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Why do we need a QoE model?
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> Picking the best server
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Traditional Video Quality Metrics

Subjective Scores
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Objective Scores
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Internet Video is a new ball game
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Commonly used Quality Metrics
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Which metric should we use?
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Unified and Quantitative QoE Model
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* What makes this hard?
* Our approach

e Conclusion



Complex Engagement-to-metric Relationships
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Complex Metric Interdependencies
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Confounding Factors

[ Type of Video ]<: ve
VOD

Confounding Factors
can affect:
1) Engagement

CDF ( % of users)
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Engagement

Live and Video
on Demand
(VOD) sessions
have different
viewing
patterns.
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Confounding Factors

[ Type of Video K ve
VOD

Confounding Factors
can affect:

1) Engagement
2) Quality Metrics

Live and Video on
Demand (VOD)
sessions

had different join
time distribution.

CDF ( % of users)

Join Time
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Confounding Factors

Confounding Factors

can affect:

1) Engagement

2) Quality Metrics

3) Quality Metric =
Engagement

s
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were

more tolerant
to rate of
buffering.
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Confounding Factors

Device Type of Video { Popularity J
Location Connectivity Time of day
Day of week
4 )
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Need systematic approach to
identify and incorporate confounding factors
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Summary of Challenges

. Capture complex engagement-to-metric
relationships and metric-to-metric
dependencies.

2. ldentify confounding factors
3. Incorporate confounding factors
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Challenge 1: Capture complex relationships
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Cast as a Learning Problem

Engagement Quality Metrics

N\ v

MACHINE LEARNING

|

QoE Model
10 engagement classes: 0~10%, 10-20%, ...., 90~100% of video length
[ Decision Trees performed the best. }

Accuracy of 40% for predicting within a 10% bucket.
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Dan Pei
10 engagement classes: 0~10%, 10-20%, …., 90~100% of video length�


Challenge 2: Identify the confounding factors
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Test Potential Factors

Confounding
Factors

/TN

Quality Metrics Engagement




Test Potential Factors

Confounding Test 1: Relative Information Gain
Factors

/TN

Quality Metrics Engagement
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Test Potential Factors

Confounding

/

Factors

Quality Metrics Engagement

Test 1: Relative Information Gain
Test 2: Decision Tree Structure
Test 3: Tolerance Level
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ldentifying Key Confounding Factors

Factor Relative Decision Tree | Tolerance
Information | Structure Level
Gain
Type of video v v v
Popularity X X X
Location X X X
Device X v v
Connectivity X X V4
Time of day X X v/
Day of week X X X

VOD users on different devices have different levels of

tolerance for rate of buffering and average bitrate
24


VOD users on different devices have different levels of
tolerance for rate of buffering and average bitrate



ldentifying Key Confounding Factors

We are doing feature selection here:

Factor Relative Decision Tree | Tolerance
Information | Structure Level
Gain
Type of video v v v
Popularity X X X
Location X X X
Device X v v
Connectivity X X V4
Time of day X X v
Day of week X X X
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We are doing feature selection here:


Challenge 3: Incorporate the confounding factors
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Refine the Model

Adding as a feature

Confounding
Factors

Quality
Engagement Metrics
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QoE Model

Confounding
Factors 1

e.g., Live, Mobile

Confounding
Factors 2

Splitting the data

Confounding
Factors 3

e.g., VOD, Mobile e.g.,VOD, TV
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Comparing Candidate Solutions
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Final Model: Collection of decision trees
Final Accuracy- 70% (c.f. 40%) for 10% buckets

10 engagement classes: 0~10%, 10~20%, ... , 90~100% of video length s
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Summary of Our Approach

1. Capture complex engagement-to-metric
relationships and metric-to-metric
dependencies

- Use Machine Learning

2. ldentify confounding factors
- Tests

3. Incorporate confounding factors
- Split
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Evaluation: Benefit of the QoE Model
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Preliminary results show that using QoE model to select
bitrate leads to 20% improvement in engagement
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Conclusions

Internet Video needs a unified and quantitative QoE model

What makes this hard?
— Complex relationships

— Confounding factors (e.g., type of video, device)

Developing a model
— ML + refinements => Collection of decision trees

Preliminary evaluation shows that using the QoE model can
lead to 20% improvement in engagement

What’s missing?
— Coverage over confounding factors
— Evolution of the metric with time



