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Problem Scenario: Anomaly Detection for Seasonal KPls

KPls are time sequences, yet one of the most fundamental system
monitoring indicators. A failure usually causes more or less anomalies on
at least one KPI. Thus anomaly detection for KPls are very useful in
Artificial Intelligence for IT Operations (AlOps).

For web applications, the user activities are usually seasonal, so are the
KPlIs, including high level KPlIs like the trading volumes, and low level
KPIs like the CPU consumptions. We thus focus on anomaly detection
for seasonal KPIs in this work.
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Problem Formulation: Detection of “Abnormal’ Patterns

Since KPlIs are time sequences, and since in most real cases human
operators are willing to see a detection output every time a new
observation arrives, the anomaly detection for KPIs can be formulated as:

Anomaly Detection for KPIs

For each time ¢, given the on-time KPI observation x; and historical
observations xs_w 1, ...,2t—1, determine whether an “abnormal” pattern
has occurred (denoted by y; = 1).

Detection algorithms are often designed to compute a real-valued score
s(y; = 1) (“anomaly score” hereafter), e.g., p(y = l|xi—w+1,- .., Tt),
leaving the final decision of triggering alerts to the operators.
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Overall Architecture of Donut
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Data Preparation

o Fill Missing with Zero:

“Missing” are special anomalies, always known beforehand.
We fill missing points with zeros (orange points in the left

figure), and let our model to handle them afterwards.

e Standardization: &y = (2 — fiz)/0%.

x; are the original KPI values, i, and o, are the mean and std of z;.
We shall use z; to denote #; and neglect the original values x; hereafter.

@ Sliding Window:
o " We split the KPls into fixed-length sliding win-
x1 dows x;, which are assumed to be i.i.d., and are

used as the input x of VAE at every time t. For

* simplicity, we shall omit the subscript ¢, using x
x5 to denote the window of CI.JI’I’G.!nt time”, and
T1,..., Ty to denote each point in x afterwards.
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| atent Variable Models

 The Variational Autoencoder model:

- Kingma and Welling, Auto-Encoding Variational Bayes, International Conference on Learning
Representations (ICLR) 2014.

- Rezende, Mohamed and Wierstra, Stochastic back-propagation and variational inference in deep
[atent Gaussian models. ICML 2014.
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| atent Variable Models
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| atent Variable Models

e |atent variable model: learn a mapping from some latent variable z to a complicated
distribution on X.

p() = / p(z,2) d=  where p(z,z) = p(z | 2)p(2)

priOr p(z) = something simple p(x|z)=g(2)

e (Can we learn to decouple the true explanatory factors underlying the data distribution®?
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Variational Auto-Encoder (VAE)

 Where does zcome from”? — The classic DAG problem.

* The VAE approach: introduce an inference machine q,(z | ) that
learns to approximate the posterior py(z | z).

* Define a variational lower bound on the data likelihood: p, () > £(0, ¢, z)

L(O,p,x) =

« Whatis qs(2 | )

U (2]2) log po(x, 2) —logqy(2 | @)

~

Lo (zlz)Hogpela| z2) + logpg(2) =

Dx1 (q4(2 | 7)|| pe(2))

regularization term reconstruction term

11



Training with backpropagation!

 Due to a reparametrization
model po(x | 2) and the in

trick, we can simultaneously tral
ference model q4(z | ) by opti

bound using gradient backpropagation.
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Network Structure

Latent Variable z Reconstructed x
K Dimensional W Dimensional

Hz Oz Mx / \ Ox
Linear SoftPlus + € Linear SoftPlus + €
¢ -- Iy K Units K Units W Units W Units
Hidden Layers Hidden Layers
fo(x) fo(2)

Sliding Window x Latent Variable z

N W Dimensional K Dimensional
(a) VAE General Structure  (b) g4(z|x) of Donut (c) po(x|z) of Donut

o Variational net: qy(z/x) = N (15, 0,°1).

e Generative net: pp(z) = N(0,1), py(x|z) = N (px, ox1).

o SoftPlus Trick: o, = SoftPlus[W . fs(x) + b, + €, SoftPlus[a] =
log[exp(a) =+ 1]. Similar for Ox. (otherwise, unbounded)
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(otherwise, unbounded)

(otherwise, unbounded)
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Figure 12: 3-d latent space of all three datasets.



Dealing with Missing and Anomaly

We uses three techniques to handle such “histori-
 cal anomalies”.
x © M-ELBO: We modify the ELBO (objective
function) of VAE into M-ELBO L(x):
- ) f .
3 L(x) = ]Eqd)(z\x) |:Z Ay 10gpo9(xw|z)+

w=1
Figure: The anomaly at Slog pg(z) — log q¢(z|x)}
a_w=0 when anomalous or missing, and a_w = 1
t3 shall affect ¢4 and t5, otherwise; beta s the ratio of normal data
potentially causing Missing Data Injection: We randomly set
trouble in training and 1% points to be missing at every epoch in
detection. training, to compensate for having no

anomaly labels in the unsupervised scenario.

©@ MCMC Imputation (Rezende et al., 2014):
In detection, we adopt this technique on
known missing points.
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a_w=0 when anomalous or missing, and a_w = 1 otherwise; beta is the ratio of normal data

a_w=0 when anomalous or missing, and a_w = 1 otherwise; beta is the ratio of normal data
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Figure: The z layout of dataset B.
Figure is plotted by sampling z from
g4(2z|x), corresponding to normal x
randomly chosen from the testing
set. K is chosen as 2, so the x- and
y-axis are the two dimensions of z
samples. The color of a z sample
denotes its time of the day.

Time gradient: ¢,(z|x) are organized
in smooth transition: x at contiguous
time are mapped to nearby g4 (z|x).

Contiguous x are highly similar in
the KPlIs of our interest, since they
are smooth in general.

Transition of g4 (z|x) in the shape of
x, rather than time, is the cause of
time gradient, since Donut consumes
no time information.

Donut encodes the “shape” or
“normal patterns” of x by z, as
shown by the time gradient.

The time gradient can benefit
generalization.
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The Causes of Time Gradient

L(x) = Eq, (a/x) [log po(x|z) + log p(z) — log g, (z|x)]
= [ [log pg(x|z)] + E [log pg(z)] + H [z|x]

[ \ I
qo(z/x) 44 (z]%) a(z[%)
for dissimilar x to concentrate on  to expand

be pushed away everywhere

/

24:00
20:00
16:00
12:00
8:00
4:00
0:00

(0,1)

3210 1 2 3 32101 2 3
Figure: Causes of the time gradient. Surprisingly, we find no term in ELBO
directly pulling g4 (z|x) for similar x together. The time gradient is likely to be
caused mainly by expansion (H(z|x)), squeezing (E[logpy(z)]), pushing
(E[log po(x|z)]), and the training dynamics (random initialization and SGVB).
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The KDE Interpretation
T& logpo(xl2")
Pu(x\zm)
s o] T‘&_ —logpa(x|z")
’ po(x[z")

Figure: Illustration of the KDE interpretation. For a given x potentially with
anomalies, Donut tries to recognize what normal pattern it follows,
encoded as ¢4 (z|x). The black ellipse in the middle figure denotes the 3-o,
region of ¢, (z|x). L samples of z are then taken from ¢,(z|x), denoted as the
crosses in the middle figure. Each z is associated with a density estimator
kernel log pg(x|z). The blue curves in the right two figures are px of each kernel,
while the surrounding stripes are ox. Finally, the values of logpy(x|z) are
computed from each kernel, and further averaged together as the
reconstruction probability.

]Eq(,, (z|x) [10g Do (X‘Z)]

Haowen Xu, Wenxiao Chen, Nengwen Zhao, Unsupervised Anomaly Detection via Variatiol April 26, 2018 20 / 28



The Anomaly Score

An and Cho (2015) has already adopted VAE in anomaly detection tasks
of other domain®. They use the reconstruction probability (1) of truly
i.i.d. samples x (e.g., image pixel vectors) as the anomaly score:

L
s(y = 1) = Eq, (a0 [l0g po (x|2)] ~ Zogpe x|z®), 20 ~ gy(zlx) (1)

Since the KPls are time sequences, and the operators are willing to see
on-time detection outputs each time a new point arrives, we compute the
element-wise reconstruction probability (2) for the last point zy in x,
as the anomaly score for the time being:

D ~ gy(zlx)

(2)
!An and Cho (2015) uses vanilla VAE, without developing techniques like ours to
improve performance. We shall compare Donut againt their vanilla VAE in evaluation.

s(yw = 1) = Eg (zx) [log po(zw |2)] Zlogpe (zw|z), z
l 1
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Overall Performance

B Opprentice W VAE Baseline B Donut B Donut-Prior
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Effects of Donut Techniques

B VAE Baseline B Donut (M-ELBO & Injection) Donut (M-ELBO & Both)
B Donut (M-ELBO Only) W Donut (M-ELBO & MCMC)

1.0
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Best F-Score

Figure: Best F-score of (1) VAE Baseline, (2) Donut with M-ELBO, (3) M-ELBO
+ missing data injection, (4) M-ELBO + MCMC, and (5) M-ELBO + both
MCMC and injection.

The M-ELBO alone contributes most of the improvement over VAE
Baseline, while the missing data injection and the MCMC imputation
can further benefit the performance.
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Impact of Z Dimension Number K
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Figure: The best F-score of unsupervised Donut with different K on testing set.

@ The essential of Dimension reduction: W (the dimension of x) is
120, while the best K (the dimension of z) is no larger than 10.
@ It should be quite easy to empirically choose K.
@ The best performance could be achieved with fairly small K.
@ The performance does not drop too heavily for K up to 21.

@ Smoother KPIs seem to demand larger K.
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Conclusion

Our unsupervised anomaly detection algorithm Donut for seasonal KPlIs,
based on VAE, greatly outperforms state-of-art supervised and vanilla VAE
anomaly detection algorithms. The best F-scores range from 0.75 to 0.90
for the studied KPIs. The key factors of Donut to be successful are:

@ Dimension Reduction: forces Donut to focus on the overall shape of
normal patterns, and gain the ability of resisting abnormal points.

e M-ELBO, Missing Data Injection and MCMC Imputation: further
improves Donut's ability to resist abnormal points.

Furthermore, we made the KDE Interpretation, which provides a new
perspective of VAE-based KPI anomaly detection. All of the above factors
can be verified by such interpretation. The KDE Interpretation potentially
has more theoretical value in the further development of deep generative
models for KPIl anomaly detection.

Donut source code published at: https://github.com/korepwx/donut.
Full slide: https://github.com/korepwx/donut/tree/slide.
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