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Abstract—For large Internet companies, it is very important to
monitor a large number of KPIs (Key Performance Indicators)
and detect anomalies to ensure the service quality and reliability.
However, large-scale anomaly detection on millions of KPIs is
very challenging due to the large overhead of model selection,
parameter tuning, model training, or labeling. In this paper we
argue that KPI clustering can help: we can cluster millions of
KPIs into a small number of clusters and then select and train
model on a per-cluster basis. However, KPI clustering faces new
challenges that are not present in classic time series clustering:
KPIs are typically much longer than other time series, and noises,
anomalies, phase shifts and amplitude differences often change
the shape of KPIs and mislead the clustering algorithm.

To tackle the above challenges, in this paper we propose a
robust and rapid KPI clustering algorithm, ROCKA. It consists
of four steps: preprocessing, baseline extraction, clustering and
assignment. These techniques help group KPIs according to
their underlying shapes with high accuracy and efficiency. Our
evaluation using real-world KPIs shows that ROCKA gets F-score
higher than 0.85, and reduces model training time of a state-of-
the-art anomaly detection algorithm by 90%, with only 15%
performance loss.

I. INTRODUCTION

Internet-based service companies (e.g., online shopping,
social networks, search engine) monitor thousands to millions
of KPIs (Key Performance Indicators, e.g. CPU utilization or
# of queries per second) of their applications and systems in
order to keep their service reliable. Anomalies on KPIs (e.g.,
a spike or dip) often indicate potential failures on relevant
applications [1–3], such as server failures, network overload,
external attacks, etc. Thus, anomaly detection techniques have
been widely used to detect anomalous events timely to mini-
mize the loss caused by such events [2, 4, 5].

However, most anomaly detection algorithms (e.g., Oppren-
tice [2], EDAGS [4], DONUT [5]) assume that an individual
model is needed for each KPI. Thus, large-scale anomaly
detection on thousands to millions of KPIs is very challenging
due to the large overhead of model selection, parameter tuning,
model training, or anomaly labeling. Fortunately, many KPIs
are similar due to their implicit associations and similarities.
If we can identify homogeneous KPIs (e.g., number of queries
per server in a well-loaded balanced server cluster) based on
their similarities and group them into a few clusters, perhaps
only one anomaly detection model is needed per cluster, thus
significantly reducing the various overhead aforementioned.
⇤ Dan Pei is the corresponding author.

KPIs are streaming data aggregated at pre-defined time
intervals (e.g., 1 minute or 10 seconds), thus are essentially
time series. Time series clustering, as a popular topic in data
mining, has been studied for over 20 years [6]. Most published
papers [7, 8] focus on clustering methods and similarity mea-
sures with an assumption of idealized time series data. These
idealized time series are often low-dimensional (usually less
than 1000 data points), and the curves are smooth without
abnormal patterns, as shown in Fig. 1a.

However, KPI clustering faces two major new challenges
that are not present in classic time series clustering. First,
noises, anomalies, phase shifts and amplitude differences
often change the shape of KPIs, as shown in Fig. 2. These
shape variations (e.g., huge or small spikes) on time series
curves often distort KPI similarities, making it difficult to use
traditional methods to cluster KPIs accurately. Second, a KPI
usually contains tens of thousands of data points because it
spans from several days to weeks in order to fully capture
its patterns (e.g. periodicity, seasonality). Unfortunately, there
is little work in the literature on clustering high dimensional
time series data with anomalies and noises.

In this paper, we tackle above challenges by proposing a
robust and rapid time series clustering algorithm, ROCKA,
which can cluster large-scale real-world KPIs with high accu-
racy and fast speed. First, for meaningful comparison, KPIs are
normalized to eliminate amplitude differences. Then, ROCKA
extracts the underlying shape of each KPI, called a baseline,
to further reduce the impact of noises and anomalies. ROCKA
adopts shape-based distance (SBD) [9] as distance measure,
which is robust to phase shift and achieves high computational
efficiency when dealing with high-dimensional time series
data. Then ROCKA uses an efficient density-based algorithm to
create clusters based on shape similarities of baselines. Finally,
a representative KPI is identified as a centroid in each cluster
and new KPIs can be assigned by their distances to centroids.

The contributions of this paper are summarized as follows:

• To the best of our knowledge, this is the first work
that focuses on the clustering of a special type of time
series data, KPIs, which are widely used in large Internet
companies, and ROCKA, is the first reported algorithm
for robust and rapid clustering of long time series.

• We propose or adopt three effective techniques in
ROCKA, baseline extraction, shape-based similarity mea-
sure and density-based clustering method, the combina-978-1-5386-2542-2/18/$31.00 ©2018 IEEE



(a) Idealized time series data (b) Real-world KPI data

Fig. 1: Idealized time series is smooth without much noise and
shape variations, which is common in public datasets. Real-
world KPIs often have noises and anomalies.

tion of which obtain underlying shapes of KPIs for clus-
tering and reduce the impact of various shape variations.

• We use public time series datasets and real-world KPI
datasets to validate ROCKA’s robustness and efficiency. It
outperforms a state-of-the-art clustering algorithm YAD-
ING [10] on all these datasets and gets F-score higher
than 0.85 for the real-world KPIs.

• ROCKA reduces the model training time of a state-of-the-
art anomaly detection algorithm [5] by 90%, with only
15% performance loss. This is the first reported study
that uses clustering to reduce the training overhead of
anomaly detection.

II. CHALLENGES AND ROCKA OVERVIEW

A KPI, as a time series, can be denoted as T =

(x1, x2, · · · , xm

), where x
i

is the metric value at time index
i for i 2 1, 2, ...,m, and m is the length of T .

A. Challenges

KPIs are usually periodic, and their periods can vary from
days to weeks depending on applications and systems. Thus,
each KPI usually has thousands of points to fully capture
its behavior within periods. Fig. 2 shows a few real-world
KPI samples. Compared to the idealized time series shown in
Fig. 1a, they have a few notable shape variations.

• Noises and anomalies: Noises and anomalies (Fig. 2a)
are quite common in KPIs. Noises usually refer to small
random fluctuations around the expected values in a KPI,
while anomalies are significant fluctuations, usually larger
than 2 standard deviations [11]. Noises and anomalies
may mislead clustering methods since they can distort
similarities between KPIs.

• Amplitude differences: KPIs can be in different scales.
For example, QPS on two closely related but different
modules of the same service might look like the left part
of Fig. 2c, but if we remove amplitude differences (shown
on the right of Fig. 2c), these KPIs have similar patterns
and can be analyzed as a group.

• Phase shifts: A phase shift refers to a global horizontally
shift between two KPIs (Fig. 2b). It’s quite common to
find the KPIs which have explicit or implicit association
shift in phases. e.g., a group of KPIs on the same system
call chain may be in similar shape with a time lag. Phase
shifts can make it difficult to find similar KPIs.

These variations pose major challenges for clustering KPIs
because they may change KPI shapes and clustering algo-
rithms need to be robust to these variations. Previous clustering
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Fig. 2: Four types of common shape variations on KPIs. These
KPIs are similar in their underlying shape, and thus can be
clustered into the same cluster.

methods [7, 8] usually calculate similarity directly based on
the raw data and hence cannot detect coherent clusters for
real-world KPIs. In addition, KPIs are often high-dimensional
time series data. Algorithms should have low complexity with
regard to KPI lengths.

B. ROCKA overview

In this paper, we address these challenges by clustering KPIs
based on similarities in their underlying shapes despite noises,
anomalies, amplitude differences, and phase shifts. This clus-
tering can be extremely useful in KPI analysis and large-scale
anomaly detection. Typically there are a vast number of KPIs
in a large-scale internet-based service company. It is impossi-
ble for operators to carefully analyze each KPI individually.
With clustering, they can analyze KPIs per cluster and create
an anomaly detection model for each cluster, significantly
reducing modeling cost and improving their efficiency.

We propose a novel time series clustering algorithm,
ROCKA, as shown in Fig. 3. Overall, ROCKA consists of
four steps: preprocessing, baseline extraction, clustering and
assignment. Preprocessing is conducted on the raw KPI data to
remove amplitude differences and standardize data. In baseline
extraction step, we reduce noises, remove the extreme values
(which are likely anomalies), and extract underlying shapes,
referred to as baselines, of KPIs. Clustering is then conducted
on the baselines of sampled KPIs, with robustness against
phase shifts and noises. Finally, we calculate the centroid of
each cluster, then assign the unlabeled KPIs by their distances
to these centroids.

In order to cluster a large number of KPIs, for the sake
of efficiency, we create a clustering model using a subset of
randomly sampled KPIs, and then assign the rest of KPIs to
the resulting clusters. As discussed in [10], a small sample
dataset is enough for clustering even if the number of KPIs
is really large. e.g., for a dataset with more than 9000 time
series, sample 2000 of them is enough for clustering.
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Fig. 3: Overall framework of ROCKA.

III. ALGORITHM

After giving an overview of ROCKA, in this section, we
introduce each component in detail.

A. Preprocessing

It is common that KPIs have missing values. Fortunately,
according to our observation, the percentage of missing values
in a KPI usually is very small. We simply use linear interpo-
lation to fill them based on their adjacent data points. This
enables us to calculate point-wise distance between two KPIs.

Another important preprocessing technique is standardiza-
tion: x̂

t

=

x

t

�µ

x

�

x

, where x
t

is the raw data, µ
x

and �
x

are the mean and standard deviation of x
t

, separately. As
discussed in [12], time series must be standardized in order
to make meaningful comparison between them, because KPIs,
sourced from different applications and systems, vary in their
amplitudes. Standardization can remove the differences in
amplitude and help calculate similarities between KPIs.

B. Baseline Extraction

Noises and anomalies, as demonstrated by the examples in
Fig. 2a, can significantly change the shapes of KPI curves
and mislead shape-based similarity. We need a simple but
effective method to remove those extreme values which are
likely anomalies, such that a rough baseline can be extracted
to represent the underlying structure of a KPI.

1) Smoothing Extreme Value: After standardization, each
KPI is normalized to have zero mean and unit variance.
Intuitively, anomalies deviate the most from the mean value.
In general, the ratio of anomaly points in a time series is less
than 5% [5]. As such, we simply remove the top 5% data
which deviate the most from the mean value, and then use
linear interpolation to fill them. Extreme anomalies (which are
often huge spikes or dips) are removed and replaced with their
neighboring normal observations. In case that a KPI has few
anomalies, normal data may be removed by mistake, but they
are interpolated still by normal observations without changing
the underlying shape of the KPI much.

2) Extract Baseline: Besides anomalies, noises also distort
the shape-based similarity between KPIs. Thus we try to
extract a rough baseline to represent each KPI. Generally, a
KPI curve can be regarded as a smooth baseline (i.e., normal
patterns that indicate its expected behavior) with many random

raw data
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Fig. 4: Extract the baseline of a real-world KPI data. The
baseline preserves the underlying shape of original data.

noises. A simple but effective method is to apply moving
average with a small sliding window on the KPI, separating
its curve into two parts: baseline and residuals. Specifically,
for a KPI, T , with a sliding window of length W , stride =
1, for each point x

t

, the corresponding point on the baseline,
denoted as x⇤

t

, is the mean of vector (x
t�W+1, · · · , xt

). Then
the difference between x

t

and x⇤

t

is called a residual. The
baseline B and residuals R can be computed as:

T = (x1, x2, · · · , xm

)

x⇤

t

=

1

W

WX

i=1

x
t�i+1

B = (x⇤

W

, x⇤

W+1, · · · , x⇤

m

)

R = (x
W

� x⇤

W

, · · · , x
m

� x⇤

m

)

(1)

Fig. 4 shows baseline extraction for a real-world KPI ex-
ample. The baseline extracted by our algorithm removes most
of the anomalies and noises while preserving its underlying
shape. The residuals contains random noises, and are not
considered in clustering. After that, we apply standardization
again to get a standardized baseline. Such a baseline is used
as the input of our clustering algorithm.

C. Density-based Clustering

We perform density-based clustering on the baselines of
sampled KPIs based on their shape similarities. We first review
cross-correlation, a widely-used shape-based similarity mea-
sure, and then describe our density-based clustering algorithm.

1) Shape-based Similarity Measure:
We briefly review some popular similarity measures. L

p

norms [13] are a group of widely-used distance measures
due to their simplicity and efficiency. However, they are quite
sensitive to noises, amplitude differences and phase shifts.
DTW (Dynamic Time Warping) [14] is well known for its
invariance to phase shifts, scaling distortion, and other shape
variations, but has high computation complexity. Generally,
it takes O(m2

) to compute the dissimilarity between two
time series of length m. This makes DTW impractical to
deal with high dimensional KPIs. Besides, correlation-based
metrics (e.g., cross-correlation) [7, 9, 15] are also used as sim-
ilarity measure in recent years. They are often used in signal
processing and can natively handle the phase shifts between



time series. Moreover, the calculation complexity of cross-
correlation can be reduced to O(m log(m)) using convolution
theorem and Fast Fourier Transform. Thus, correlation-based
metrics can be suitable similarity measures for our KPIs.

Cross-correlation calculates the sliding inner-product of two
time series, which is natively robust to phase shifts. [9]
proposed a shape-based distance (SBD) on the basis of cross-
correlation and applied it on idealized time series data. In this
paper, we use SBD to measure the similarity of our baselines,
which have higher dimensional and more phase shifts than
idealized time series.

For two time series ~x = (x1, · · · , xm

) and ~y =

(y1, · · · , ym), cross-correlation slides ~y over ~x to compute the
inner-product for each shift s of ~y, as defined by Eq. (2).

~x(s) = (x1, x2, · · · , xm

)

~y(s) =

(
(

|s|

z }| {
0, · · · , 0, y1, y2, · · · , ym�s

), s � 0

(y1�s

, · · · , y
m�1, ym, 0, · · · , 0| {z }

|s|

), s < 0

(2)

For all possible shifts s 2 [�m+ 1,m� 1], we can calculate
the inner-product CC

s

(~x, ~y) as the similarity between time
series ~x and ~y with a phase shift s. It is defined as Eq. (3).

CC
s

(~x, ~y) =

8
>>>><

>>>>:

m�sX

i=1

x
s+i

· y
i

, s � 0

m+sX

i=1

x
i

· y
i�s

, s < 0

(3)

The cross-correlation is the maximized value of CC
s

(~x, ~y),
which means the similarity between ~x and ~y at the optimal
phase shift s. Intuitively, at the optimal shift, the similar
patterns in ~x and ~y are properly aligned such that the inner-
product is the maximum (i.e., the peaks in ~x are aligned
with similar peaks in ~y with the optimal shift). Thus, the
cross-correlation measure can overcome the phase shift and
represent shape similarity between two time series. In practice,
a normalized version of cross-correlation (NCC) is often
used to limit the values to be within [�1, 1], where 1 shows
a perfect similarity and -1 indicates the two time series are
completely opposite. NCC is defined as follows:

NCC(~x, ~y) = max

s

(

CC
s

(~x, ~y)

k~xk2 · k~yk2
) (4)

SBD(~x, ~y) = 1�NCC(~x, ~y) (5)

Then we can define the shape-based distance (SBD) ac-
cording to NCC, as discussed in [9]. SBD ranges from 0 to 2,
where 0 means two time series have exactly the same shape.
A smaller SBD means higher shape similarity.

Since the SBD is a point-wise similarity measure, extreme
anomalies might be mistaken for peaks or troughs, misleading
the similarity calculation. Thus, the baseline extraction step
(Section III-B) plays an important role in finding the shape
similarity between two KPIs. As shown in Fig. 5, the SBD

raw KPI: SBD=0.2802 smoothed baseline: SBD=0.0208

Fig. 5: Calculate SBD on raw KPIs and their baselines.

of the two baselines is 0.0208, while that of the raw KPIs is
0.2802, over 10 times bigger. In fact, these two KPIs are very
similar in their underlying shapes, but anomalies and noises
can cause inaccurate similarity measurement.

2) Density-based Clustering with Parameter Estimation:
According to [8], clustering algorithms can be broadly clas-
sified into six groups. Here we briefly discuss three that are
related to our work. Partitioning methods, like K-Means [16]
and K-medoids [17], are the most widely used ones due to their
simplicity and effectiveness. However, the number of clusters,
k, as well as the initial partition of each cluster, need to be
predetermined. Feature- and model-based methods [7] try to
transform time series into several features or fit them to pre-
defined models to extract more information about data. These
algorithms often make strong assumptions (e.g., the time series
can be modeled using Gaussian mixture [18], ARIMA [19],
etc), which barely hold in complicated datasets. Density-based
methods, like DBSCAN [20], finds dense regions separated by
low-density areas to form clusters. A cluster is expanded if its
neighbors are dense, i.e., others that are similar to its core will
be absorbed into it. Moreover, these methods can work with
most similarity measures.

We decide to adopt DBSCAN, a density-based clustering
method in our work for two reasons. First, since KPIs are
collected from various applications and systems, it is difficult
to predetermine the number of clusters. Density-based methods
form clusters in dense regions, which can be in arbitrary
shapes and size. Second, since SBD gives shape similarities
between KPIs, naturally we can leverage the transitivity of
shape similarities to expand clusters. For example, three KPIs,
named a, b, c, measuring the performance of machines used by
the same application. a is similar to b in shape, and so is b to c.
Intuitively, a and c are also similar in their shapes. Therefore,
they can be assigned into the same cluster.

The main idea of DBSCAN is to find some cores in dense
regions, and then expand the cores by transitivity of similarity
to form clusters. A core p is defined as an object that has at
least minPts objects within a distance of ✏ from it (excluding
p). Only cores can be used to expand clusters. In other words,
only objects that are within the distance of ✏ from a core can
be absorbed into a cluster. ✏, also called density radius, is the
maximum distance of these objects from p. ✏ indicates the
density of a dense region. We set minPts = 4, as suggested
by the authors of DBSCAN in [20]. Next we discuss how to
determine the key parameter, density radius ✏.

For minPts = k, let kdis be the SBD between an object and
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its k-Nearest-Neighbor (KNN). If the kdis value of each object
is plotted in a descending order, as shown in Fig. 6, a flat
portion of the curve indicates the density around a number
of objects is consistent, while a steep part shows significant
density changes. As suggested by [10, 20], kdis on a flat portion
of the curve can be considered as candidate density radiuses,
since it ensures a good number of cores to expand clusters.

However, a candidate density radius should be small enough
to ensure a core and its neighbors are similar to each other. A
large candidate value actually corresponds to a sparse region
where the objects are dissimilar with each other (Fig. 7a). An
object with a large kdis is actually considered as an outlier,
i.e., it is not similar to most other objects and should not be
clustered into any cluster. In practice, a threshold max radius
sets the upper bound of the density radius.

Motivated by [10], we designed a heuristic algorithm, as
shown in Algorithm 1, to find candidate density radiuses.
Given a kdis  max radius, it first checks whether the curve’s
slopes on the left and right sides of the point are smaller than
a threshold (slope thresh, e.g., 0.01) to avoid search in a steep
area. Then the left and right slopes are compared to see if the
difference is less than a small threshold (slope diff thresh,
e.g., 10

�3). If so, this kdis is considered as a candidate
radius. A divide and conquer strategy is used to find all
candidate radiuses. In our implementation, we empirically
set max radius to 0.05, and the final density radius is the
largest candidate. This setup works well on all our datasets.
In practice, max radius can be adjusted by operators to obtain
clusters in different granularity. i.e., a large max radius leads
to a few coarse-grained clusters, while a small value results
in many fine-grained clusters and a large fraction of outliers.

With the estimated parameters, we use DBSCAN to do
clustering. The complexity of DBSCAN is O(n log(n)), for
an input dataset with n time series data.

Algorithm 1: Density Estimation
Input: kdis: kdis curve sorted in descending order;
start: the smallest index that has kdis[start]  max radius;
end: the last index of kdis;
len thresh: minimum length of a flat part;
slope thresh: small value preventing search in steep area;
slope diff thresh: small value indicates a flat part.
Output: a list of candidate radiuses
Function FindCandidateRadius(kdis, start, end,

candidates):
if end�start  len thresh then

return . Search area contains few points;
end
r  -1, diff  2;
for i  start to end do

leftslope  (kdis[i] � kdis[start])/(i-start);
rightslope  (kdis[end] � kdis[i])/(end-i);
if leftslope> slope thresh or rightslope> slope thresh

then
continue . Search area is steep;

end
if |leftslope�rightslope| < diff then

diff  |left�right|, r  i;
end

end
if diff < slope diff thresh then

add r to candidates; . Find a flat part near point i;
end

. Find all candidates using divide and conquer;
FindCandidateRadius(kdis, start, r-1, candidates);
FindCandidateRadius(kdis, r+1, end, candidates);

D. Assignment

After creating a clustering model using sampled KPIs, now
we calculate the centroid of each cluster and then assign the
rest of KPIs to the clusters based on centroids. Generally, in
each cluster, the object which has the smallest sum of squared
similarity distance to all the others is regarded as the cluster
centroid. The centroid in a cluster can be calculated using
Eq. (6). Fig. 7b shows a centroid of a cluster. Since we use
SBD as our distance measure, the centroid can be used as a
representative KPI that captures the common underlying shape
of KPIs in the cluster. Thus, for anomaly detection, as will be
discussed in Section V, we can train anomaly detection models
on centroids only. In practice, operators can gain intuitive
understanding of KPIs in each cluster through its centroid.

centroid = argmin

~x2cluster
i

X

~y2cluster
i

SBD(~x, ~y)
2 (6)

For each unlabeled KPI, preprocessing and baseline ex-
traction are applied to get its baseline time series ~x. Then
we calculate the SBD between ~x and each cluster centroid,
assigning it into the cluster with the nearest centroid.

Furthermore, we should consider that some unlabeled KPIs
may not be similar to any clusters, which should be marked
as outliers. In general, it is believed that two time series
with NCC smaller than 0.8 do not have strong positive



correlation [21] (i.e., they are not similar in shape). Thus, an
unlabeled KPI whose SBD to its nearest cluster centroid larger
than 0.2 is considered as an outlier. Certainly, in different
applications, one may use a smaller threshold to ensure higher
similarity among KPIs assigned to a cluster.

For a dataset with k clusters, the complexity of assigning
each KPI is O(km log(m)), where m is the length of the KPI.
Therefore, our algorithm can assign clusters to a large number
of high-dimensional KPIs very efficiently. In the clustering
step, it takes O(n2m log(m)) to calculate the SBD between
each pair of baselines in the sampled dataset of size n. Then
it costs O(n log(n)) to estimate the candidate radiuses, and
O(n log(n)) for DBSCAN clustering. For a dataset with N
KPIs, we sample n of them for clustering(n ⌧ N ), and assign
the rest by cluster centroids. The total time complexity of
ROCKA is O(Nm log(m) + n2m log(m) + n log(n)).

IV. EVALUATION

In this section, we conduct extensive experiments to evaluate
the performance of ROCKA. First, we use three public time
series datasets that are considered “idealized”. Then we use
two real-world KPI datasets from large Internet companies
to show ROCKA’s performance in practice. We also compare
ROCKA with a state-of-the-art time series clustering algorithm,
YADING [10], to demonstrate ROCKA’s accuracy and robust-
ness. Finally, a group of experiments are conducted to show
the effectiveness of each key technique used in ROCKA.

A. Baseline Algorithm: YADING and YADING’

YADING [10] is a new method for large-scale time series
data. It uses a multi-density clustering algorithm with L1

distance as similarity measure. It automatically selects several
density radiuses and conducts density-based clustering with
each of them. On StarLightCurve dataset in UCR time series
archive [22], YADING outperforms DENCLUE and DBSCAN
algorithms in accuracy, and outperforms CLARANs in speed.

However, since there are too many shape variations in real-
world KPI data, L1 distances between KPIs fall into a big
range, causing some difficulties in finding appropriate density
radiuses. According to our experiments, more than 95% real-
world KPIs are marked as outliers using the original YADING,
which is unacceptable. Therefore, in this paper, when using
real-world KPIs, we use an improved version of YADING,
called YADING’, by using our Algorithm 1 (without the
constraint of max radius) to fine-tune density radiuses for
better clustering results in YADING.

B. Results on Public Datasets

We first evaluate ROCKA on three public datasets and
compare our results with YADING.

1) Datasets: We use three public time series datasets from
UCR time series archive [22]. The details of the three datasets
are shown in Table I. These time series are often considered as
idealized data with very few anomalies and only slight noises.
In addition, all the three datasets are in large size and have

Name # of time series dimensionality # clusters
StartLightCurves 9236 1024 3

MALLAT 2400 1024 8
CinC ECG torso 1420 1639 4

TABLE I: Description of three UCR datasets

Fig. 8: Performance on three public datasets.

relatively high dimensionality than other public datasets, mak-
ing algorithms with high computation complexity unsuitable.
The data are also labeled with clustering ground truth, so we
can easily evaluate the performance of our algorithm.

2) Evaluation Metrics: As suggested by previous experi-
ments on the datasets [10, 23], we use a well-accepted met-
ric, Normalized Mutual Information (NMI) [24], to evaluate
clustering accuracy. NMI measures the mutual dependence
between ground-truth labels and obtained clusters. It ranges
from 0 to 1, where 1 means the clusters perfectly match the
labels and 0 indicates they are completely irrelevant.

3) Results: Since the data on public datasets are smooth,
for ROCKA, we set the sliding window size W = 1 in baseline
extraction. The clustering results are mapped to the ground-
truth to calculate the NMI score. The performance is shown
in Fig. 8. ROCKA outperforms YADING on all the three
datasets. Specifically, there are quite a few phase shifts and
anomalies in dataset StartLightCurves. YADING is confused
by these variations since it directly applies L1 distance on the
raw data without necessary alignment. On the other hand, the
techniques in ROCKA enhance its robustness against shifts
and anomalies. In addition, as discussed in Section III-D,
ROCKA is computationally efficient when dealing with high-
dimensional time series. Our experiments were conducted on a
machine with Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
and 64GB RAM. With the pre-computed distance matrix and
density radius, it takes less than 1 second to do clustering.
It uses less than 0.05 second to assign an unlabeled 1000-
dimensional time series, only slightly higher than YADING.

C. Results in Practice

Now, in a similar fashion, we evaluate the overall per-
formance of ROCKA and YADING’ on two real-world KPI
datasets obtained from several large Internet companies.

1) Datasets: As shown in Table II, DS1 is a TPS/QPS
(transaction/query per second) dataset from different clusters
of machines. DS2 contains machine-level metrics (e.g., Search
Response Time) collected from a large number of machines.
All KPIs in these two datasets are collected at one-minute
time interval for about one month. The KPIs in DS1 and
DS2 are grouped into four and seven types respectively by
the engineers of data providers. These types are regarded as
the ground truth for clustering. However, according to these
engineers, KPIs that belongs to the same type (e.g., CPU
utilization) can be clustered into several clusters due to their
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Fig. 9: Demonstrate the evaluation method for real-world
KPIs. Each curve is a baseline extracted from the raw KPI.

differences in shapes, but KPIs in different types (e.g., CPU
utilization and memory utilization) cannot belong to the same
cluster. We calculate our evaluation metrics based on this rule.

2) Evaluation Metrics: In practice, F-score is a widely-
used intuitive metric for operators to evaluate clustering.
Hence, we decide to use F-score as our evaluation metric in
this experiment. F-score is the harmonic average of precision
and recall. F-score has its best value at 1 (perfect precision
and recall) and worst at 0. For the multi-class problems, the
final F-score is the average F-score over all classes.

Since a cluster should only contain KPIs of one type, after
clustering, we determine the KPI type for each cluster by
majority vote rule. Then we calculate precision and recall
according to the assigned KPI types. Fig. 9 illustrates the
evaluation method. For example, most KPIs in Cluster 1

belongs to type A, then the entire cluster is labeled as type
A. Then KPI x, which actually belongs to type B, is counted
as a False Positive when calculating F-score on type A, and
as a False Negative when calculating F-score on type B. Note
that, as shown in Fig. 9, it is legitimate to group KPIs of type
A into two clusters, because these KPIs vary in shapes.

It is worth mentioning that, KPIs that are not similar to
any cluster are marked as outliers by density-based algorithms
(e.g. ROCKA and YADING’). Since it is hard for operators to
identify outlier KPIs in the large-scale datasets, we simply
ignore them while calculating the F-score (i.e., we calculate
F-score only for KPIs that have been assigned to clusters).
Instead, we use a metric, fraction of outliers, to show the
percentage of KPIs considered as outliers by each algorithm.
Generally, it is quite common to have some outliers in
real-world KPI datasets, since restart or service changes on
machines may change the shapes of some KPIs. However,
algorithms that are sensitive to noises and anomalies may
mistakenly mark a large number of KPIs as outliers despite
underlying shape invariance. In contrast, a robust algorithm
will have lower fraction of outliers.

3) Results: The results are shown in Table III. Compared
with the UCR datasets, real-world KPIs are more challenging
for clustering because they have complicated shape variations,
e.g., phase shifts, anomalies. We can see that ROCKA achieves
good accuracy on both datasets. For DS1, ROCKA accurately

Name # of KPIs dimensionality # of KPI types
DS1 212 43200 4
DS2 2010 44640 7

TABLE II: Description of real KPI datasets

clusters all KPIs with a small number of outliers. DS1 con-
tains KPIs about the same metric from different groups of
machines. Generally, machines from the same group have
direct or indirect associations with each other, and as such,
their corresponding KPIs roughly follow the same distribution.
ROCKA, equipped with techniques to reduce the impact of
shape variations, successfully clusters the KPIs according to
their underlying shapes. In comparison, although YADING’
also obtains good accuracy on DS1, it marks a much larger
fraction of outliers due to its sensitivity to shape variations.

DS2 contains metrics from a large number of machines,
in which the association between KPIs is much weaker than
in DS1. However, ROCKA still obtains good accuracy and
marks only a small fraction of outliers thanks to its robustness.
Although YADING’ achieves high F-score on the clustered
data, half of the KPIs are marked as outliers. In fact, it
only clusters KPIs that are very similar (with an extremely
small L1 distance among raw data) into small clusters. Others
are mistakenly marked as outliers by YADING’ due to its
sensitivity to shape variations.

Moreover, ROCKA is efficient even when dealing with the
high-dimensional KPIs. The experiments are run on the same
hardware as before. For a large number of KPIs, it takes only
one second to assign cluster for each KPI. The assignment
step is easy to be parallelized since it only depends on the
pre-computed cluster centroids. Compared with YADING’,
ROCKA takes more time mainly because SBD is more time
consuming than L1 distance. However, the simple L1 distance
is unable to handle KPIs with complicated shape variations.

D. The effects of techniques in ROCKA

We mainly use three techniques to make ROCKA more ro-
bust and rapid: baseline extraction, shape-based similarity, and
density-based clustering. We conducted additional experiments
to demonstrate the effectiveness of each technique with dataset
DS2, where KPIs present complicated shape variations.

1) Baseline extraction: Fig. 10a compares the F-score and
fraction of outliers of ROCKA with and without the baseline
extraction. Although the F-score does not drop, the fraction
of outliers increases dramatically without baseline extraction.
Because of excessive anomalies and noises, most KPIs in
DS2 appear in different shapes with little similarity. Without
baseline extraction, ROCKA can only accurately cluster a small
number of KPIs that are less affected by noises and anomalies,
but regard the majority as outliers.

2) Similarity measures: In this experiment, we replace
SBD by other popular distance measures, L1 norm, Euclidean

DS1 DS2
ROCKA YADING’ ROCKA YADING’

F-score 1.00 0.98 0.85 0.99
fraction of outliers 0.04 0.18 0.17 0.49
# clusters 6 7 29 33
avg distance calcula-
tion (ms) 53 0.205 58 0.226

avg assignment time
(ms) 411 54 1350 99

TABLE III: Performance on real KPI datasets
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baseline extraction
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similarity measures

(c) Calculation time (log scale)
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(d) Performance with different
clustering methods

Fig. 10: The effects of techniques in ROCKA

distance or DTW. The F-score and computation time using
these four similarity measures are shown in Fig. 10b and
Fig. 10c. We can see that ROCKA with SBD excels the other
options by a large margin. Since the KPIs are high dimensional
and have frequent phase shifts, the simple L1 and Euclidean
cannot obtain accurate similarities.

DTW, as explained in Section III-C, is invariant to phase
shifts and shape scaling. As a result, it can accurately capture
similarities between KPIs with phase shifts. However, it can
also perfectly align two KPIs with different periodicities or
seasonalities to consider them similar to each other. For exam-
ple, KPIs about Page Views and KPIs about Search Response
Time may have similar shapes but differ in seasonality (e.g.,
a day vs. a week). They are similar under DTW distance, but
KPIs with different types cannot be clustered into the same
cluster per the operators’ rule described before. As a result,
DTW has lower F-score than SBD. Moreover, DTW takes
much longer than others to calculate pairwise distance.

3) Clustering methods: In this experiment, we replace
DBSCAN by K-medoids [17]. Fig. 10d shows the performance
comparison. ROCKA with DBSCAN achieves better F-score
and the time consumed by assignment is only slightly higher.
Note that, although K-medoids is usually used with Euclidean
distance as similarity measure, here we still use SBD when
clustering by K-medoids, because KPIs have frequent phase
shifts. In each iteration of K-medoids, for each cluster, an
object with the minimal average distance to all other objects is
identified as a medoid. However, when KPIs are not perfectly
aligned, it cannot guarantee a medoid that can represent
the cluster. DBSCAN expands clusters by similarity between
objects, which can be obtained by SBD, L

p

norm, or any other
similarity measures, and flexibly detects clusters in arbitrary
shape and size. Thus, DBSCAN is suitable for our algorithm.

V. CLUSTERING FOR KPI ANOMALY DETECTION

In this section, we combine ROCKA and a state-of-the-art
anomaly detection algorithm, DONUT [5], to demonstrate how
ROCKA can assist in anomaly detection.

A. ROCKA for KPI Anomaly Detection

Anomaly detection algorithms are often designed to have
a model trained for each individual time series. With a large
number of KPIs, it takes a prohibitive amount of time to train
all the models. ROCKA clusters KPIs similar in underlying
shapes into a cluster. Thus, we can train a model on each
cluster centroid using an anomaly detection algorithm, and
then directly use the model to detect anomalies on other KPIs

in the same cluster. In addition, this method can be extremely
useful when a KPI does not have enough labeled anomalies
for individual model training or threshold selection.

Moreover, in some anomaly detection algorithms, a thresh-
old needs to be fine-tuned by the ground-truth anomaly labels
for optimal performance. With clusters created by ROCKA, the
threshold selected for a cluster centroid can be used by other
KPIs in the same cluster, simplifying parameter tuning.

B. Overview of DONUT

This very recent algorithm, DONUT [5], is an unsuper-
vised anomaly detection algorithm for seasonal KPIs. In [5],
DONUT greatly outperforms the popular algorithm Oppren-
tice [2], which has excelled other traditional anomaly detection
algorithms in the past. DONUT trains a deep generative model
to reconstruct the KPI data and output an indicator (anomaly
score) for each point to show the severity of anomaly. Specif-
ically, DONUT applies sliding windows over the KPI to get
short series x and tries to recognize what normal patterns x
follows. The indicator is then calculated by the difference
between reconstructed normal patterns and x to show the
severity of anomalies. In practice, a threshold should be
selected for each KPI. A data point with an indicator value
larger than the threshold is regarded as an anomaly.

We choose DONUT as the anomaly detection algorithm
in our experiments not just for its excellent performance.
DONUT identifies anomalies by extracting normal patterns
from KPIs. This design fits well with ROCKA since ROCKA
groups KPIs based on their underlying shapes, i.e. normal
patterns. When DONUT reconstructs a normal pattern for a
centroid KPI, this pattern approximates the normal patterns of
other KPIs in the cluster, making it possible to share anomaly
detection models among KPIs. Thus, we believe ROCKA can
work with most anomaly detection algorithms that are based
on recognition of normal patterns of time series [25, 26].

C. Experiment Setup

We use a real-world KPI dataset DS3 to evaluate the
performance of anomaly detection. DS3 contains 48 6-month-
long KPIs collected from different machines in a large Internet
company. Experienced operators has labeled anomalies on
these KPIs according to their domain knowledge to provide
a ground truth for anomaly detection.

To show how ROCKA can assist in anomaly detection, we
conduct the following experiments (E1-E3):

• E1: DONUT only. As a baseline experiment, we use
DONUT to train an anomaly detection model for each



of the 48 KPIs. Then, the threshold is fine-tuned for best
F-score for each KPI, as suggested in [5].

• E2: ROCKA + DONUT. Here we first apply ROCKA to
cluster the 48 KPIs into clusters. Then, we use DONUT
to train an anomaly detection model only on the centroid
KPI in each cluster, and select the best threshold accord-
ing to the ground-truth labels on the centroid. The model
and threshold are then used to detect anomalies in other
KPIs of the same cluster.

• E3: ROCKA + DONUT + KPI-specific threshold. Cer-
tainly, for a KPI, we can fine-tune the threshold for the
best performance, if the KPI has sufficient ground-truth
labels. In this experiment, the threshold of each KPI,
except centroids, is reestimated by its ground-truth labels.

All these anomaly detection experiments are run on a server
(NVIDIA GeForce GTX 1080 Ti graphics cards with 11GB
GDDR5X memory). Next we describe our experiment results.

D. Experiment Results

Table IV shows training and testing time consumed by each
experiment. We can see that it takes 1075 seconds to train a
DONUT model for a KPI. The total model training time will
become prohibitive when dealing with a large number of KPIs.
With ROCKA, KPIs are clustered into 5 clusters (the total
cluster time is only few seconds, which is negligible) and we
only need to train 5 anomaly detection models, reducing 90%
model training time. The advantage in time reduction becomes
even more significant with larger KPI datasets, where a cluster
may contain more KPIs.

Now we turn to F-score. Table V shows the average F-
score of the three experiments for each KPI cluster. Fig. 11a
gives the cumulative distribution function (CDF) of F-score
on each KPI. We can see that, in E1, DONUT achieves high
F-score on most of the KPIs with an average of 0.89. About
90% KPIs has a F-score over 0.8. In E2, the cluster-based
approach also obtains decent results, with an average F-score
of 0.76. This is because KPIs with a similar underlying shape
tends to have implicit associations in practice (e.g., belong to
the same cluster of machines). In this way, KPIs in the same
cluster also have similar normal patterns. As a result, they can
share an anomaly detection model and threshold.

E2 is very useful when dealing with large-scale KPIs. First,
this cluster-based approach is very efficient in model training.
More importantly, we do not need ground-truth anomaly labels
for each KPI to calculate the threshold. Instead, operators only
need to label the centroid KPIs, and the threshold can be used
on other KPIs in the same cluster.

However, as shown in Fig. 11b, compared to E1, the F-score
of most KPIs in E2 is reduced slightly, by less than 15%. The
main reason is that KPIs vary by their anomaly severity levels,
and a uniform threshold cannot be the optimal for every KPI.
This can be explained by an example shown in Fig. 12. The
KPI (say A) shown in Fig. 12b only has a few slight anomalies,
but its cluster centroid suffers with more severe anomalies
(Fig. 12a). With the centroid’s threshold (15.35), which is too
high for A, anomalies on A are missed (Fig. 12b). With the

0.0 0.2 0.4 0.6 0.8 1.0
F-score

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

DONUT only (E1)

ROCKA + DONUT (E2)

ROCKA + DONUT
+ KPI-specific threshold (E3)

(a)

0 10 20 30 40
KPI rank

�100

�80

�60

�40

�20

0

20

F
-s

co
re

ch
an

ge
%

fr
om

E
1

ROCKA + DONUT (E2)

ROCKA + DONUT
+ KPI-specific threshold (E3)

(b)

Fig. 11: (a) CDF of F-score on each KPI. (b) The F-
score change while using ROCKA+DONUT, compared to raw
DONUT result (E1).

algorithm cluster tot. train avg. train avg. test
DONUT only (E1) — 51621 1075 345
ROCKA+DONUT (E2) 11 5145 1029 345
ROCKA+DONUT+KPI-
specific threshold (E3) 11 5145 1029 345

TABLE IV: Time Consumption of DONUT on DS3 (seconds)
same centroid’s anomaly detection model, we reestimate the
threshold based on A’s ground-truth anomaly labels. With a
new threshold (10.01), we reach a perfect F-score of 1.0.

Indeed, a few KPIs need KPI-specific thresholds. In E3,
we fine-tune the threshold for each KPI based on its ground-
truth labels. Then, as shown in Table V and Fig. 11a, the
cluster-based approach achieves similar F-score as E1, but
with significant reduction on model training time. Compared
to E1, the F-score of most KPIs drop less than 5% in E3 (see
Fig. 11b). This further demonstrates that the anomaly detection
model can be shared in the same cluster regardless of different
anomaly severity levels.

Interestingly, we find that the F-score on two particular KPIs
actually arise in E2 compared to E1. Fig. 13a shows one KPI
which has a few anomalies and some normal slight pertur-
bations. The DONUT model (Fig. 13c) in E1 marks these
perturbations as anomalies. In contrast, the centroid’s model
(Fig. 13b) makes fewer mistakes. Generally, the anomaly
detection model might be overfitting on some particular KPIs,
making it sensitive to small fluctuations. In turn, the cluster
centroid model learns less details of the particular KPI, which
actually prevents overfitting and gets higher F-score.

VI. CONCLUSION

In this paper, we propose a robust and rapid time series clus-
tering algorithm, ROCKA, to cluster a large number of KPIs,
which are a special type of time series, with noises, anomalies,
phase shifts, amplitude differences, and high dimensionality.
This is the first work to study this problem, to the best of our
knowledge. To tackle challenges of KPI clustering, we propose
or creatively integrate several effective techniques to achieve

Cluster E1 E2 E3 # KPIs
A 0.88 0.66 0.86 18
B 0.79 0.78 0.79 6
C 0.95 0.81 0.95 12
D 0.87 0.86 0.87 4
E 0.90 0.83 0.88 8

Overall 0.89 0.76 0.88

TABLE V: Average F-score for anomaly detection on DS3
(E1: DONUT only, E2: ROCKA + DONUT, E3: ROCKA +
DONUT + KPI-specific threshold)
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Fig. 12: Orange line is anomaly indicator at each point and red
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(c) KPI B with raw DONUT (E1)

Fig. 13: The raw DONUT model on KPI B is a bit overfitting
and sensitive to small fluctuations. The cluster centroid model
is more robust and gets higher F-score.

high robustness and efficiency in ROCKA. Our evaluation
using real-world KPIs show that ROCKA gets F-score higher
than 0.85, significantly outperforming a state-of-the-art time
series clustering algorithm YADING. ROCKA also reduces the
model training time of a state-of-the-art anomaly detection
algorithm DONUT by 90%, with only 15% performance loss.
This is the first reported study that uses clustering to reduce
the training overhead of KPI anomaly detection.

We believe ROCKA is an important first step towards
the direction of using KPI clustering to enable (previously
infeasible) large-scale KPI anomaly detection, a key to ensure
service reliability in the Internet.
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