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o Large Scale Complex Systems/Multivariate Time Series
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Goal

o Unsupervised Anomaly Detection: A;, A,

o Anomaly Diagnosis

v Root cause identification
find causal sensor

mww

train data without label oA, !

v Anomaly scale analysis
interpret anomaly duration

multivariate
time series
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Challenge

+ C1: Time series contain noise
false positive of temporal dependency based models, e.g., SIAT[1], ARMA, LSTM-AE[2]

% C2: Multi-dimensional input, Temporal dependency
density based models can not capture, e.g., OC-SVM[3], DMM[4]

K/

% C3: Multi-scale (duration) anomalies
both temporal dependency/density based models can not handle

N time series-

[1] Exploiting local and global invariants for the management of large scale information systems, ICDM 2008
[2] A Dual-stage attention-based recurrent neural network for time series prediction, IJCAI 2017

[3] One-class SVMs for document classification, JMLR 2001

[4] Deep autoencoding gaussian mixture model for unsupervised anomaly detection, ICLR 2018
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o System Signature for C1 (avoid noise)
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Signature matrix: compute inner-product between every pair
of sensors on each time segment

Capture both shape and range

Robust to noise as the noise of individual time series impacts
little on the signature of the whole system

Auto-Encoder for C2 (multi-dimen, temporal)

Signature matrix pattern encoding: CNN
Temporal dependency modeling: RNN
Signature matrix pattern decoding: CNN

Profiling the normal period for model training, test
the abnormal period

™
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Multi-Scale Matrices for C3 (multi-scale)

Multi-scale (resolution) signature matrices
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Figure 2: Framework of the proposed model: (a) Signature matrices encoding via fully convolutional neural networks. (b) Tem-
poral patterns modeling by attention based convolutional LSTM networks. (¢) Signature matrices decoding via deconvolutional

neural networks. (d) Loss function.
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% Signature matrix encoding: 4
layer CNNs

% Temporal dependency
modeling: convLSTM

% Signature matrix decoding: 4
layer CNNs

» Connect to convLSTM in each
conv layer for model
enhancement

% Anomaly score: number of
broken elements in residual
matrix (by cutoff threshold)

s MSCRNN: multi-scale
(resolution) convolutional
recurrent auto-encoder
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o Dataset

v Synthetic data: 30 time series, 20000 points, train: 0 - 8000, validate: 8001 - 10000
test: 10001 - 20000, 5 anomalies, 3 root causes for each anomaly
v Real world Power Plant data: 36 time series, 23040 points, train: 0 - 10080,
validate: 10081 - 18720, test: 18721 - 23040, 5 anomalies, 3 root causes for each anomaly

o Baseline

v Classification model: One Class-SVM(OC-SVM)[1],

v Density estimation model: Deep Autoencoding Gaussian Mixture Model(DAGMM)[2]

v" Prediction model: History Average(HA), Auto-Regression Moving Average(ARMA),
LSTM Encoder-Decoder(LSTM-ED)[3]

v Model variant: ConvLSTM layers removed (CNNA{ED(3,4)}_{ConvLSTM}, CNN~{ED(4)}_{ConvLSTM}),
attention module removed (CNN~{ED}_{ConvLSTM})

o Metric

v Recall, Precision, F1 Score

v' Experiment on both synthetic data and real world data are repeated 5 times,
average scores are reported

[1] One-class SVMs for document classification, JMLR 2001
[2] Deep autoencoding gaussian mixture model for unsupervised anomaly detection, ICLR 2018
[3] A Dual-Stage Attention-Based Recurrent Neural Network for Time Series Prediction, IJCAI 2017
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o Anomaly Detection: Performance

Table 2: Anomaly detection results on two datasets.

>

X/
*

| Synthetic Data | Power Plant Data
tictBod ‘| Pre | Rec | Fi | Pre | Rec | Fy
OC-SVM || 0.14 | 044 | 022 | 0.11 | 028 | 0.16
DAGMM || 033 | 020 | 0.25 | 0.26 | 020 | 0.23

HA 0.71 | 052 | 0.60 | 048 | 0.52 | 0.50
ARMA 091 | 052 | 0.66 | 0.58 | 0.60 | 0.59
LSTM-ED 1.00 | 0.56 | 0.72 | 0.75 | 0.68 | 0.71

>

X/
*

CNNZP® 11037 [ 024 | 029 | 067 | 056 | 0.61
CNNZPGD 11 0.63 | 056 | 059 | 0.80 | 0.72 | 0.76
CNNED srar || 080 | 076 | 0.78 | 0.85 | 0.72 | 0.78

MSCRED || 1.00 | 0.80 | 0.89 | 0.85 | 0.80 | 0.82

Gain (%) || - | 300|238 | 133 | 194 | 155

% Temporal prediction models perform better

than classification model and density based
models. Both synthetic and real world
datasets have time dependency property

LSTM-ED has better performance than
ARMA, indicating deep learning based
model achieves better generalization ability
than traditional temporal dependency
models

Our proposed MSCRNN performs best on all
metrics of two datasets, demonstrating the
effectiveness of MSCRNN

% With the increment of ConvLSTM layers, the

performance of MSCRED improves

% The attention module further improves

anomaly detection performance
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o Anomaly Detection: Case Study
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Figure 3: Case study of anomaly detection. The shaded re-
gions represent anomaly periods. The red dash line is the
cutting threshold of anomaly.

The anomaly score of ARMA is not stable and
the results contain many false positives and
false negatives

The anomaly score of LSTM-ED is smoother
than ARMA while still contains several false
positives and false negatives

MSCRED can detect all anomalies without any
false positive and false negative
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Experiment

o Anomaly Diagnosis: Performance

v Root Cause Identification

% Ranking sensors based on anomaly score,
find causal sensors

% MSCRNN performs better than the best
baseline LSTM-ED for both datasets

Anomaly Scale Analysis

>

MSCRNN(S) detects three types of anomalies

o
¢

X/
L X4

MSCRNN(M) detects medium and long anomalies

X/
L X4

MSCRNN(L) detects long anomaly

Interpret anomaly types (duration) by joint considering
three detection results

MSCRNN(S): anomaly score computed on residual matrix of small-scale widow
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Figure 5: Performance of root cause identification.

Short Duration Anomaly

S\ W )
‘ﬁ(}ﬁ\" s‘r‘\w\wﬁ“@\
W

10 Short Duration Anomaly

0.04— —_
S\ N )
gO o\ 0!
e ,ﬁ:‘“ﬁ e

Synthetic Data
1 Medium Duration Anomaly
0

0.

Recall

o o ©

3) Q) S
o ol o0
REVT RV e

W WS W

Power Plant Data
N Medium Duration Anomaly
0

0.

Recall

o o ©

S ) N
w\sc“@\ "(/‘Q_O\::{)(‘“go\
W

Long Duration Anomaly

Recall
© o © © © »

N ) N
o o™ e

foaadiie L aiite .
WS o' )

Long Duration Anomaly

1
0.
=0
I+
204
0
0.0— —
W

Figure 6: Performance of three channel anomaly scores of
MSCRED over different types of anomalies.

MSCRNN(M): anomaly score computed on residual matrix of medium-scale widow
MSCRNN(L): anomaly score computed on residual matrix of large-scale widow
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Experiment

o Anomaly Diagnosis: Case Study
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Figure 7: Case study of anomaly diagnosis.
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MSCRED(S) detects all of 5 anomalies including 3 short,
1 medium and 1 long duration anomalies. MSCRED(M)
misses two short duration anomalies and MSCRED(L)
only detects long duration anomaly

We can accurately pinpoint more than half of the
anomaly root causes (rows/columns highlighted by red
rectangles) in this case
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o Robustness to Noise
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Figure 8: Impact of data noise on anomaly detection.

% MSCRED consistently outperforms ARMA and LSTM-ED when the
scale of noise varies from 0.2 to 0.45. Compared with ARMA and
LSTM- ED, MSCRED is more robust to the input noise
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Conclusion

o One Innovative Model

v
v

Multi-scale (resolution) signature matrices for the whole system
System signature encoding via CNN

v Temporal dependency modeling via ConvLSTM
v’ System signature decoding via CNN

o Two Useful Applications

v Anomaly detection
v Anomaly diagnosis: root cause identification, anomaly scale interpretation

o Experiment Demonstration

ANANENRN

Both synthetic data and real data

Four category baselines

Best performance for all metrics in both datasets
Robustness to noise
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