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Step 1: Consider the following problem.
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表现

两个不同的基因都和某个症状有极强的相关性

这里提出的问题就是如果我们抑制这其中一个基因的表达，结果会是什么



Step 2: Causality matters!
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如果我们可以确认A是导致phenotype的原因，那么我们就有更高的确信度，
认为如果我们一直A的表达，预测的phenotyoe会很低

但是对于gene B来说，如果你不能确认它是原因的话，
那么仅仅通过相关性是预测不出干预效果的，因为confounder的作用



Step 3: What is a causal model?

distribution
P

causal graph

interv. distr.
Q1,Q2, . . .

causal model
e.g. SEM

counterfactuals
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Step 4: What questions are being asked?

How to compute
interventions?

What if there are hidden
variables?

What are nice graphical
representations?

Can we test counterfactual
statements?

Can we infer the graph
structure?

distribution
P

causal graph

interv. distr.
Q1,Q2, . . .

causal model
e.g. SEM

counterfactuals
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Example: chocolate

F. H. Messerli: Chocolate Consumption, Cognitive Function, and Nobel Laureates, N Engl J Med 2012
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Example: smoking

S C

?
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Example: myopia

“the strength of the association
. . . does suggest that the absence of a
daily period of darkness during child-
hood is a potential precipitating fac-
tor in the development of myopia”

Quinn, Shin, Maguire, Stone: Myopia and ambient lighting at night, Nature 1999
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Example: myopia

Question: Does the night light with sleep timer help?
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Example: kidney stones

Treatment A Treatment B

Small Stones ( 357700 = 0.51)
81
87 = 0.93 234

270 = 0.87

Large Stones ( 343700 = 0.49)
192
263 = 0.73 55

80 = 0.69

273
350 = 0.78 289

350 = 0.83

562
700 = 0.80

Charig et al.: Comparison of treatment of renal calculi by open surgery, (...) , British Medical Journal, 1986
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Example: kidney stones

underlying ground truth:

recovery size of stone

treatment

Question: What is the expected recovery if all get treatment B?
(Make treatment independent of size.)
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Example: advertisement
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Example: advertisement

click

main line reserve

# ads in main line

user intention

user data

Question: How do we choose an optimal main line reserve?

Bottou et al.: Counterfactual Reasoning and Learning Systems: The Example of Computational Advertising, JMLR 2013
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Example: gene interactions

genetic perturbation experiments for yeast

p = 6170 genes

nobs = 160 wild-types

nint = 1479 gene deletions (targets known)

ACTIVITY GENE  5954
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interventional training data
(interv. on genes other than 5954 and 4710)
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1 interventional test data point
(intervention on gene 5954)

Causal relationships are often stable!

Kemmeren et al.: Large-scale genetic perturbations reveal reg. networks and an abundance of gene-specific repressors. Cell, 2014
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Part I: Causal Language and causal reasoning
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distribution
P

causal graph

interv. distr.
Q1,Q2, . . .

causal model
e.g. SEM

counterfactuals
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SEMs: structural equations with noise distribution.

X1 := f1(X3,N1)

X2 := f2(X1,N2)

X3 := f3(N3)

X4 := f4(X2,X3,N4)

• Ni jointly independent

• G0 has no cycles

X4

X2 X3

X1G0
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SEMs model observational distributions over X1, . . . ,Xd .
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SEMs can model interventions, too.

X1 := 0

X2 := f2(X1,N2)

X3 := f3(N3)

X4 := f4(X2,X3,N4)

• Ni jointly independent

• G0 has no cycles

X4

X2 X3

X1G0
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Example: kidney stones

Given: graph and P .

T := f1(S ,N1) T := A

R := f2(T , S ,N2)

S := f3(N3)

• Ni jointly independent

• G0 has no cycles

R S

T

recovery size of stone

treatmentG0

IMPORTANT: modularity, autonomy: Aldrich 1989, Pearl 2009, Schölkopf et al. 2012, . . .
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Example: kidney stones

Given: graph and P . We can then compute P̃ = Pdo(T=A).
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Example: kidney stones

Treatment A Treatment B

Small Stones ( 357700 = 0.51)
81
87 = 0.93 234

270 = 0.87

Large Stones ( 343700 = 0.49)
192
263 = 0.73 55

80 = 0.69

273
350 = 0.78 289

350 = 0.83

562
700 = 0.80

Charig et al.: Comparison of treatment of renal calculi by open surgery, (...) , British Medical Journal, 1986

R S

T

recovery size of stone

treatmentP

R S

T

recovery size of stone

treatmentPdo(T :=A)
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Example: kidney stones

Edo(T :=A)R = Pdo(T :=A)(R = 1)

=
X

s

Pdo(T :=A)(R = 1, S = s,T = A)

=
X

s

Pdo(T :=A)(R = 1 | S = s,T = A)Pdo(T :=A)(S = s,T = A)

=
X

s

Pdo(T :=A)(R = 1 | S = s,T = A)Pdo(T :=A)(S = s)

=
X

s

P(R = 1 | S = s,T = A)P(S = s)

= 0.832

> 0.782

= . . .

= Pdo(T :=B)(R = 1) = Edo(T :=B)R
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Definition

Given an SEM, there is a total causal e↵ect from X to Y if one of the
following equivalent statements is satisfied:

(i) X ??� Y in PdoX :=ÑX
for some random variable ÑX .

(ii) There are x4 and x⇤, such that PY
doX :=x4 6= PY

doX :=x⇤ .

(iii) There is x4, such that PY
doX :=x4 6= PY .

(iv) X ??� Y in PX ,Y

doX :=ÑX
for any ÑX whose distribution has full support.

Causal strength?  your next paper :)
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for any ÑX whose distribution has full support.

Causal strength?  your next paper :)
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for any ÑX whose distribution has full support.

Causal strength?

 your next paper :)
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Summary Part I:

What if interested in iid prediction, i.e. observational data? Don’t
worry (too much) about causality!

But often, we are interested in a system’s behaviour under
intervention.

SEMs entail graphs, obs. distr., interventions and counterfactuals.

X1 := f1(X3,N1)

X2 := f2(X1, X3,N2)

X3 := f3(N3)

• Ni jointly independent
• G0 has no cycles

X2 X3

X1G0

graph + observational distribution  interventions (by adjusting)

... even possible if there are (some) hidden variables
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Part II: Causal Discovery
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distribution
P

causal graph

interv. distr.
Q1,Q2, . . .

causal model
e.g. SEM

counterfactuals

finite sample
P̂n

finite samples
Q̂n

1 , Q̂
n
2 , . . .

probabilistic reasoning

statistical learning
causal discovery

Required:
Relation between distribution P and SEM.
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Jonas Peters (MPI Tübingen) Causality 18 May 2016
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Correlation (Dependence) does not imply causation

... but:

Reichenbach’s common cause principle.
Assume that X ??� Y . Then

X “causes” Y ,

Y “causes” X ,

there is a hidden common “cause” or

combination of the above.

(In practice implicit conditioning also happens:

X: Spain ~ Y: Machine Learning ~

Z: attending MLSS

aka “selection bias”). Formalization of this idea...
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Jonas Peters (MPI Tübingen) Causality 18 May 2016



Correlation (Dependence) does not imply causation ... but:

Reichenbach’s common cause principle.
Assume that X ??� Y . Then

X “causes” Y ,

Y “causes” X ,

there is a hidden common “cause” or

combination of the above.

(In practice implicit conditioning also happens:

X: Spain ~ Y: Machine Learning ~

Z: attending MLSS

aka “selection bias”). Formalization of this idea...
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Definition: graphs

G = (V ,E ) with E ✓ V ⇥ V . The rest is as in real life!

parents, children, descendants, ancestors, ...

paths, directed paths

immoralities (or v-structures)

d-separation (see next)

...

X1

X2 X3

X4 X5
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Definition: d-separation

Xi and Xj are d-separated by S if all paths between Xi and Xj are blocked
by S.

Check, whether all paths blocked!!

X1

X2 X3

X4 X5

X2 and X5 are d-sep. by {X1,X4}
X4 and X1 are d-sep. by {X2,X3}
X2 and X4 are d-sep. by {}
X4 and X1 are NOT d-sep. by {X3,X5}

� · · ·! � ! · · · � blocks a path.

� · · · � ! · · · � blocks a path.

� · · ·! �  · · · � blocks a path.
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Definition

P is Markov w.r.t. G if

Xi and Xj are d-separated by S in G ) Xi ?? Xj | S

Proposition

Let the distribution P be Markov wrt a causal graph G. Then,
Reichenbach’s common cause principle is satisfied.

Proof: dependent variables must be d-connected.
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Definition

P is Markov w.r.t. G if

Xi and Xj are d-separated by S in G ) Xi ?? Xj | S

Definition

P is faithful w.r.t. G if

Xi and Xj are d-separated by S in G ( Xi ?? Xj | S
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Idea 1: independence-based methods

P(X1,...,X4)

X1 ?? X2

X2 ?? X3

X1 ?? X4 | {X3}
X1 ?? X2 | {X3}
X2 ?? X3 | {X1}

X4

X2 X3

X1G

X4 = f4(X3,N4)

X3 = f3(X1,N3)

X2 = f2(N2)

X1 = f1(N1)

Ni jointly independent

ind
epe

nde
nce

test
s

G 0

G 00

Faithfuln.Markov

unique? triv
ial

Method: IC (Pearl 2009); PC, FCI (Spirtes et al., 2000)

1 Find all (cond.) independences from the data.

2 Select the DAG(s) that corresponds to these independences.
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Example: myopia

We have

night light ??� child myopia

night light ?? child myopia | parent myopia

no other independences

Quinn et al.: Myopia and ambient lighting at night, Nature 1999
Zadnik et al.: Vision: Myopia and ambient night-time light., Nature 2000
Gwiazda et al.: Vision: Myopia and ambient night-time light., Nature 2000

and therefore ...

NL CM

PM
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Idea 1: independence-based methods

P(X1,...,X4)
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Idea 1: independence-based methods

P(X1,...,X4)

X1 ?? X2

X2 ?? X3

X1 ?? X4 | {X3}
X1 ?? X2 | {X3}
X2 ?? X3 | {X1}

X4

X2 X3

X1G

X4 = f4(X3,N4)

X3 = f3(X1,N3)

X2 = f2(N2)

X1 = f1(N1)

Ni jointly independent

ind
epe

nde
nce

test
s

G 0

G 00

Faithfuln.Markov

unique? triv
ial

Method: IC (Pearl 2009); PC, FCI (Spirtes et al., 2000)

1 Find all (cond.) independences from the data. Be smart.

2 Select the DAG(s) that corresponds to these independences.
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What do we do with two variables?
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Idea 2: restricted structural equation models

Mooij, JP, Janzing, Zscheischler, Schölkopf: Disting. cause from e↵ect using obs. data: methods and benchm., submitted
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Idea 2: restricted structural equation models

Assume P(X1, . . . ,X4) has been entailed by

X1 = f1(X3,N1)

X2 = N2

X3 = f3(X2,N3)

X4 = f4(X2,X3,N4)

• Ni jointly independent

• G0 has no cycles

X4

X2 X3

X1G0

Structural equation model.
Can the DAG be recovered from P(X1, . . . ,X4)?

No.
JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014
P. Bühlmann, JP, J. Ernest: CAM: Causal add. models, high-dim. order search and penalized regr., Annals of Statistics 2014
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Idea 2: restricted structural equation models

Assume P(X1, . . . ,X4) has been entailed by

X1 = f1(X3)+N1

X2 = N2

X3 = f3(X2)+N3

X4 = f4(X2,X3)+N4

• Ni ⇠ N (0,�2
i ) jointly independent

• G0 has no cycles

X4

X2 X3

X1G0

Additive noise model with Gaussian noise.
Can the DAG be recovered from P(X1, . . . ,X4)? Yes i↵ fi nonlinear.
JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014
P. Bühlmann, JP, J. Ernest: CAM: Causal add. models, high-dim. order search and penalized regr., Annals of Statistics 2014
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Idea 2: restricted structural equation models

Consider a distribution entailed by

Y = f (X ) + NY

with NY ,X
ind⇠ N

X Y

Then, if f is nonlinear, there is no

X = g(Y ) +MX

withMX ,Y
ind⇠ N

X Y

JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014
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Idea 2: restricted structural equation models

Consider a distribution corresponding to

Y = X 3 + NY

with NY ,X
ind⇠ N

X Y

with

X ⇠ N (1, 0.52)

NY ⇠ N (0, 0.42)
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Idea 2: restricted structural equation models

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
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X

Y
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Idea 2: restricted structural equation models

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

0
5

10
15

gam(X ~ s(Y))$residuals

Y
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Real Data: cause-e↵ect pairs
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Example: chocolate

F. H. Messerli: Chocolate Consumption, Cognitive Function, and Nobel Laureates, N Engl J Med 2012
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Example: chocolate

No (not enough) data for chocolate

... but we have data for co↵ee!
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Example: chocolate

0 2 4 6 8 10 12

0
5

1
5

2
5

coffee consumption per capita (kg)

#
 N

o
b
e
l L

a
u
re

a
te

s 
/ 
1
0
 m

io

Correlation: 0.698
p-value: < 2.2 · 10�16

Co↵ee! Nobel Prize: Dependent residuals (p-value of 5.1 · 10�78).
Nobel Prize! Co↵ee: Dependent residuals (p-value of 3.1 · 10�12).

) Model class too small? Causally insu�cient?
Question: When is a p-value too small?
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Idea 2: restricted structural equation models

Slightly surprising:

identifiability for two variables  identifiability for d variables

Peters et al.: Identifiability of Causal Graphs using Functional Models, UAI 2011

Let P(X1, . . . ,Xp) be entailed by an ...

conditions identif.
structural equation model: Xi = fi (XPAi

,Ni ) - 7
additive noise model: Xi = fi (XPAi

) + Ni nonlin. fct. 3
causal additive model: Xi =

P
k2PAi

fik(Xk) + Ni nonlin. fct. 3

linear Gaussian model: Xi =
P

k2PAi
�ikXk + Ni linear fct. 7

.

(results hold for Gaussian noise)
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Idea 2: restricted structural equation models
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Idea 2: restricted structural equation models

GAUL GAUSS
“the LINEAR”
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Idea 2: restricted structural equation models
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Idea 2: restricted structural equation models

Method: Minimizing KL

Choose the direction that corresponds to the closest subspace...

Jonas Peters (MPI Tübingen) Causality 18 May 2016



Idea 2: restricted structural equation models

Consider model classes

SG := {Q : Q entailed by a causal additive model (CAM) with DAG G}

Define
Ĝn := argmin

DAG G
inf

Q2SG

KL(P̂n ||Q)

max.
=

likelihood
argmin
DAG G

pX

i=1

log v̂ar(residualsPAG
i !Xi

)

Wait, there is no penalization on the number of edges!
Wait again, there are too many DAGs!
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Jonas Peters (MPI Tübingen) Causality 18 May 2016



Idea 2: restricted structural equation models

Consider model classes

SG := {Q : Q entailed by a causal additive model (CAM) with DAG G}

Define
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Idea 2: restricted structural equation models

p number of DAGs with p nodes

1 1
2 3
3 25
4 543
5 29281
6 3781503
7 1138779265
8 783702329343
9 1213442454842881
10 4175098976430598143
11 31603459396418917607425
12 521939651343829405020504063
13 18676600744432035186664816926721
14 1439428141044398334941790719839535103
15 237725265553410354992180218286376719253505
16 83756670773733320287699303047996412235223138303
17 62707921196923889899446452602494921906963551482675201
18 99421195322159515895228914592354524516555026878588305014783
19 332771901227107591736177573311261125883583076258421902583546773505
20 2344880451051088988152559855229099188899081192234291298795803236068491263
21 34698768283588750028759328430181088222313944540438601719027559113446586077675521
22 1075822921725761493652956179327624326573727662809185218104090000500559527511693495107583
23 69743329837281492647141549700245804876504274990515985894109106401549811985510951501377122074625

https://oeis.org/A003024/b003024.txt
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Idea 2: restricted structural equation models

E.g. greedy search!

– 0.2 0.1 0.1 0.1 0.3

0.4 – 0.1 0.1 0.1 0.1

0.1 0.6 – – – 0.4

0.1 0.1 – – 0.1 0.1

0.1 0.1 – 0.1 – –

0.3 0.1 – 0.1 – – include best edge�!
recompute column

X1

X2

X3

X4

X5

X6

Greedy Addition (e.g. Chickering 2002). Include the edge that leads to the
largest increase of the log-likelihood.
Bühlmann, JP, Ernest: CAM: Causal add. models, high-dim. order search and penalized regr., Annals of Statistics 2014
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Idea 3: invariant causal prediction

distribution
P

causal graph

interv. distr.
Q1,Q2, . . .

causal model
e.g. SEM

counterfactuals

finite sample
P̂n

finite samples
Q̂n

1 , Q̂
n
2 , . . .

probabilistic reasoning

statistical learning
causal discovery

Problem:
- Find the causal parents of a target variable Y from P̂n, Q̂n

1 , Q̂
n
2 , . . .

- Confidence statements?
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pooled data (n = 1000)

X1
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infer parents of Y from pooled data?
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linear model

> linmod <- lm( Y ~ X)

> summary(linmod)

Call:

lm(formula = YY ~ XX)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.000322 0.025858 0.012 0.99

X1 -0.444534 0.034306 -12.958 <2e-16 ***

X2 -0.402398 0.016471 -24.430 <2e-16 ***

X3 0.603502 0.025642 23.536 <2e-16 ***
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ICP (R-package InvariantCausalPrediction)

> ExpInd

[1]11111111111111111111111111111111 . . .22222222222222 . . .

> icp <- ICP(X,Y,ExpInd)

LOWER BOUND UPPER BOUND MAXIMIN EFFECT P-VALUE

Variable_1 -0.11 0.10 0.00 1.0000

Variable_2 -0.33 0.00 0.00 1.0000

Variable_3 0.47 1.05 0.47 0.0012 **

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Key idea:
P(Y |PAY ) remains invariant if the struct. equ. for Y does not change.

X1 := f1(X3,N1)

Y := f2(X1,N2)

X3 := f3(N3)

X4 := f4(Y ,X3,N4)

• Ni jointly independent

• G0 has no cycles

X4

Y X3

X1G0

IMPORTANT: modularity, autonomy
Haavelmo 1944, Aldrich 1989, Pearl 2009, Schölkopf et al. 2012, Barenboim et al. 2013, Hauser et al. 2013, . . .
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Key idea:
P(Y |PAY ) remains invariant if the struct. equ. for Y does not change.

X1 := f̃1(Ñ1)

Y := f2(X1,N2)

X3 := f̃3(X1,X4, Ñ3)

X4 := f̃4(Y , Ñ4)

• Ni jointly independent

• G0 has no cycles
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Assumption

Let S⇤ be the indices of parents(Y ).

for all e 2 E : X e has an arbitrary distribution and

Y e |X e
S⇤ = x invariant .
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Let S⇤ be the indices of parents(Y ). There exists �⇤ with support S⇤ that
satisfies

for all e 2 E : X e has an arbitrary distribution and

Y e |X e
S⇤ = x invariant .

Y e = X e�⇤ + "e , "e ⇠ F" and "e ?? X e
S⇤ .

We say:

“S⇤ satisfies invariant prediction.” or “H0,S⇤(E) is true.”

Goal: Find S⇤.
Given: Data from di↵erent environments e 2 E .
Idea: Check H0,S(E) for several candidates S .
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H0,S(E) =
⇢

not rejected
rejected

Ŝ(E) :=
\

S :H0,S (E) not rej.

S

set {3, 5} {3, 7} S⇤ = {1, 3, 6} {2} {3, 8} · · ·
inv. pred. 3 7 3 7 3 · · ·

Ŝ(E) = {3}

P(Ŝ(E) ✓ S⇤) � 1� ↵
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infinite data P

H0,S(E) =
⇢

correct
false

S(E) :=
\

S :H0,S (E) is true

S

finite data P̂n

H0,S(E) =
⇢

not rejected
rejected

Ŝ(E) :=
\

S :H0,S (E) not rej.

S

set {3, 5} {3, 7} S⇤ = {1, 3, 6} {2} {3, 8} · · ·
inv. pred. 3 7 3 7 3 · · ·

S(E) = {3} Ŝ(E) = {3}

S(E) ✓ S⇤ P(Ŝ(E) ✓ S⇤) � 1� ↵
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Theorem (PBM 2016)

No mistakes:

S(E) ✓ S⇤ and P(Ŝ(E) ✓ S⇤) � 1� ↵ .

Seeing more environments helps:

S(E1) ✓ S(E2) ✓ S⇤ if E1 ✓ E2

Su�cient conditions for S(E) = S⇤ exist.

Identifiability improves if we have more and stronger interventions, at
better places, more heterogeneity in the data.

JP, P. Bühlmann, N. Meinshausen: Causal inference using invariant prediction: conf. interv., JRSS-B 2016.
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E X1 X2 Y

X4

X3

> Y <- X[,2] + X[,4] + noise

> ICP(X,Y,ExpInd)

accepted set of variables: 2,4

accepted set of variables: 1,2,4

accepted set of variables: 2,3,4

accepted set of variables: 1,2,3,4

LOWER BOUND UPPER BOUND MAXIMIN EFFECT P-VALUE

X1 -0.03 0.01 0.00 0.48

X2 0.98 1.01 0.98 < 1e-09 ***

X3 -0.07 0.00 0.00 0.48

X4 0.95 1.01 0.95 2.6e-05 ***
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E X1 X2 Y

X4

X3

> Y <- X[,2]^2 + X[,4] + noise

> ICP(X,Y,ExpInd)

empty set

(all models rejected)

Model violation: nonlinear models

 usually leads to loss of power, not coverage
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E X1 Y X2

> Y <- X[,1] + E + noise

> ICP(X,Y,ExpInd)

empty set

(all models rejected)

Model violation: intervention on Y
 usually leads to loss of power, not coverage
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E X1 Y X2

> Y <- X[,1] + E + noise

> ICP(X,Y,ExpInd)

empty set

(all models rejected)

Model violation: intervention on Y
 usually leads to loss of power, not coverage
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E X1 X2 Y

X4

X3

> Y <- X[,2] + X[,4] + noise

> ICP(X[,1:3],Y,ExpInd)

accepted set of variables: 1

accepted set of variables: 1,2

accepted set of variables: 1,3

accepted set of variables: 1,2,3

LOWER BOUND UPPER BOUND MAXIMIN EFFECT P-VALUE

X1 -0.87 1.05 0.00 <1e-09 ***

X2 0.00 1.86 0.00 1.00

X3 -1.61 0.00 0.00 0.73

Model violation: hidden variables

 coverage still holds if we consider ancestors instead of parents
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E X1 X2 Y

H

X3

Theorem (PBM 2016)

Assume that the joint distribution over (Y ,X1, . . . ,Xp,H1, . . . ,Hq,E ) is
faithful w.r.t. the augmented graph. Then

S(E) :=
\

S :H0,S (E) is true

S ✓ AN(Y ) \ {X1, . . . ,Xp} .

Jonas Peters (MPI Tübingen) Causality 18 May 2016



Real data: genetic perturbation experiments for yeast (Kemmeren et al.,
2014)

p = 6170 genes

nobs = 160 wild-types

nint = 1479 gene deletions (targets known)

true hits: ⇡ 0.1% of pairs

our method: E = {obs, int}

Jonas Peters (MPI Tübingen) Causality 18 May 2016
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# INTERVENTION PREDICTIONS

# 
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PERFECT
INVARIANT
HIDDEN−INVARIANT
PC
RFCI
REGRESSION (CV−Lasso)
GES and GIES
RANDOM (99% prediction−
 interval)
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Summary Part II:

Idea 1: independence-based methods (single environment)

Idea 2: additive noise (single environment)

Idea 3: invariant prediction (the more heterogeneity the better!)

ACTIVITY GENE  5954

AC
TI

VI
TY

 G
EN

E 
 4

71
0

−1.0 −0.5 0.0 0.5

−1
.0

−0
.5

0.
0

0.
5

observational training data

ACTIVITY GENE  5954
−1.0 −0.5 0.0 0.5

interventional training data
(interv. on genes other than 5954 and 4710)

ACTIVITY GENE  5954

AC
TI

VI
TY

 G
EN

E 
 4

71
0

−5 −4 −3 −2 −1 0 1

−5
−4

−3
−2

−1
0

1 interventional test data point
(intervention on gene 5954)
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Open Questions

Causal Basics: What is a good definition of causal strength?

Restricted SEMs: do we still have identifiability of causal structures if
there are hidden variables?

Real data: can we solve practically relevant problems?

Causality and Machine Learning: do causal ideas help for “classical”
tasks in machine learning?

General References

Pearl: Causality.

Spirtes, Glymour, Scheines: Causation, Prediction and Search.

Peters: Causality (Script - see homepage)

Dankeschön!!

Jonas Peters (MPI Tübingen) Causality 18 May 2016
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Part III: Applications to Machine Learning

Jonas Peters (MPI Tübingen) Causality 18 May 2016



Idea 1: semi-supervised learning

Consider a Markov factorization w.r.t. causal DAG:

p(x1, . . . , xd) =
dY

i=1

p(xi | xpa(i))

Modularity suggests:

p(x1 | xpa(1)), . . . , p(xd | xpa(d)) are “independent”

Special case:

p(cause), p(e↵ect | cause) are “independent”

But then: Semi-supervised Learning does not work from cause to
e↵ect.

Jonas Peters (MPI Tübingen) Causality 18 May 2016
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Idea 1: semi-supervised learning
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Anticausal/Confounded
Causal
Unclear

comparison to base classifier
Schölkopf et al.: On causal and anticausal learning, ICML 2012
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Idea 2: half-sibling regression
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Idea 2: half-sibling regression

unobserved

observed Y X

NQ

measurement other measurements

sys. noisetrue signal
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Idea 2: half-sibling regression

unobserved

observed

Assume Y = f (N) + Q.

Y X

NQ

Proposed idea:
Remove everything from Y explained by X . Or: Q̂ := Y � E[Y |X ].

Proposition

Convergence against “correct” signal Q (up to reparameterization) if

perfect reconstruction: 9 such that f (N) =  (X )

low noise: X = g(N) + s · R and s ! 0

many X ’s: Xi = gi (N) + Ri , i = 1, . . . ,1

Jonas Peters (MPI Tübingen) Causality 18 May 2016
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Jonas Peters (MPI Tübingen) Causality 18 May 2016



Idea 2: half-sibling regression
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Idea 2: half-sibling regression

Schölkopf et al.: Removing systematic errors for exoplanet search via latent causes, ICML 2015
Jonas Peters (MPI Tübingen) Causality 18 May 2016



Idea 3: reinforcement learning

Recall the kidney stones:

RT

S

T = f (S,NT ) R = g(S,T ,NR )

p(r , t, s) = p(r | t, s)· p(t | s) ·p(s)
#

p⇤3(r , t, s) = p(r | t, s)· p⇤(t | s)| {z }
p⇤(t | s)=?

·p(s)

Question: What would happen if...?
Question: What is supp⇤ Ep⇤3

R?
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Idea 3: Blackjack

Recall the kidney stones:

RT

S

T = f ⇤(S,N⇤
T ) R = g(S,T ,NR )

p(r , t, s) = p(r | t, s)· p(t | s) ·p(s)
#

p⇤3(r , t, s) = p(r | t, s)· p⇤(t | s)| {z }
p⇤(t | s)=?

·p(s)

Question: What would happen if...?
Question: What is supp⇤ Ep⇤R?
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Idea 3: Blackjack

(some) Rules:

Dealing: player two cards, dealer one card (all face up).
Goal: more points in hand. Face cards: 10, ace either 1 or 11 points.
Player’s moves: hit (take card, but try  21), stand, double down,
split (in case of pair).
Dealer’s moves: deterministic, does not stand before � 17 points.
Blackjack: ace and face card ! 1.5·bet.
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Idea 3: Blackjack

https://de.wikipedia.org/wiki/Black_Jack.JPG

Jonas Peters (MPI Tübingen) Causality 18 May 2016
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Idea 3: Blackjack
When can we learn?

Objects of Interest:

sample from p = p(X ,Y ,Z ) (games),

function of interest ` = `(X ,Y ,Z ) (money) and

p⇤ replacing p(y | x)! p⇤(y | x) (strategy = decisions | game state).

Questions:

What is Ep⇤`?

Needed:

Values of Xi , Yi and `(Xi ,Yi ,Zi ) (under p)

Xi Yi Zi `(Xi ,Yi ,Zi )

�1.4 2.0 ? 2.1
�0.5 0.7 ? 2.5
�0.8 1.5 ? 2.6
...

...
...

...

Xi Yi Zi `(Xi ,Yi ,Zi )

~K ,~9 hit ? �1
|A,�J stand ? 1.5
�10,~8 stand ? �1

...
...

...
...

Jonas Peters (MPI Tübingen) Causality 18 May 2016
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Objects of Interest:

sample from p = p(X ,Y ,Z ) (games),

function of interest ` = `(X ,Y ,Z ) (money) and

p⇤ replacing p(y | x)! p⇤(y | x) (strategy = decisions | game state).

Questions:

What is Ep⇤`?
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Idea 3: Blackjack
Computation: Means

Assume p(y | x)! p⇤(y | x).

⌘ := Ep⇤` =

Z
`(x , y , z) p⇤(x , y , z) dx dy dz

=

Z
`(x , y , z)

p⇤(x , y , z)

p(x , y , z)
p(x , y , z) dx dy dz

=

Z
`(x , y , z)

p⇤(y | x)
p(y | x) p(x , y , z) dx dy dz

Estimate ⌘ by

⌘̂ =
1

N

NX

i=1

`(Xi ,Yi ,Zi )
p⇤(Yi |Xi )

p(Yi |Xi )| {z }
wi

=
1

N

NX

i=1

Mi

Confidence intervals available!
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Idea 3: Blackjack

p(y | x)! p⇤(y | x)

Which p⇤ is best?

Parameterize and estimate

r✓Ep✓ |✓=✓̃

Goal: Optimize Ep✓`
Idea: Use gradient r✓Ep✓` and optimize step-by-step.

Issues: confidence intervals, step size, . . . .

Jonas Peters (MPI Tübingen) Causality 18 May 2016
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Idea 3: Blackjack

How to exploit causal structure:

decision

lost money

open cards hidden cards

deck
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Idea 3: Blackjack
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Idea 3: Blackjack

What can we do with 100, 000 samples?

Online O✏ine

reached strategy Ep⇤` ⇡ �5.1Ct Ep⇤` ⇡ �5.8Ct
irrelevant games 33, 653 61, 048

costs $29, 300 $51, 500
speed slow: probabilities even slower: gradients

Jonas Peters (MPI Tübingen) Causality 18 May 2016



Idea 3: advertisement

click

main line reserve

# ads in main line

user intention

user data
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Idea 3: advertisement

Old:

−20%

−10%

+0%

+10%

+20%
+30%
+40%
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Idea 3: advertisement

Using discrete variable (ads shown in mainline):

−20%

−10%

+0%

+10%

+20%
+30%
+40%
+50%

−50% +0% +50% +100%
Mainline reserve variation

Average clicks per page

Bottou et al.: Counterfactual Reasoning and Learning Systems: The Example of Computational Advertising, JMLR 2013
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Idea 4: domain adaptation

method training data from test domain
transfer learning (TL) (X1,Y 1), . . . , (XD ,Y D) T := D + 1

multi-task learning (MTL) (X1,Y 1), . . . , (XD ,Y D) T := D

Invariant prediction for training:

Y e |Xe
S

d
= Y e0 |Xe0

S for all e 6= e 0 2 {1, . . . ,D} .

Invariant prediction in test domain T :

Y e |Xe
S

d
= Y T |XT

S for all e 2 {1, . . . ,D} .

Assume for now S is known.
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Idea 4: domain adaptation

Transfer learning (data in training but not in test domain):

fS :
X ! Y
x 7! E

⇥
Y 1 |X1

S = x
⇤ . (1)

 optimality in adversarial settings:

Theorem

Consider D tasks (X1,Y 1) ⇠ P1, . . . , (XD ,Y D) ⇠ PD that satisfy
invariant prediction in training. The estimator (1) satisfies

fS 2 argmin
f 2C0

sup
PT2P

E(X,Y )⇠PT (Y � f (X))2 ,

where P contains all distributions over (X,Y ) that are absolutely
continuous with respect to Lebesgue measure and that satisfy

Y |X d
= Y 1 |X1.
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Idea 4: domain adaptation

Multi-task Learning - linear (data in training and test domain):

learn part of model in training domains

Theorem

Assume

Y e = ↵t
SX

e
S + ✏ for e 2 {1, . . . ,D} and

XT
N = ↵T

NY
T + ✏TN ,

where ✏ and ✏TN are jointly independent and ✏ is independent of XS . Then,

�TN = E(✏2)M�1↵N , �TS = ↵S

⇣
1� (↵T

N )
t�TN

⌘
� ⌃�1

X ,S⌃X ,N�
T
N ,

where M = E(✏2)↵S↵t
S +⌃N �⌃X ,N⌃

�1
X ,S⌃X ,N is LSE on the test domain.

M. Rojas-Carulla, B. Schölkopf, R. Turner, JP: A Causal Perspective on Domain Adaptation, arXiv, 1507.05333
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Idea 4: domain adaptation

What if S is unknown?

How to learn a good predictor from data

�inv = argmin
�

DX

e=1

kRe
�k2

| {z }
data fit

+� · `(R1
� , . . . ,R

D
� )

| {z }
invariance

,

with

residuals Re
� := Y e � �tXe and

`(R1
� , . . . ,R

D
� ) penalizing di↵erent distributions of R1

� , . . . ,R
D
� .

M. Rojas-Carulla, B. Schölkopf, R. Turner, JP: A Causal Perspective on Domain Adaptation, arXiv, 1507.05333
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Summary Part III:

Idea 1: semi-supervised learning from cause to e↵ect does not work

Idea 2: half-sibling regression

Idea 3: reformulate reinforcement learning, use causal structure

Idea 4: invariant models for domain adaptation

More details: (about all parts)
http://people.tuebingen.mpg.de/jpeters/scriptChapter1-4.pdf

Dankeschön!

Jonas Peters (MPI Tübingen) Causality 18 May 2016
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