
Unsupervised Anomaly Detection via Variational Auto-Encoder
for Seasonal KPIs in Web Applications

Haowen Xu, Wenxiao Chen, Nengwen Zhao,
Zeyan Li, Jiahao Bu, Zhihan Li, Ying Liu,

Youjian Zhao, Dan Pei∗
Tsinghua University

Yang Feng, Jie Chen, Zhaogang Wang, Honglin
Qiao

Alibaba Group

ABSTRACT
To ensure undisrupted business, large Internet companies need to
closely monitor various KPIs (e.g., Page Views, number of online
users, and number of orders) of its Web applications, to accurately
detect anomalies and trigger timely troubleshooting/mitigation.
However, anomaly detection for these seasonal KPIs with various
patterns and data quality has been a great challenge, especially
without labels. In this paper, we proposed Donut, an unsupervised
anomaly detection algorithm based on VAE. Thanks to a few of our
key techniques, Donut greatly outperforms a state-of-arts super-
vised ensemble approach and a baseline VAE approach, and its best
F-scores range from 0.75 to 0.9 for the studied KPIs from a top global
Internet company. We come up with a novel KDE interpretation of
reconstruction for Donut, making it the first VAE-based anomaly
detection algorithm with solid theoretical explanation.
ACM Reference Format:
Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan
Li, Ying Liu, Youjian Zhao, Dan Pei, Yang Feng, Jie Chen, Zhaogang Wang
and Honglin Qiao. 2018. Unsupervised Anomaly Detection via Variational
Auto-Encoder for Seasonal KPIs in Web Applications. InWWW 2018: The
2018 Web Conference, April 23–27, 2018, Lyon, France. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3178876.3185996

1 INTRODUCTION
To ensure undisrupted business, large Internet companies need to
closely monitor various KPIs (key performance indicators) of its
Web applications, to accurately detect anomalies and trigger timely
troubleshooting/mitigation. KPIs are time series data, measuring
metrics such as Page Views, number of online users, and number of
orders. Among all KPIs, the most ones are business-related KPIs (the
focus of this paper), which are heavily influenced by user behavior
and schedule, thus roughly have seasonal patterns occurring at
regular intervals (e.g., daily and/or weekly). However, anomaly
detection for these seasonal KPIs with various patterns and data
quality has been a great challenge, especially without labels.

A rich body of literature exist on detecting KPI anomalies [1, 2, 5–
8, 17–19, 21–25, 27, 29, 32, 33, 37, 38]. As discussed in § 2.2, existing

∗Dan Pei is the corresponding author.
1An implementation of Donut is published at https://github.com/korepwx/donut
2A longer version of the paper can be found at [36].

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5639-8/18/04.
https://doi.org/10.1145/3178876.3185996

12:00 00:00 12:00 00:00 12:00

A
12:00 00:00 12:00 00:00 12:00

B
12:00 00:00 12:00 00:00 12:00

C

Figure 1: 2.5-day-long fragments of the seasonal KPI
datasets in our paper, with anomalies in red color and miss-
ing points (filled with zeros) in orange. Within each dataset,
there are variations for the same time slot in different days.

anomaly detection algorithms suffer from the hassle of algorithm
picking/parameter tuning, heavy reliance on labels, unsatisfying
performance, and/or lack of theoretical foundations.

In this paper, we propose Donut, an unsupervised anomaly detec-
tion algorithm based on Variational Auto-Encoder (a representative
deep generative model) with solid theoretical explanation, and this
algorithm can work when there are no labels at all, and can take
advantage of the occasional labels when available.

The contributions of this paper can be summarized as follows.
• The three techniques in Donut, Modified ELBO and Missing
Data Injection for training, and MCMC Imputation for detec-
tion, enable it to greatly outperform state-of-art supervised
and VAE-based anomaly detection algorithms. The best F-
scores of unsupervised Donut range from 0.75 to 0.9 for the
studied KPIs from a top global Internet company.

• For the first time in the literature, we discover that adopting
VAE (or generative models in general) for anomaly detection
requires training on both normal data and abnormal data,
contrary to common intuition.

• We propose a novel KDE interpretation in z-space for Donut,
making it the first VAE-based anomaly detection algorithm
with solid theoretical explanation unlike [2, 33]. This inter-
pretation may benefit the design of other deep generative
models in anomaly detection. We discover a time gradient ef-
fect in latent z-space, which nicely explain Donut’s excellent
performance for detecting anomalies in seasonal KPIs.

2 BACKGROUND AND PROBLEM
2.1 Context and Anomaly Detection in General
In this paper, we focus on business-related KPIs. These time series
are heavily influenced by user behavior and schedule, thus roughly
have seasonal patterns occurring at regular intervals (e.g., daily
and/or weekly). On the other hand, the shapes of the KPI curves at
each repetitive cycle are not exactly the same, since user behavior
can vary across days.We hereby name the KPIs we study “seasonal

https://doi.org/10.1145/3178876.3185996
https://github.com/korepwx/donut
https://doi.org/10.1145/3178876.3185996

KPIs with local variations”. Examples of such KPIs are shown
in Fig 1. Another type of local variation is the increasing trend over
days, as can be identified by Holt-Winters [38] and Time Series
Decomposition [6]. An anomaly detection algorithm may not work
well unless these local variations are properly handled.

In addition to the seasonal patterns and local variations of the
KPI shapes, there are also noises on these KPIs, which we assume
to be independent, zero-mean Gaussian at every point. The exact
values of the Gaussian noises are meaningless, thus we only focus
on the statistics of these noises, i.e., the variances of the noises.

We can now formalize the “normal patterns” of seasonal KPIs as
a combination of two components: (1) the seasonal patterns with
local variations, and (2) the statistics of the Gaussian noises.

We use “anomalies” to denote the recorded points which do
not follow normal patterns (e.g., sudden spikes and dips) , while
using “abnormal” to denote both anomalies and missing points. See
Fig 1 for examples of both anomalies and missing points. Because
the KPIs are monitored periodically (e.g., every minute), missing
points are recorded as “null” (when the monitoring system does
not receive the data) and thus are straightforward to identify. We
thus focus on detecting anomalies for the KPIs.

Because operators need to deal with the anomalies for trou-
bleshooting/mitigation, some of the anomalies are anecdotally la-
beled. Note that such occasional labels’ coverage of anomalies are
far from what’s needed for typical supervised learning algorithms.

Anomaly detection on KPIs can be formulated as follows: for
any time t , given historical observations xt−T+1, . . . ,xt , determine
whether an anomaly occurs (denoted by yt = 1). An anomaly detec-
tion algorithm typically computes a real-valued score indicating the
certainty of having yt = 1, e.g., p(yt = 1|xt−T+1, . . . ,xt), instead of
directly computing yt . Human operators can then affect whether
to declare an anomaly by choosing a threshold, where a data point
with a score exceeding this threshold indicates an anomaly.

2.2 Previous Work
Traditional statistical models. Over the years, quite a few anom-
aly detectors based on traditional statistical models (e.g., [6, 17,
18, 22, 24, 25, 29, 37, 38], mostly time series models) have been
proposed to compute anomaly scores. Because these algorithms
typically have simple assumptions for applicable KPIs, expert’s ef-
forts need to be involved to pick a suitable detector for a given KPI,
and then fine-tune the detector’s parameters based on the training
data. Simple ensemble of these detectors, such as majority vote [8]
and normalization [32], do not help much either according to [23].
As a result, these detectors see only limited use in the practice.

Supervised ensemble approaches. To circumvent the hassle
of algorithm/parameter tuning for traditional statistical anomaly
detectors, supervised ensemble approaches, EGADS [19] and Op-
prentice [23], were proposed. They train anomaly classifiers using
the user feedbacks as labels and using anomaly scores output by tra-
ditional detectors as features. Both EGADS and Opprentice showed
promising results, but they heavily rely on good labels (much more
than the anecdotal labels accumulated in our context), which is gen-
erally not feasible in large scale applications. Furthermore, running
multiple traditional detectors to extract features during detection
introduces lots of computational cost, which is a practical concern.

Unsupervised approaches and deep generativemodels. Re-
cently, there is a rising trend of adopting unsupervised machine
learning algorithms for anomaly detection, e.g., one-class SVM [1, 7],
clustering based methods [9] like K-Means [26] and GMM [21],
KDE [27], and VAE [2] and VRNN [33]. The philosophy is to fo-
cus on normal patterns instead of anomalies: since the KPIs are
typically composed mostly of normal data, models can be readily
trained even without labels. Roughly speaking, they all first recog-
nize “normal” regions in the original or some latent feature space,
and then compute the anomaly score by measuring “how far” an
observation is from the normal regions.

Along this direction, we are interested in deep generative models
for the following reasons. First, learning normal patterns can be
seen as learning the distribution of training data, which is a topic
of generative models. Second, great advances have been achieved
recently to train generative models with deep learning techniques,
e.g., GAN [13] and deep Bayesian network [4, 35]. The latter is
family of deep generative models, which adopts the graphical [28]
model framework and variational techniques [3], with the VAE [16,
30] as a representative work. Third, despite deep generative model’s
great promise in anomaly detection, existing VAE-based anomaly
detection method [2] was not designed for KPIs (time series), and
does not perform well in our settings (see § 4), and there is no
theoretical foundation to back up its designs of deep generative
models for anomaly detection (see § 5). Fourth, simply adopting
the more complex models [33] based on VRNN shows long training
time and poor performance in our experiments. Fifth, [2] assumes
training only on clean data, which is infeasible in our context, while
[33] does not discuss this problem.

2.3 Problem Statement
In summary, existing anomaly detection algorithms suffer from the
hassle of algorithm picking/parameter tuning, heavy reliance on
labels, unsatisfying performance, and/or lack of theoretical founda-
tions. Existing approaches are either unsupervised, or supervised
but depending heavily on labels. However, in our context, labels are
occasionally available although far from complete, which should
be somehow taken advantage of.

The problem statement of this paper is as follows. We aim
at an unsupervised anomaly detection algorithm based on
deep generative models with solid theoretical explanation,
and this algorithm can take advantage of the occasionally
available labels. Because VAE is a basic building block of deep
Bayesian network, we chose to start our work with VAE.

2.4 Background of Variational Auto-Encoder
Deep Bayesian networks use neural networks to express the rela-
tionships between variables, such that they are no longer restricted
to simple distribution families, thus can be easily applied to compli-
cated data. Variational inference techniques [12] are often adopted
in training and prediction, which are efficient methods to solve
posteriors of the distributions derived by neural networks.

VAE is a deep Bayesian network. It models the relationship be-
tween two random variables, latent variable z and visible vari-
able x. A prior is chosen for z, which is usually multivariate unit
Gaussian N(0, I). After that, x is sampled from pθ (x|z), which is
derived from a neural network with parameter θ . The exact form

NN

xz

✓�

Figure 2: Architecture of VAE. The prior of z is regarded as
part of the generative model (solid lines), thus the whole
generative model is denoted as pθ (x, z) = pθ (x|z)pθ (z). The
approximated posterior (dashed lines) is denoted as qϕ (z|x).

Training

Modified ELBO

Missing Data
Injection

Detection

MCMC Imputation
Model

Data Preparation

Sliding Window

Standardization

Fill Missing with Zero
Training xx

Testing xx

Figure 3: Overall architecture of Donut.

of pθ (x|z) is chosen according to the demand of task. The true pos-
terior pθ (z|x) is intractable by analytic methods, but is necessary
for training and often useful in prediction, thus the variational
inference techniques are used to fit another neural network as
the approximation posterior qϕ (z|x). This posterior is usually as-
sumed to be N(µϕ (x),σ

2
ϕ (x)), where µϕ (x) and σϕ (x) are derived

by neural networks. The architecture of VAE is shown as Fig 2.
SGVB [16, 30] is a variational inference algorithm that is often

used along with VAE, where the approximated posterior and the
generative model are jointly trained by maximizing the evidence
lower bound (ELBO, Eqn (1)). We did not adopt more advanced
variational inference algorithms, since SGVB already works.

logpθ (x) ≥ logpθ (x) − KL
[
qϕ (z|x)

pθ (z|x)]
= L(x) (1)

= Eqϕ (z |x)
[
logpθ (x) + logpθ (z|x) − logqϕ (z|x)

]
= Eqϕ (z |x)

[
logpθ (x, z) − logqϕ (z|x)

]
= Eqϕ (z |x)

[
logpθ (x|z) + logpθ (z) − logqϕ (z|x)

]
Monte Carlo integration [10] is often adopted to approximate the
expectation in Eqn (1), as Eqn (2), where z(l), l = 1 . . . L are samples
from qϕ (z|x). We stick to this method throughout this paper.

Eqϕ (z |x) [f (z)] ≈
1
L

L∑
l=1

f (z(l)) (2)

3 ARCHITECTURE
The overall architecture of our algorithm Donut is illustrated as
Fig 3. The three key techniques are Modified ELBO and Missing
Data Injection during training, and MCMC Imputation in detection.

3.1 Network Structure
As aforementioned in § 2.1, the KPIs studied in this paper are
assumed to be time sequences with Gaussian noises. However, VAE
is not a sequential model, thus we apply sliding windows [31] of
lengthW over the KPIs: for each point xt , we use xt−W +1, . . . ,xt as
the x vector of VAE. This sliding window was first adopted because
of its simplicity, but it turns out to actually bring an important and
beneficial consequence, which will be discussed in § 5.1.

Sliding Window x
W Dimensional

Hidden Layers
f�(x)f�(x)

Linear
K Units

SoftPlus + ✏✏
K Units

Latent Variable z
K Dimensional

µz �z

(a) Variational net qϕ (z |x)

Latent Variable z
K Dimensional

Hidden Layers
f✓(z)f✓(z)

Linear
W Units

SoftPlus + ✏✏
W Units

Reconstructed x
W Dimensional
µ

x

�
x

(b) Generative net pθ (x |z)

Figure 4: Network structure of Donut. Gray nodes are ran-
dom variables, and white nodes are layers. The double lines
highlight our special designs upon a general VAE.

The overall network structure of Donut is illustrated in Fig 4,
where the components with double-lined outlines (e.g., SlidingWin-
dow x, W Dimensional at bottom left) are our new designs and the
remaining components are from standard VAEs. The prior pθ (z) is
chosen to be N(0, I). Both x and z posterior are chosen to be diag-
onal Gaussian: pθ (x|z) = N(µx,σx2I), and qϕ (z|x) = N(µz,σz2I),
where µx, µz and σx, σz are the means and standard deviations of
each independent Gaussian component. z is chosen to be K dimen-
sional. Hidden features are extracted from x and z, by separated
hidden layers fϕ (x) and fθ (z). Gaussian parameters of x and z are
then derived from the hidden features. The means are derived from
linear layers: µx = W⊤

µx fθ (z) + bµx and µz = W⊤
µz fϕ (x) + bµz .

The standard deviations are derived from soft-plus layers, plus a
non-negative small number ϵ : σx = SoftPlus[W⊤

σx
fθ (z) + bσx] + ϵ

and σz = SoftPlus[W⊤
σz
fϕ (x) + bσz] + ϵ , where SoftPlus[a] =

log[exp(a) + 1]. All the W-s and b-s presented here are param-
eters of corresponding layers. Note when scalar function f (x) is
applied on vector x, it means to apply on every component.

We choose to derive σx and σz in such a way, instead of deriving
logσx and logσz using linear layers as others do, for the following
reason. The local variations in the KPIs of our interest are so small
that σx and σz would probably get extremely close to zero, making
logσx and logσz unbounded. This would cause severe numerical
problems when computing the likelihoods of Gaussian variables.
We thus use the soft-plus and the ϵ trick to prevent such problems.

3.2 Training
Training is straightforward by optimizing the ELBO (Eqn (1)) with
SGVB [16] algorithm. Since it is reported by [16] that one sample
is sufficient for computing the ELBO when training VAE with the
SGVB algorithm, we let sampling number L = 1 during training.
The windows of x are randomly shuffled before every epoch, which
is beneficial for stochastic gradient descent. A sufficiently large
number of x are taken in every mini-batch, which is critical for sta-
bilizing the training, since sampling introduces extra randomness.

As discussed in § 2.2, the VAE based anomaly detection works by
learning normal patterns, thus we need to avoid learning abnormal
patterns whenever possible. Note that the “anomalies” in training
are labeled anomalies, and there can be no labels for a given KPI, in
which case the anomaly detection becomes an unsupervised one.

One might be tempted to replace labeled anomalies (if any) and
missing points (known) in training data with synthetic values. Some

previous work has proposed methods to impute missing data, e.g.,
[34], but it is hard to produce data that follow the “normal patterns”
well enough. More importantly, training a generative model with
data generated by another algorithm is quite absurd, since one
major application of generative models is exactly to generate data.
Using data imputed by any algorithm weaker than VAE would
potentially downgrade the performance. Thus we do not adopt
missing data imputation before training VAE, instead we choose to
simply fill the missing points as zeros (in the Data Preparation step
in Fig 3), and then modify the ELBO to exclude the contribution of
anomalies and missing points (shown as Modified ELBO (M-ELBO
for short hereafter) in the Training step in Fig 3).

More specifically, we modify the standard ELBO in Eqn (1) to
our version Eqn (3). αw is defined as an indicator, where aw = 1
indicates xw being not anomaly or missing, and aw = 0 otherwise.
β is defined as (

∑W
w=1 αw)/W . Note that Eqn (3) still holds when

there is no labeled anomalies in the training data. The contribution
of pθ (xw |z) from labeled anomalies and missing points are directly
excluded by αw , while the scaling factor β shrinks the contribution
of pθ (z) according to the ratio of normal points in x. This modifica-
tion trains Donut to correctly reconstruct the normal points within
x, even if some points in x are abnormal. We do not shrink qϕ (z|x),
because of the following two considerations. Unlike pθ (z), which is
part of the generative network (i.e., model of the “normal patterns”),
qϕ (z|x) just describes the mapping from x to z, without consider-
ing“normal patterns”. Thus, discounting the contribution of qϕ (z|x)
seems not necessary. Another reason is that Eqϕ (z |x)[− logqϕ (z|x)]
is exactly the entropy of qϕ (z|x). This entropy term actually has
some other roles in training (which will be discussed in § 5.3), thus
might be better kept untouched.

L̃(x) = Eqϕ (z|x)

[W∑
w=1

αw logpθ (xw |z) + β logpθ (z) − logqϕ (z |x)
]

(3)

Besides Eqn (3), another way to deal with anomalies and missing
points is to exclude all windows containing these points from train-
ing data. This approach turns out to be inferior to M-ELBO. We will
demonstrate the performance of both approaches in § 4.5.

Furthermore, we also introducemissing data injection in training:
we randomly set λ ratio of normal points to be zero, as if they are
missing points. With more missing points, Donut is trained more
often to reconstruct normal points when given abnormal x, thus the
effect of M-ELBO is amplified. This injection is done before every
epoch, and the points are recovered once the epoch is finished. This
missing data injection is shown in the Training step in Fig 3.

3.3 Detection
Generative models like VAE can derive various outputs. In the
scope of anomaly detection, the likelihood of observation window
x, i.e., pθ (x) in VAE, is an important output, since we want to see
how well a given x follows the normal patterns. Monte Carlo meth-
ods can be adopted to compute the probability density of x, by
pθ (x) = Epθ (z) [pθ (x|z)]. Despite the theoretically nice interpreta-
tion, sampling on the prior actually does not work well enough in
practice, as will be shown in § 4.

Instead of sampling on the prior, one may seek to derive use-
ful outputs with the variational posterior qϕ (z|x). One choice is
to compute Eqϕ (z |x) [pθ (x|z)]. Although similar to pθ (x), it is not

(x
o

,x
m

) (x
o

,x0
m

)(x0
o

,x0
m

)z
q�(z|x) p✓(x|z)

x = = x

0

Figure 5: Illustration of one iteration in MCMC. x is decom-
posed as (xo , xm), then xo is fixed and xm is replaced by x′m
from the reconstruction sample, in order to get the new x′.

a well-defined probability density. Another choice is to compute
Eqϕ (z |x) [logpθ (x|z)], which is adopted in [2], named as “recon-
struction probability”. These two choices are very similar. Since
only the ordering rather than the exact values of anomaly scores
are concerned in anomaly detection, we follow [2] and use the
latter one. As an alternative, the ELBO (Eqn (1)) may also be used
for approximating logpθ (x), as in [33]. However, the extra term
Eqϕ (z |x)

[
logpθ (z) − logqϕ (z|x)

]
in ELBO makes its internal mech-

anism hard to understand. Since the experiments in [33] does not
support this alternative’s superiority, we choose not to use it.

During detection, the anomalies and missing points in a testing
window x can bring bias to the mapped z, and further make the
reconstruction probability inaccurate, which would be discussed
in § 5.2. Since the missing points are always known (as “null”),
we have the chance to eliminate the biases introduced by missing
points. We choose to adopt the MCMC-based missing data impu-
tation technique with the trained VAE, which is proposed by [30].
Meanwhile, we do not know the exact positions of anomalies before
detection, thus MCMC cannot be adopted on anomalies.

More specifically, the testing x is divided into observed and miss-
ing parts, i.e., (xo , xm). A z sample is obtained from qϕ (z|xo , xm),
then a reconstruction sample (x′o , x′m) is obtained frompθ (xo , xm |z).
(xo , xm) is then replaced by (xo , x′m), i.e., the observed points are
fixed and the missing points are set to new values. This process
is iterated forM times, then the final (xo , x′m) is used for comput-
ing the reconstruction probability. The intermediate x′m will keep
getting closer to normal values during the whole procedure. Given
sufficiently large M , the biases can be reduced, and we can get a
more accurate reconstruction probability. The MCMC method is
illustrated in Fig 5 and is shown in the Detection step in Fig 3.

After MCMC, we take L samples of z to compute the reconstruc-
tion probability by Monte Carlo integration. Although we may
compute the reconstruction probability for each point in every
window of x, we only use the score for the last point (i.e., xt in
xt−T+1, . . . ,xt), since we want to respond to anomalies as soon as
possible during detection. We will still use vector notations in later
texts, corresponding to the architecture of VAE.

4 EVALUATION
4.1 Datasets
We obtain 18 well-maintained business KPIs (where the time span
is long enough for training and evaluation) from a large Internet
company. All KPIs have an interval of 1 minute between two obser-
vations. We choose 3 datasets, denoted as A, B and C, which have
relatively small, medium and large noises among the 18 datasets,
so we can evaluate Donut for noises at different levels. We divide
each dataset into training, validation and testing sets, whose ratios
are 49%, 21%, 30% respectively. Figures of datasets A, B and C are

0 0 1 1 1 0 0 1 1 1truth

0.6 0.4 0.3 0.7 0.6 0.5 0.2 0.3 0.4 0.3score

1 0 0 1 1 1 0 0 0 0point-wise alert

1 0 1 1 1 1 0 0 0 0adjusted alert

Figure 6: Illustration of the strategy for modified metrics.
The first row is the truth with 10 contiguous points and two
anomaly segments highlighted in the shaded squares. The
detector scores are shown in the second row. The third row
shows the point-wise detector results with a threshold of 0.5.
The forth row shows the detector results after adjustment.
We shall get precision 0.6, and recall 0.5. From the third row,
the alert delay for the first segment is 1 interval (1 minute).

shown in Fig 1, while statistics are shown in Table 1. The oper-
ators of the Internet company labeled all the anomalies in these
three datasets. For evaluation purpose, we can consider we have
the ground truth of all anomalies in these three datasets.

DataSet A B C

Total points 296460 317522 285120
Missing points 1222/0.41% 1117/0.35% 304/0.11%
Anomaly points 1213/0.41% 1883/0.59% 4394/1.54%
Total windows* 296341 317403 285001
Abnormal windows** 20460/6.90% 20747/6.54% 17288/6.07%
* Each sliding window has a lengthW = 120.
** Each abnormal window contains at least one anomaly or missing point.

Table 1: Statistics of A, B and C.

4.2 Performance Metrics
In our evaluation, we totally ignore outputs of all algorithms at
missing points (“null”) since they are straightforward to identify.

All the algorithms evaluated in this paper compute one anomaly
score for each point. A threshold can be chosen to do the deci-
sion: if the score for a point is greater than the threshold, an alert
should be triggered. In this way, anomaly detection is similar to
a classification problem, and we may compute the precision and
recall corresponding to each threshold. We may further compute
the AUC, which is the average precision over recalls, given all pos-
sible thresholds; or the F-score, which is the harmonic mean of
precision and recall, given one particular threshold. We may also
enumerate all thresholds, obtaining all F-scores, and use the best
F-score as the metric. The best F-score indicates the best possible
performance of a model on a particular testing set, given an optimal
global threshold. In practice, the best F-score is mostly consistent
with AUC, except for slight differences (see Fig 7). We prefer the
best F-score to AUC, since it should be more important to have an
excellent F-score at a certain threshold than to have just high but
not so excellent F-scores on most thresholds.

In real applications, the human operators generally do not care
about the point-wise metrics. It is acceptable for an algorithm to
trigger an alert for any point in a contiguous anomaly segment, if
the delay is not too long. Some metrics for anomaly detection have
been proposed to accommodate this preference, e.g., [20], but most
are not widely accepted, likely because they are too complicated.We
instead use a simple strategy: if any point in an anomaly segment
in the ground truth can be detected by a chosen threshold, we say

0.0

0.2

0.4

0.6

0.8

1.0

A
U

C

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
F

-S
co

re

Opprentice VAE Baseline Donut Donut-Prior

0% 10% 100%

A

0

8

16

24

32

40

A
le

rt
D

el
a
y

0% 10% 100%

B
0% 10% 100%

C

Figure 7: AUC, the best F-Score, and the average alert delay
corresponding to the best F-score. A, B and C are the three
datasets. “0%”, “10%” and “100%” are the ratio of the labels
preserved in training. Note there is no result for Opprentice
when there are 0% of anomaly labels. The black stick on top
of each bar is the deviation of 10 repeated experiments.

this segment is detected correctly, and all points in this segment
are treated as if they can be detected by this threshold. Meanwhile,
the points outside the anomaly segments are treated as usual. The
precision, recall, AUC, F-score and best F-score are then computed
accordingly. This approach is illustrated in Fig 6.

In addition to the accuracy metric, we compute the alert delay
for each detected segment, which is also important to the operators.
For a true positive segment, the alert delay is the time difference
between the first point and the first detected point in the segment.

4.3 Experiment Setup
We set the window sizeW to be 120, which spans 2 hours in our
datasets. The choice ofW is restricted by two factors. On the one
hand, too small aW will cause the model to be unable to capture
the patterns, since the model is expected to recognize what the
normal pattern is with the information only from the window (see
§ 5.1). On the other hand, too large aW will increase the risk of
over-fitting, since we stick to fully-connected layers without weight
sharing, thus the number of model parameters is proportional to
W . We set the latent dimension K to be 3 for B and C, since the 3-d
dimensional space can be easily visualized for analysis and luckily
K = 3 works well empirically for for B and C. As for A, we found
3 is too small, so we empirically increase K to 8. These empirical
choices of K are proven to be quite good on testing set, as will be
shown in Fig 9. The hidden layers of qϕ (z|x) and pθ (x|z) are both
chosen as two ReLU layers, each with 100 units, which makes the
variational and generative network have equal size. We did not
carry out exhaustive search on the structure of hidden networks.

Other hyper-parameters are also chosen empirically.We use 10−4
as ϵ of the std layer. We use 0.01 as the injection ratio λ. We use
10 as the MCMC iteration countM , and use 1024 as the sampling
number L of Monte Carlo integration. We use 256 as the batch size
for training, and run for 250 epochs. We use Adam optimizer [15],
with an initial learning rate of 10−3. We discount the learning rate

by 0.75 after every 10 epochs. We apply L2 regularization to the
hidden layers, with a coefficient of 10−3. We clip the gradients by
norm, with a limit of 10.0.

In order to evaluate Donut with no labels, we ignore all the labels.
For the case of occasional labels, we down-sample the anomaly la-
bels of training and validation set to make it contain 10% of labeled
anomalies. Note that missing points are not down-sampled.We keep
throwing away anomaly segments randomly, with a probability
that is proportional to the length of each segment, until the desired
down-sampling rate is reached. We use this approach instead of
randomly throwing away individual anomaly points, because KPIs
are time sequences and each anomaly point could leak information
about its neighboring points, resulting in over-estimated perfor-
mance. Such downsampling are done 10 times, which enables us to
do 10 independent, repeated experiments. Overall for each dataset,
we have three versions: 0% labels, 10% labels, and 100% labels.

4.4 Overall Performance
We measure the AUC, the best F-Score, and the average alert delay
corresponding to the best F-score in Fig 7 of Donut, and compared
with three selected algorithms.

Opprentice [23] is an ensemble supervised framework using
Random Forest classifier. On datasets similar to ours, Opprentice is
reported to consistently and significantly outperform 14 anomaly
detectors based on traditional statistical models (e.g., [6, 17, 18, 22,
24, 25, 29, 37, 38]), with in total 133 enumerated configurations
of hyper-parameters for these detectors. Thus, in our evaluation
of Donut, Opprentice not only serves as a state-of-art competitor
algorithm from the non deep learning areas, but also serves as a
proxy to compare with the empirical performance “upper bound"
of these traditional anomaly detectors.

VAE baseline. The VAE-based anomaly detection in [2] does
not deal with time sequences, thus we set up the VAE baseline as
follows. First, the VAE baseline has the same network structure
as Donut, as shown in Fig 4. Second, among all the techniques in
Fig 3, only those techniques in the Data Preparation step are used.
Third, as suggested by [2], we exclude all windows containing
either labeled anomalies or missing points from training data.

Donut-Prior. Given that a generative model learns p(x) by
nature, while in VAE p(x) is defined as Epθ (z) [pθ (x|z)], we also
evaluate the prior counterpart of reconstruction probability, i.e.,
Epθ (z) [logpθ (x|z)]. We just need a baseline of the prior, so we
compute the prior expectation by plain Monte Carlo integration,
without advanced techniques to improve the result.

The best F-score of Donut is quite satisfactory in totally unsu-
pervised case, ranges from 0.75 to 0.9, better than the supervised
Opprentice in all cases. In fact, when labels are incomplete, the best
F-score of the Opprentice drops heavily in A and B, only remain-
ing acceptable in C. The number of anomalies are much larger in
C than A and B, while having 10% of labels are likely to be just
enough for training. Donut has an outstanding performance in the
unsupervised scenario, and we see that feeding anomaly labels into
Donut would in general make it work even better. There is, however,
an unusual behavior of Donut, where the best F-score in C, as well
as the AUC in B and C, are slightly worse with 100% labels than
10%. This is likely an optimization problem, where the unlabeled
anomalies might cause training to be unstable, accidentally pulling

0% 10% 100%

A

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
F

-S
co

re

0% 10% 100%

B
0% 10% 100%

C

VAE Baseline

Donut (M-ELBO Only)

Donut (M-ELBO & Injection)

Donut (M-ELBO & MCMC)

Donut (M-ELBO & Both)

Figure 8: Best F-score of (1) VAE baseline, (2) Donut with M-
ELBO, (3) M-ELBO + missing data injection, (4) M-ELBO +
MCMC, and (5) M-ELBO + both MCMC and injection. The
M-ELBO alone contributes most of the improvement.

the model out of a sub-optimal equilibrium (§ 5.4). Such phenom-
enon seems to diminish when K increases from 3 (B and C) to 8
(A). Fortunately, it does not matter too much, so we would suggest
to use labels in Donut whenever possible.

Donut outperforms the VAE baseline by a large margin inA and
B, while it does not show such great advantage in C. In fact, the
relative advantage of Donut is the largest in A, medium in B, and
the smallest in C. This is caused by the following reasons. Naturally,
VAE models normal x. As a result, the reconstruction probability
actually expects x to be mostly normal (see § 5.1). However, since
x are sliding windows of KPIs and we are required to produce one
anomaly score for every point, it is sometimes inevitable to have
abnormal points in x. This causes the VAE baseline to suffer a lot. In
contrast, the techniques developed in this paper enhances the ability
of Donut to produce reliable outputs even when anomalies present
in earlier points in the same window. Meanwhile, abnormal points
with similar abnormal magnitude would appear relatively “more
abnormal” when the KPI is smoother. Given thatA is the smoothest,
B is medium, and C is the least smoothest, above observation in
the relative advantage is not surprising.

Finally, the best F-score of the Donut-Prior is much worse than
the reconstruction probability, especially when the dimension of
z is larger. However, it is worth mentioning that the posterior ex-
pectation in reconstruction probability only works under certain
conditions (§ 5.2). Fortunately, this problem does not matter too
much to Donut (see § 5.2). As such, the reconstruction probability
can be used without too much concern.

The average alert delays of Donut, Opprentice and VAE Base-
line are acceptable over all datasets, whereas Donut-Prior is not.
Meanwhile, the best F-score of Donut is much better than others.
In conclusion, Donut could achieve the best performance without
increasing the alert delay, thus Donut is practical for operators.

4.5 Effects of Donut Techniques
We have proposed three techniques in this paper: (1) M-ELBO
(Eqn (3)), (2) missing data injection, and (3) MCMC imputation.
In Fig 9, we present the best F-score of Donut with four possible
combinations of these techniques, plus the VAE baseline for compar-
ison. These techniques are closely related to the KDE interpretation,
which will be discussed further in § 5.2.

M-ELBO alone contributes most of the improvement over the
VAE baseline. It works by training Donut to get used to possible
abnormal points in x, and to produce desired outputs in such cases.
Although we expected M-ELBO to work, we did not expect it to
work such well. In conclusion, it would not be a good practice to

1 2 3 4 5 8 13 21

K

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
F

-S
co

re

A B C

Figure 9: The best F-score of unsupervised Donut with dif-
ferent K , averaged over 10 repeated experiments.

train a VAE for anomaly detection using only normal data,
although it seems natural for a generative model (§ 5.2). To
the best of our knowledge, M-ELBO and its importance have never
been stated in previous work, thus is a major contribution of ours.

Missing data injection is designed for amplifying the effect of
M-ELBO, and can actually be seen as a data augmentation method.
In fact, it would be better if we inject not only missing points, but
also synthetically generated anomalies during training. However,
it is difficult to generate anomalies similar enough to the real ones,
which should be a large topic and is out of the scope of this paper.
We thus only inject the missing points. The improvement of best
F-score introduced by missing data injection is not very significant,
and in the case of 0% labels on B and C, it is slightly worse than
M-ELBO only. This is likely because the injection introduces extra
randomness to training, such that it demands larger training epochs,
compared to the case of M-ELBO only. We are not sure how many
number of epochs to run when the injection is adopted, in order
to get an objective comparison, thus we just use the same epochs
in all cases, leaving the result as it is. We still recommend to use
missing data injection, even with a cost of larger training epochs,
as it is expected to work with a large chance.

MCMC imputation is also designed to help Donut deal with
abnormal points. Although Donut obtains significant improvement
of best F-score with MCMC in only some cases, it never harms the
performance. According to [30], this should be an expected result.
We thus recommend to always adopt MCMC in detection.

In conclusion, we recommend to use all the three techniques of
Donut. The result of such configuration is also presented in Fig 8.
4.6 Impact of K
The number of z dimensions, i.e., K , plays an important role. Too
small a K would potentially cause under-fitting, or sub-optimal
equilibrium (see § 5.4). On the other hand, too large a K would
probably cause the reconstruction probability unable to find a good
posterior (see § 5.1). It is difficult to choose a good K in totally
unsupervised scenario, thus we leave it as a future work.

In Fig 9, we present the average best F-score with different K on
testing set for unsupervised Donut. This does not help us choose
the best K (since we cannot use testing test to pick K), but can
show our empirical choice of 8, 3, 3 is quite good. The best F-score
reaches maximum at 5 for A, 4 for B and 3 for C. In other words,
the best F-score could be achieved with fairly small K . On the other
hand, the best F-score does not drop too heavily forK up to 21. This
gives us a large room to empirically choose K . Finally, we notice
that smoother KPIs seem to demand larger K . Such phenomenon
is not fully studied in this paper, and we leave it as a future work.
Based on the observations in Fig 9, for KPIs similar to A, B or C,
we suggest an empirical choice of K within the range from 5 to 10.

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

(a)
−3 −2 −1 0 1 2 3

(b)
−3 −2 −1 0 1 2 3

0:00

4:00

8:00

12:00

16:00

20:00

24:00

(c)

Figure 10: The z layout of dataset B with (a) Donut, (b) un-
trainedVAE, (c) VAE trained usingE [logpθ (z)]+H [z|x] as loss.
Figures are plotted by sampling z from qϕ (z|x), correspond-
ing to normal x randomly chosen from the testing set. K is
chosen as 2, so the x- and y-axis are the two dimensions of
z samples. We plot z samples instead of µz of qϕ (z|x), since
we want to take into account the effects of σz in the figures.
The color of z a sample denotes its time of the day.

5 ANALYSIS
5.1 KDE Interpretation
Although the reconstruction probability Eqϕ (z |x) [logpθ (x|z)] has
been adopted in [2, 33], how it actually works has not yet been
made clear. Some may see it as a variant of Eqϕ (z |x) [pθ (x|z)], but
Eqϕ (z |x) [pθ (x|z)] =

∫
pθ (x|z)qϕ (z|x)dz, which is definitely not a

well-defined probability3. Thus neither of [2, 33] can be explained
by the probabilistic framework. We hereby propose the KDE (kernel
density estimation) interpretation for the reconstruction probability,
and for the entire Donut algorithm.

The posterior qϕ (z|x) for normal x exhibits time gradient, as
Fig 10a shows. The windows of x at contiguous time (contiguous
x for short hereafter) are mapped to nearby qϕ (z|x), mostly with
small variance σz (see Fig 11). The qϕ (z|x) are thus organized in
smooth transition, causing z samples to exhibit color gradient in
the figure. We name this structure “time gradient”. The KPIs in this
paper are smooth in general, so contiguous x are highly similar.
The root cause of time gradient is the transition of qϕ (z|x) in the
shape of x (rather than the one in time), because Donut consumes
only the shape of x and no time information. Time gradient benefits
the generalization of Donut on unseen data: if we have a posterior
qϕ (z|x) somewhere between two training posteriors, it would be
well-defined, avoiding absurd detection output.

For a partially abnormal x4, the dimension reduction would
allow Donut to recognize its normal pattern x̃, and cause qϕ (z|x)
to be approximately qϕ (z|x̃). This effect is caused by the following
reasons. Donut is trained to reconstruct normal points in training
samples with best efforts, while the dimension reduction causes
Donut to be only able to capture a small amount of information
from x. As a result, only the overall shape is encoded in qϕ (z|x).
The abnormal information is likely to be dropped in this procedure.
However, if a x is too abnormal, Donut might fail to recognize any
normal x̃, such that qϕ (z|x) would become ill-defined.

The fact that qϕ (z|x) for a partially abnormal x would be similar
to qϕ (z|x̃) brings special meanings to the reconstruction probability

3In general it should give no useful information by computing the expectation of
logpθ (x |z) upon the posterior qϕ (z |x), using a potentially abnormal x.

4We call a x partially abnormal if only a small portion of points within x are abnormal,
such that we can easily tell what normal pattern x should follow.

�3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

0.06 0.19

1.66

1.69

q�(z|x)

...

x

p✓(x|z(1))

p✓(x|z(L))

Eq�(z|x) [log p✓(x|z)]

log p✓(x|z(1))

log p✓(x|z(L)
)

Figure 11: Illustration of the KDE interpretation. For a given x potentially with anomalies, Donut tries to recognize what
normal pattern it follows, encoded asqϕ (z|x). The black ellipse in themiddle figure denotes the 3-σz region ofqϕ (z|x). L samples
of z are then taken from qϕ (z|x), denoted as the crosses in the middle figure. Each z is associated with a density estimator
kernel logpθ (x|z). The blue curves in the right two figures are µx of each kernel, while the surrounding stripes are σx. Finally,
the values of logpθ (x|z) are computed from each kernel, and further averaged together as the reconstruction probability.

A B C

Figure 12: 3-d latent space of all three datasets.

in Donut. Since M-ELBO is maximized with regard to normal pat-
terns during training, logpθ (x|z) for z ∼ qϕ (z|x̃) should produce
high scores for x similar to x̃, and vise versa. That is to say, each
logpθ (x|z) can be used as a density estimator, indicating how well
x follows the normal pattern x̃. The posterior expectation then
sums up the scores from all logpθ (x|z), with the weight qϕ (z|x) for
each z. This procedure is very similar to weighted kernel density
estimation [11, 14]. We thus carry out the KDE interpretation: the
reconstruction probability Eqϕ (z |x) [logpθ (x|z)] in Donut can
be seen as weighted kernel density estimation, with qϕ (z|x)
as weights and logpθ (x|z) as kernels 5.

Fig 11 is an illustration of the KDE interpretation. We also visu-
alize the 3-d latent spaces of all datasets in Fig 12. From the KDE
interpretation, we suspect the prior expectation would not work
well, whatever technique is adopted to improve the result: sampling
on the prior should obtain kernels for all patterns of x, potentially
confusing the density estimation for a particular x.

5.2 Find Good Posteriors for Abnormal x
Donut can recognize the normal pattern of a partially abnormal x,
and find a good posterior for estimating how well x follows the
normal pattern. We now analyze how the techniques in Donut can
enhance such ability of finding good posteriors.

Donut is forced to reconstruct normal points within abnormal
windows correctly during training, by M-ELBO. It is thus explic-
itly trained to find good posteriors. This is the main reason why
M-ELBO plays a vital role in Fig 8. Missing data injection ampli-
fies the effect of M-ELBO, with synthetically generated missing
points. On the other hand, MCMC imputation does not change the

5The weights qϕ (z |x) are implicitly applied by sampling in Monte Carlo integration.

�1.4 �1.3

0.85

0.90

0.95

0:00

4:00

8:00

12:00

16:00

20:00

24:00

�3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

�

�

�

Figure 13:MCMCvisualization. A normal x is chosen, whose
posterior qϕ (z|x) is plotted at right: the cross denotes µx and
the ellipse denotes its 3-σx region. We randomly set 15% x
points as missing, to obtain the abnormal x′. We runMCMC
over x′ with 10 iterations. At first, the z sample is far from
qϕ (z|x). After that, z samples quickly approach qϕ (z|x), and
begin to move around qϕ (z|x) after only 3 iterations.

training process. Instead, it improves the detection, by iteratively
approaching better posteriors, as illustrated in Fig 13.

Despite these techniques, Donut may still fail to find a good
posterior, if there are too many anomalies in x. In our scenario,
the KPIs are time sequences, with one point per minute. For long-
lasting anomalies, having the correct detection scores and raise
alerts at first few minutes are sufficient in our context6. The op-
erators can take action once any score reaches the threshold, and
simply ignore the following inaccurate scores. Nevertheless, the
KDE interpretation can help us know the limitations of re-
construction probability, in order to use it properly.

5.3 Causes of Time Gradient
In this section we discuss the causes of the time gradient effect.
To simplify the discussion, let us assume training x are all normal,
thus M-ELBO is now equivalent to the original ELBO. M-ELBO can
then be decomposed into three terms as in Eqn (4) (we leave out
some subscripts for shorter notation).

L(x) = Eqϕ (z |x)
[
logpθ (x|z) + logpθ (z) − logqϕ (z|x)

]
= E [logpθ (x|z)] + E [logpθ (z)] + H [z|x] (4)

The 1st term requires z samples from qϕ (z|x) to have a high likeli-
hood of reconstructing x. As a result, qϕ (z|x) for x with dissimilar
shapes are separated. The 2nd term causes qϕ (z|x) to concentrate
on N(0, I). The 3rd term, the entropy of qϕ (z|x), causes qϕ (z|x)
6In practice, ensuing and continuous alerts are typically filtered out anyway.

µz(1)

µz(2)z(1)

Figure 14: Suppose µz(1) and µz(2) are the mean of qϕ (z|x) cor-
responding to training data x(1) and x(2), with the surround-
ing circles represent σ z(1) and σ z(2) . When these two distribu-
tions accidentally “overlaps” during training, the sample z(1)

from qϕ (z|x(1))may get too close to µz(2) , such that the recon-
structed distribution will be close to pθ (x|z(2))with some z(2)

for x(2). If x(1) and x(2) are dissimilar, logpθ (x(1) |z(2)) in the
loss will then effectively push µz(1) away from µz(2) .

to expand wherever possible. Recall the 2nd term sets a restricted
area for qϕ (z|x) to expand (see Fig 10c for the combination effect
of the 2nd and 3rd term). Taking the 1st term into account, this
expansion would also stop if qϕ (z|x) for two dissimilar x reach each
other. In order for every qϕ (z|x) to have a maximal territory when
training converges (i.e., these three terms reach an equilibrium),
similar x would have to get close to each other, allowing qϕ (z|x) to
grow larger with overlapping boundaries. Since contiguous x are
similar in seasonal KPIs (and vise versa), the time gradient would
be a natural consequence, if such equilibrium could be achieved.

Next we discuss how the equilibrium could be achieved. The
SGVB algorithm keeps pushingqϕ (z|x) for dissimilar x away during
training, as illustrated in Fig 14. Themore dissimilar twoqϕ (z|x) are,
the further they are pushed away. Since we initialize the variational
network randomly, qϕ (z|x) are mixed everywhere when training
just begins, as Fig 10b shows. At this time, every qϕ (z|x) are pushed
away by all other qϕ (z|x). Since x are sliding windows of KPIs, any
pair of x far away in time will be generally more dissimilar, thus
get pushed away further from each other. This gives qϕ (z|x) an
initial layout. As training goes on, the time gradient is fine-tuned
and gradually established, as Fig 15a shows. The training dynamics
also suggest that the learning rate annealing technique is very
important, since it can gradually stabilize the layout.

Surprisingly, we cannot find any term in M-ELBO that directly
pulls qϕ (z|x) for similar x together. The time gradient is likely to
be caused mainly by expansion (H [z|x]), squeezing (E [logpθ (z)]),
pushing (E [logpθ (x|z)]), and the training dynamics (random ini-
tialization and SGVB). This could sometimes cause trouble, and
result in sub-optimal layouts, as we shall see in § 5.4.

5.4 Sub-Optimal Equilibrium
qϕ (z|x) may sometimes converge to a sub-optimal equilibrium.
Fig 15b demonstrates such a problem, where the purple points
accidentally get through the green points after the first 100 steps.
The purple points push the green points away towards both sides,
causing the green points to be totally cut off at around 5000 steps.
As training goes on, the green points will be pushed even further,
such that the model is locked to this sub-optimal equilibrium and
never escapes. Such bad layout of z breaks the time gradient, where
a testing x following green patterns might accidentally be mapped
to somewhere between the green two halves and get recognized as
purple. This would certainly downgrade the detection performance,
according to the KDE interpretation.

Step 100 Step 500 Step 4300 Step 50000
0:00

4:00

8:00

12:00

16:00

20:00

24:00

(a)

Step 100 Step 500 Step 5000 Step 50000
0:00

4:00

8:00

12:00

16:00

20:00

24:00

(b)

Figure 15: Evolution of the z space of dataset B during train-
ing.We sample normal x from validation set, and plot z sam-
ples accordingly. (a) converges to a good equilibrium, with a
final F-score 0.871, while (b) converges to a sub-optimal one,
with a final F-score 0.826. We plot step 4300 in (a), because
it is a very important turning point, where the green points
just begin to get away from the purple points.

When there are unlabeled anomalies, the training would become
unstable so that the model might be accidentally brought out of
a sub-optimal equilibrium and achieve a better equilibrium after-
wards. With the help of early-stopping during training, the best
encountered equilibrium is chosen eventually. This explains why
sometimes having complete labels would not benefit the perfor-
mance. This effect is likely to be less obvious with larger K , since
having more dimensions gives qϕ (z|x) extra freedom to grow, re-
ducing the chance of bad layouts. When sub-optimal equilibrium
is not a vital problem, the convergence of training then becomes
more important, while having more labels definitely helps stabilize
the training. In conclusion, using anomaly labels in Donut is likely
to benefit the performance, as long as K is adequately large.

6 CONCLUSION
In this paper, we proposed an unsupervised anomaly detection algo-
rithm Donut based on VAE for seasonal KPIs with local variations.
The new techniques enabled Donut to greatly outperform state-of-
art supervised and VAE-based anomaly detection algorithms. The
best F-scores of Donut range from 0.75 to 0.90 for the studied KPIs.

Donut’s excellent performance are explained by our theoretical
analysis with KDE interpretation and the new discovery of the time
gradient effect. Our experimental and theoretical analyses imply
broader impacts: anomaly detection based on dimension reduction
needs to use reconstruction; anomaly detection with generative
models needs to train with both normal and abnormal data.

7 ACKNOWLEDGEMENTS
The work was supported by National Natural Science Foundation
of China (NSFC) under grant No. 61472214 and No. 61472210, and
Alibaba Innovative Research (AIR). We also thank Prof. Jun Zhu and
his PhD. student Jiaxin Shi for helpful and constructive discussions.

REFERENCES
[1] Mennatallah Amer, Markus Goldstein, and Slim Abdennadher. 2013. Enhanc-

ing one-class support vector machines for unsupervised anomaly detection. In
Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description.
ACM, 8–15.

[2] Jinwon An and Sungzoon Cho. 2015. Variational Autoencoder based Anomaly
Detection using Reconstruction Probability. Technical Report. SNU Data Mining
Center. 1–18 pages.

[3] Matthew James Beal. 2003. Variational algorithms for approximate Bayesian
inference. University of London London.

[4] Christopher M Bishop. 2006. Pattern recognition and machine learning. springer.
[5] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:

A survey. ACM computing surveys (CSUR) 41, 3 (2009), 15.
[6] Yingying Chen, Ratul Mahajan, Baskar Sridharan, and Zhi-Li Zhang. 2013. A

Provider-side View of Web Search Response Time. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM ’13). ACM, New York, NY,
USA, 243–254. https://doi.org/10.1145/2486001.2486035

[7] Sarah M Erfani, Sutharshan Rajasegarar, Shanika Karunasekera, and Christopher
Leckie. 2016. High-dimensional and large-scale anomaly detection using a linear
one-class SVM with deep learning. Pattern Recognition 58 (2016), 121–134.

[8] Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda. 2010.
MAWILab: Combining Diverse Anomaly Detectors for Automated Anomaly
Labeling and Performance Benchmarking. In Proceedings of the 6th International
COnference (Co-NEXT ’10). ACM, Article 8, 12 pages. https://doi.org/10.1145/
1921168.1921179

[9] Zhouyu Fu,WeimingHu, and Tieniu Tan. 2005. Similarity based vehicle trajectory
clustering and anomaly detection. In Image Processing, 2005. ICIP 2005. IEEE
International Conference on, Vol. 2. IEEE, II–602.

[10] John Geweke. 1989. Bayesian inference in econometric models using Monte Carlo
integration. Econometrica: Journal of the Econometric Society (1989), 1317–1339.

[11] Francisco J Goerlich Gisbert. 2003. Weighted samples, kernel density estimators
and convergence. Empirical Economics 28, 2 (2003), 335–351.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[14] Wolfgang Härdle, Axel Werwatz, Marlene Müller, and Stefan Sperlich. 2004.
Nonparametric density estimation. Nonparametric and Semiparametric Models
(2004), 39–83.

[15] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[16] Diederik P Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In
Proceedings of the International Conference on Learning Representations.

[17] Florian Knorn and Douglas J Leith. 2008. Adaptive kalman filtering for anomaly
detection in software appliances. In INFOCOM Workshops 2008, IEEE. IEEE, 1–6.

[18] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. 2003.
Sketch-based change detection: methods, evaluation, and applications. In Pro-
ceedings of the 3rd ACM SIGCOMM conference on Internet measurement. ACM,
234–247.

[19] Nikolay Laptev, Saeed Amizadeh, and Ian Flint. 2015. Generic and scalable
framework for automated time-series anomaly detection. In Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 1939–1947.

[20] Alexander Lavin and Subutai Ahmad. 2015. Evaluating Real-Time Anomaly
Detection Algorithms–The Numenta Anomaly Benchmark. In Machine Learning
and Applications (ICMLA), 2015 IEEE 14th International Conference on. IEEE, 38–
44.

[21] Rikard Laxhammar, Goran Falkman, and Egils Sviestins. 2009. Anomaly detection
in sea traffic-a comparison of the gaussian mixture model and the kernel density
estimator. In Information Fusion, 2009. FUSION’09. 12th International Conference
on. IEEE, 756–763.

[22] Suk-Bok Lee, Dan Pei, MohammadTaghi Hajiaghayi, Ioannis Pefkianakis, Songwu
Lu, He Yan, Zihui Ge, Jennifer Yates, and Mario Kosseifi. 2012. Threshold com-
pression for 3g scalable monitoring. In INFOCOM, 2012 Proceedings IEEE. IEEE,
1350–1358.

[23] Dapeng Liu, Youjian Zhao, Haowen Xu, Yongqian Sun, Dan Pei, Jiao Luo, Xiaowei
Jing, and Mei Feng. 2015. Opprentice: Towards Practical and Automatic Anomaly
Detection Through Machine Learning. In Proceedings of the 2015 ACM Conference
on Internet Measurement Conference (IMC ’15). ACM, New York, NY, USA, 211–224.
https://doi.org/10.1145/2815675.2815679

[24] Wei Lu and Ali A Ghorbani. 2009. Network anomaly detection based on wavelet
analysis. EURASIP Journal on Advances in Signal Processing 2009 (2009), 4.

[25] Ajay Mahimkar, Zihui Ge, Jia Wang, Jennifer Yates, Yin Zhang, Joanne Emmons,
Brian Huntley, and Mark Stockert. 2011. Rapid detection of maintenance induced
changes in service performance. In Proceedings of the Seventh COnference on
emerging Networking EXperiments and Technologies. ACM, 13.

[26] Gerhard Münz, Sa Li, and Georg Carle. 2007. Traffic anomaly detection using
k-means clustering. In GI/ITG Workshop MMBnet.

[27] Miguel Nicolau, James McDermott, et al. 2016. One-Class Classification for
Anomaly Detection with Kernel Density Estimation and Genetic Programming.
In European Conference on Genetic Programming. Springer, 3–18.

[28] Thomas Dyhre Nielsen and Finn Verner Jensen. 2009. Bayesian networks and
decision graphs. Springer Science & Business Media.

[29] Brandon Pincombe. 2005. Anomaly detection in time series of graphs using arma
processes. Asor Bulletin 24, 4 (2005), 2.

[30] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic
Backpropagation and Approximate Inference in Deep Generative Models. In
Proceedings of the 31st International Conference on International Conference on
Machine Learning - Volume 32 (ICML’14). JMLR.org, Beijing, China, II–1278–II–
1286.

[31] Terrence J Sejnowski and Charles R Rosenberg. 1987. Parallel networks that
learn to pronounce English text. Complex systems 1, 1 (1987), 145–168.

[32] Shashank Shanbhag and TilmanWolf. 2009. Accurate anomaly detection through
parallelism. Network, IEEE 23, 1 (2009), 22–28.

[33] Maximilian Sölch, Justin Bayer, Marvin Ludersdorfer, and Patrick van der Smagt.
2016. Variational inference for on-line anomaly detection in high-dimensional
time series. International Conference on Machine Laerning Anomaly detection
Workshop (2016).

[34] Jonathan AC Sterne, Ian R White, John B Carlin, Michael Spratt, Patrick Royston,
Michael G Kenward, Angela M Wood, and James R Carpenter. 2009. Multiple
imputation for missing data in epidemiological and clinical research: potential
and pitfalls. Bmj 338 (2009), b2393.

[35] Hao Wang and Dit-Yan Yeung. 2016. Towards Bayesian deep learning: A survey.
arXiv preprint arXiv:1604.01662 (2016).

[36] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei, Y. Feng, J. Chen,
Z. Wang, and H. Qiao. 2018. Unsupervised Anomaly Detection via Variational
Auto-Encoder for Seasonal KPIs in Web Applications. ArXiv e-prints (Feb. 2018).
arXiv:cs.LG/1802.03903

[37] Asrul H Yaacob, Ian KT Tan, Su Fong Chien, and Hon Khi Tan. 2010. Arima
based network anomaly detection. In Communication Software and Networks,
2010. ICCSN’10. Second International Conference on. IEEE, 205–209.

[38] He Yan, Ashley Flavel, Zihui Ge, Alexandre Gerber, Dan Massey, Christos Pa-
padopoulos, Hiren Shah, and Jennifer Yates. 2012. Argus: End-to-end service
anomaly detection and localization from an ISP’s point of view. In INFOCOM,
2012 Proceedings IEEE. IEEE, 2756–2760.

https://doi.org/10.1145/2486001.2486035
https://doi.org/10.1145/1921168.1921179
https://doi.org/10.1145/1921168.1921179
https://doi.org/10.1145/2815675.2815679
http://arxiv.org/abs/cs.LG/1802.03903

	Abstract
	1 Introduction
	2 Background and Problem
	2.1 Context and Anomaly Detection in General
	2.2 Previous Work
	2.3 Problem Statement
	2.4 Background of Variational Auto-Encoder

	3 Architecture
	3.1 Network Structure
	3.2 Training
	3.3 Detection

	4 Evaluation
	4.1 Datasets
	4.2 Performance Metrics
	4.3 Experiment Setup
	4.4 Overall Performance
	4.5 Effects of Donut Techniques
	4.6 Impact of K

	5 Analysis
	5.1 KDE Interpretation
	5.2 Find Good Posteriors for Abnormal x
	5.3 Causes of Time Gradient
	5.4 Sub-Optimal Equilibrium

	6 Conclusion
	7 Acknowledgements
	References

