disk in out-of-core setting

SYSTEM DESIGN:
CACHE-AWARE ACCESS

Improved split finding Block Structure Instructions
¥ @ .0 G=G+gpt]
Non-continuous memory access — T HEH Lo
B " calculate score
v" Allocate internal buffer -
v’ Prefetch gradient statistics H = H + hiptrfi]

*—= Basic algonithm

amk ﬂ\l‘\—- Cache-aware algorithm

- W HH | . =
e e Datasets: i
: sl . Larger vs Smaller & ,
- T ig

16+ E"I-__:]

] ri i 16 035 z) B 16
mmmmm of Throads Mumber af Threads

(b) Higgs 10M (d) Higgs 1M

SYSTEM DESIGN:
BLOCK STRUCTURE

Prefetch Too large blocks, cache misses
in independent thread

128
bt

B B plock size=2M12
&8 Dpiock size=2M6G
¥V block size=2%20 |
" | *—¥ block size=2424

Compression by
columns (CSC):

Decompression } ‘ N !
VS B \:\\“\. v
Disk Reading ; T s

Numbar of Thenacs

. a) Allstate 10M
Block sharding: @)

Use multiple disks Too small, inefficient

parallelization

EVALUATION

4096 - : . ~
»
Block compression *) -
&
&
ap4a| \M:}f'f /
!.'I ,-* ‘/
. Basic algorithm
: S
o4t /i
i ;
= 1
5 ; Compression+shard
(= _-,-' i
@ 512) !
= f ',' Out of systam file cache
4 v start from this point
of f/ !
2361 i !
] :
:
12?25 296 512 1024 2048

Mumber of Training Examples [million)

AWS c3.8xlarge machine:
32 virtual cores, 2x320GB SSD,
60 GB RAM

4056

20487 #

to24r s
512+ V4

256+ .
.-"'..-f"“'"- .
P Spark MLLib a

wlla

- -
azf 1 ——

.J‘J'-
./’/.a-

Pog 356 512 1024 2048
Mumber of Training Examples {million)

Time per lteration (sec)

=
»
L
=
o
[wes)
&
&

16+

(b) Per iteration cost exclude data loading

32 m3.2xlarge machines, each:
8 virtual cores, 2x80GB SSD,
30GB RAM

DATASETS
Dataset __n__m _Task

Allstate 10M 4227 Insurance claim classification
Higgs Boson 10M 28 Event classification

Yahoo LTRC 473K 700 Learning to rank
Criteo 1.7B 67 Click through rate prediction

WHAT’S NEXT?

XGBoost

Scalability
Weighted quantiles
Sparsity-awareness
Cache-awarereness
Data compression

Tuning
Hyperparameter
optimization

Parallel Processing
GPU
FPGA

Model Extensions
DART (+ Dropouts)
LinXGBoost

More Applications

The RGF algorithm is a variation of GBDT in which the
structure search and the optimization are decoupled. More
specifically, the main differences are given as follows:

e RGF introduces an explicit regularization term that
takes advantage of individual tree structures.

h = argminnenlf(h(x);y) + R(R)] (4)

e RGF employs a fully-corrective greedy algorithm which
iteratively modifies the weights of all the leaf nodes
(decision rules) currently obtained while new rules are
added into the forest by greedy search. Here, an ex-
plicit regularization is also included to avoid overfitting
and very large models.

e RGF utilizes the concept of structured sparsity to per-
form greedy search directly over the forest nodes based
on the forest structure.

Algorithm 2 Regularized Greedy Forest framework

F <« {}
while stopping criterion not met do

Fix weights and adjust forest structure s:

§ < argminscsrQ(s(F)) (the optimum s that
minimizes Q(F') among all the structures that can be
obtained by applying one structure-changing operation
to F').

if some criterion is met then

Fix the structure and change the weights in F' s.t.
the loss is minimized in Q(F') (it can be optimized using
a standard procedure (such as coordinate descent) if the
regularization penalty is standard e.g., L2-loss

end if
end while
Optimize leaf weights in F' to minimize loss in Q(F)
return hp(x)

