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ABSTRACT
Large companies need to monitor various metrics (for example,

Page Views and Revenue) of their applications and services in real

time. At Microsoft, we develop a time-series anomaly detection ser-

vice which helps customers to monitor the time-series continuously

and alert for potential incidents on time. In this paper, we intro-

duce the pipeline and algorithm of our anomaly detection service,

which is designed to be accurate, efficient and general. The pipeline

consists of three major modules, including data ingestion, exper-

imentation platform and online compute. To tackle the problem

of time-series anomaly detection, we propose a novel algorithm

based on Spectral Residual (SR) and Convolutional Neural Network

(CNN). Our work is the first attempt to borrow the SR model from

visual saliency detection domain to time-series anomaly detection.

Moreover, we innovatively combine SR and CNN together to im-

prove the performance of SRmodel. Our approach achieves superior

experimental results compared with state-of-the-art baselines on

both public datasets and Microsoft production data.

CCS CONCEPTS
• Computing methodologies→Machine learning; Unsuper-
vised learning; Anomaly detection; • Mathematics of com-
puting→ Time series analysis; • Information systems→ Traffic
analysis.
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1 INTRODUCTION
Anomaly detection aims to discover unexpected events or rare

items in data. It is popular in many industrial applications and

is an important research area in data mining. Accurate anomaly

detection can trigger prompt troubleshooting, help to avoid loss in

revenue, and maintain the reputation and branding for a company.

For this purpose, large companies have built their own anomaly

detection services to monitor their business, product and service

health [11, 20]. When anomalies are detected, alerts will be sent

to the operators to make timely decisions related to incidents. For

instance, Yahoo releases EGADS [11] to automatically monitor and

raise alerts on millions of time-series of different Yahoo properties

for various use-cases. At Microsoft, we build an anomaly detection

service to monitor millions of metrics coming from Bing, Office

and Azure, which enables engineers move faster in solving live site

issues. In this paper, we focus on the pipeline and algorithm of our

anomaly detection service specialized for time-series data.

There are many challenges in designing an industrial service for

time-series anomaly detection:

Challenge 1: Lack of Labels. To provide anomaly detection

services for a single business scenario, the system must process mil-

lions of time-series simultaneously. There is no easy way for users

to label each time-series manually. Moreover, the data distribution

of time-series is constantly changing, which requires the system

recognizing the anomalies even though similar patterns have not

appeared before. That makes the supervised models insufficient in

the industrial scenario.

Challenge 2:Generalization.Various kinds of time-series from

different business scenarios are required to be monitored. As shown

in Figure 1, there are several typical categories of time-series pat-

terns; and it is important for industrial anomaly detection services

to work well on all kinds of patterns. However, existing approaches

are not generalized enough for different patterns. For example, Holt

winters [5] always shows poor results in (b) and (c); and Spot [19]

always shows poor results in (a). Thus, we need to find a solution

of better generality.

(a) seasonal (b) stable (c) unstable

Figure 1: Different types of time-series.
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Challenge 3: Efficiency. In business applications, a monitor-

ing system must process millions, even billions of time-series in

near real time. Especially for minute-level time-series, the anom-

aly detection procedure needs to be finished within limited time.

Therefore, efficiency is one of the major prerequisites for online

anomaly detection service. Even though the models with large time

complexity are good at accuracy, they are often of little use in an

online scenario.

To tackle the aforementioned problems, our goal is to develop

an anomaly detection approach which is accurate, efficient and

general. Traditional statistical models [5, 14–17, 19, 20, 24] can be

easily adopted online, but their accuracies are not sufficient for

industrial applications. Supervised models [13, 18] are superior in

accuracy, but they are insufficient in our scenario because of lacking

labeled data. There are other unsupervised approaches, for instance,

Luminol [1] and DONUT [23]. However, these methods are either

too time-consuming or parameter-sensitive. Therefore, we aim to

develop a more competitive method in the unsupervised manner

which favors accuracy, efficiency and generality simultaneously.

In this paper, we borrow the Spectral Residual model [10] from

the visual saliency detection domain to our anomaly detection appli-

cation. Spectral Residual (SR) is an efficient unsupervised algorithm,

which demonstrates outstanding performance and robustness in the

visual saliency detection tasks. To the best of our knowledge, our

work is the first attempt to borrow this idea for time-series anomaly

detection. The motivation is that the time-series anomaly detection

task is similar to the problem of visual saliency detection essen-

tially. Saliency is what "stands out" in a photo or scene, enabling

our eye-brain connection to quickly (and essentially unconsciously)

focus on the most important regions. Meanwhile, when anomalies

appear in time-series curves, they are always the most salient part

in vision.

Moreover, we propose a novel approach based on the combina-

tion of SR and CNN. CNN is a state-of-the-art method for supervised

saliency detection when sufficient labeled data is available; while

SR is a state-of-the-art approach in unsupervised setting. Our inno-

vation is to unite these two models by applying CNN on the basis

of SR output directly. As the problem of anomaly discrimination be-

comes much easier upon the output of SR model, we can train CNN

through automatically generated anomalies and achieve significant

performance enhancement over the original SR model. Because the

anomalies used for CNN training is fully synthetic, the SR-CNN ap-

proach remains unsupervised and establishes a new state-of-the-art

performance when no manually labeled data is available.

As shown in the experiments, our proposed algorithm is more

accurate and general than state-of-the-art unsupervised models.

Furthermore, we also apply it as an additional feature in the su-

pervised learning model. The experimental results demonstrate

that the performance can be further improved when labeled data is

available; and the additional features do provide complementary

information to existing anomaly detectors. Up to the date of pa-

per submission, the F1-score of our unsupervised and supervised

approaches are both the best ever achieved on the open datasets.

The contributions of this paper are highlighted as below:

• For the first time in the anomaly detection field, we borrow

the technique of visual saliency detection to detect anomalies

in time-series data. The inspiring results prove the possibil-

ity of using computer vision technologies to solve anomaly

detection problems.

• We combine the SR and CNN model to improve the accuracy

of time-series anomaly detection. The idea is innovative and

the approach outperforms current state-of-the-art methods

by a large margin. Especially, the F1-score is improved by

more than 20% on Microsoft production data.

• From the practical perspective, the proposed solution has

good generality and efficiency. It can be easily integrated

with online monitoring systems to provide quick alerts for

important online metrics. This technique has enabled prod-

uct teams to move faster in detecting issues, save manual

efforts, and accelerate the process of diagnostics.

The rest of this paper is organized as follows. First, in Section 2,

we describe the details of system design, including data ingestion,

experimentation platform and online compute. Then, we share

our experience of real applications in Section 3 and introduce the

methodology in Section 4. Experimental results are analyzed in

Section 5 and related works are presented in Section 6. Finally, we

conclude our work and put forward future work in Section 7.

2 SYSTEM OVERVIEW
The whole system consists of three major components: data inges-
tion, experimentation platform and online compute. Before
going into more detail about these components, we will introduce

the whole pipeline first. Users can register monitoring tasks by

ingesting time-series to the system. Ingesting time-series from dif-

ferent data sources (including Azure storage, databases and online

streaming data) is supported. The ingestion worker is responsible
for updating each time-series according to the designated granu-

larity, for example, minute, hour, or day. Time-series points enter

the streaming pipeline through Kafka and is stored into the time-

series database. Anomaly detection processor calculates the anomaly

status for incoming time-series points online. In a common sce-

nario of monitoring business metrics, users ingest a collection of

time-series simultaneously. As an example, Bing team ingests the

time-series representing the the usage of different markets and plat-

forms. When incident happens, alert service combines anomalies

of related time-series and sends them to users through emails and

paging services. The combined anomalies show the overall status of

an incident and help users to shorten the time in diagnosing issues.

Figure 2 illustrates the general pipeline of the system.

2.1 Data Ingestion
Users can register a monitor task by creating a Datafeed. Each
datafeed is identified by Connect String and Granularity. Connect
String is used to connect user’s storage system to the anomaly

detection service. Granularity indicates the update frequency of a

datafeed; and the minimum granularity is one minute. An ingestion

task will ingest the data points of time-series to the system accord-

ing to the given granularity. For example, if a user sets minute as

the granularity, ingestion module will create a task every minute



Figure 2: System Overview

to ingest a new data point. Time-series points are ingested into in-

fluxDB
1
and Kafka

2
. Throughput of this module varies from 10,000

to 100,000 data points per second.

2.2 Online Compute
The online compute module processes each data point immediately

after it enters the pipeline. To detect anomaly status of an incoming

point, a sliding window of the time-series data points is required.

Therefore, we use Flink
3
to manage the points in memory to opti-

mize the computation efficiency. Currently, the streaming pipeline

processes more than 4 million time-series every day in production.

The maximum throughput can be 4 million every minute. Anomaly
detection processor detects anomalies for each single time-series.

In practice, a single anomaly is not enough for users to diagnose

their service efficiently. Thus, smart alert processor correlates the
anomalies from difference time-series and generates an incident

report accordingly. As anomaly detection is the main topic in this

paper, smart alert is not discussed in more detail.

2.3 Experimentation Platform
We build an experimentation platform to evaluate the performance

of anomaly detection models. Before we deploy a newmodel, offline

experiments and online A/B tests will be conducted on the platform.

Users can mark a point as anomaly or not on the portal. A labeling

service is provided to human editors. Editors will first label true

anomaly points of a single time-series and then label false anomaly

points from anomaly detection results of a specific model. Labeled

1
https://www.influxdata.com/

2
https://kafka.apache.org/

3
https://flink.apache.org/

data is used to evaluate the accuracy of the anomaly detection

model. We also evaluate the efficiency and generality of each model

on the platform. In online experiments, we flight several datafeeds

to the new model. A couple of metrics, such as click through rate

of alerts, percentage of anomalies and false anomaly rate is used

to decide whether the new model can be deployed to production.

The experimentation platform is built on Azure machine learning

service
4
. If a model is verified to be effective, the platform will

expose it as a web service and host it on K8s
5
.

3 APPLICATIONS
At Microsoft, it is a common need to monitor business metrics and

act quickly to address the issue if there is anything outside of the

normal pattern. To tackle the problem, we build a scalable system

with the ability to monitor minute-level time-series from various

data sources. Automated diagnostic insights are provided to assist

users to resolve their issues efficiently. The service has been used

by more than 200 product teams within Microsoft, across Office

365, Windows, Bing and Azure organizations, with more than 4

million time-series ingested and monitored continuously.

As an example, Michael from Bing team would like to monitor

the usage of their service in the global marketplace. In the anomaly

detection system, he created a new datafeed to ingest thousands of

time-series, each indicating the usage of a specific market (US, UK,

etc.), device (PC, windows phone, etc.) or channel (PORE, QBRE,

etc.). Within 5 minutes, Michael saw the ingested time-series on

the portal. At 9am, Oct-14, 2017, the time-series associated to the

UK market encountered an incident. Michael was notified through

4
https://azure.microsoft.com/en-us/services/machine-learning-service/

5
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/



(a) Alert Page (b) Incident Report

Figure 3: An illustration of example application from Microsoft Bing

E-mail alerts (as shown in Figure 3(a)) and started to investigate the

problem. He opened the incident report where the top correlated

time-series with anomalies are selected from a set of time-series

around 9am. As shown in Figure 3(b), usage on PC devices and

PORE channel can be found in the incident report. Michael brought

this insight to the team and finally found that the problem was

caused by a relevance issue which made users do lots of pagination

requests (PORE) to get satisfactory search results.

As another example, the Outlook anti-spam team used to lever-

age a rule-based method to monitor the effectiveness of their spam

detection system. However, this method was not easy to be main-

tained and usually showed bad cases on some Geo-locations. There-

fore, they ingested key metrics to our anomaly detection service

to monitor the effectiveness of their spam detection model across

different Geo-locations. Through our API, they have integrated

anomaly detection ability into the Office DevOps platform. By

using this automatic detection service, they have covered more

Geo-locations and received less false positive cases compared to

the original rule-based solution.

4 METHODOLOGY
The problem of time-series anomaly detection is defined as below.

Problem 1. Given a sequence of real values, i.e., x = x1,x2, ...,xn ,
the task of time-series anomaly detection is to produce an output
sequence, y = y1,y2, ...,yn , where yi ∈ {0, 1} denotes whether xi is
an anomaly point.

As emphasized in the Introduction, our challenge is to develop

a general and efficient algorithm with no labeled data. Inspired

by the domain of visual computing, we adopt Spectral Residual

(SR) [10], a simple yet powerful approach based on Fast Fourier

Transform (FFT) [21]. The SR approach is unsupervised and has

been proved to be efficient and effective in visual saliency detection

applications. We believe that the visual saliency detection and time-

series anomaly detection tasks are similar essentially, because the

anomaly points are usually salient in the visual perspective.

Furthermore, recent saliency detection research has shown fa-

vor to end-to-end training with Convolutional Neural Networks

(CNNs) when sufficient labeled data is available [25]. Nevertheless,

it is prohibitive for our application as large-scale labeled data is

difficult to be collected online. As a trade-off, we propose a novel

method, SR-CNN, which applies CNN on the output of SR model di-

rectly. CNN is responsible to learn a discriminate rule to replace the

single threshold adopted by the original SR solution. The problem

becomes much easier to learn the CNN model on SR results than

on the original input sequence. Specifically, we can use artificially

generated anomaly labels to train the CNN-based discriminator.

In the following sub-sections, we introduce the details of SR and

SR-CNN methods respectively.

4.1 SR (Spectral Residual)
The Spectral Residual (SR) algorithm consists of three major steps:

(1) Fourier Transform to get the log amplitude spectrum; (2) calcu-

lation of spectral residual; and (3) Inverse Fourier Transform that

transforms the sequence back to spatial domain. Mathematically,

given a sequence x, we have

A(f ) = Amplitude(F(x)) (1)

P(f ) = Phrase(F(x)) (2)

L(f ) = loд(A(f )) (3)

AL(f ) = hq (f ) · L(f ) (4)

R(f ) = L(f ) −AL(f ) (5)

S(x) =


F−1(exp(R(f ) + iP(f )))

 (6)

where F and F−1 denote Fourier Transform and Inverse Fourier

Transform respectively. x is the input sequence with shape n × 1;

A(f ) is the amplitude spectrum of sequence x; P(f ) is the corre-
sponding phase spectrum of sequence x; L(f ) is the log represen-
tation of A(f ); and AL(f ) is the average spectrum of L(f ) which
can be approximated by convoluting the input sequence by hq (f ),



Figure 4: Example of SR model results

where hq (f ) is an q × q matrix defined as:

hq (f ) =
1

q2


1 1 1 . . . 1

1 1 1 . . . 1

...
...
...
. . .

...

1 1 1 . . . 1


R(f ) is the spectral residual, i.e., the log spectrumL(f ) subtracting

the averaged log spectrum AL(f ). The spectral residual serves as a
compressed representation of the sequence while the innovation

part of the original sequence becomes more significant. At last, we

transfer the sequence back to spatial domain via Inverse Fourier

Transform. The result sequence S(x) is called the saliency map.
Figure 4 shows an example of the original time-series and the

corresponding saliency map after SR processing. As shown in the

figure, the innovation point (shown in red) in the saliency map is

much more significant than that in the original input. Based on the

saliency map, it is easy to leverage a simple rule to annotate the

anomaly points correctly. We adopt a simple threshold τ to annote

anomaly points. Given the saliency map S(x), the output sequence
O(x) is computed by:

O(xi ) =

1, if

S (xi )−S (xi )
S (xi )

) > τ ,

0, otherwise,

(7)

where xi represents an arbitrary point in sequence x; S(xi ) is the
corresponding point in the saliency map; and S(xi ) is the local

average of the preceding z points of S(xi ).
In practice, the FFT operation is conducted within a sliding win-

dow of the sequence. Moreover, we expect the algorithm to dis-

cover the anomaly points with low latency. That is, given a stream

x1,x2, ...,xn where xn is the recent point, we want to tell if xn is an

anomaly point as soon as possible. However, the SR method works

better if the target point locates in the center of the sliding window.

Thus, we add several estimated points after xn before inputting

the sequence to SR model. The value of estimated point xn+1 is

calculated by:

д =
1

m

m∑
i=1

д(xn ,xn−i ) (8)

xn+1 = xn−m+1 + д ·m (9)

where д(xi ,x j ) denotes the gradient of the straight line between
point xi and x j ; and д represents the average gradient of the preced-
ing points.m is the number of preceding points considered, and we

setm = 5 in our implementation. We find that the first estimated

Figure 5: SR-CNN architecture

point plays a decisive role. Thus, we just copy xn+1 for κ times and

add the points to the tail of the sequence.

To summarize, the SR algorithm contains only a few hyper-

parameters, i.e., sliding window size ω, estimated points number

κ, and anomaly detection threshold τ . We set them empirically

and show their robustness in our experiments. Therefore, the SR

algorithm is a good choice for online anomaly detection service.

4.2 SR-CNN
The original SR method utilizes a single threshold upon the saliency
map to detect anomaly points, as defined in Equation (7). However,

this rule is so naïve that it is natural to seek for more sophisticated

decision rules. Our philosophy is to train a discriminative model on

well-designed synthetic data as the anomaly detector. The synthetic

data can be generated by injecting anomaly points into a collection

of saliency maps that are not included in the evaluated data. The

injection points are labeled as anomalies while others are labeled as

normal. Concretely, we randomly select several points in the time

series, calculate the injection value to replace the original point and

get its saliency map. The values of anomaly points are calculated

by:

x = (x +mean)(1 +var ) · r + x (10)

where x is the local average of the preceding points;mean and var
are the mean and variance of all points within the current sliding

window; and r ∼ N(0, 1) is randomly sampled.

We choose CNN as our discrimative model architecture. CNN

is a commonly used supervised model for saliency detection [25].

However, as we do not have enough labeled data in our scenario,

we apply CNN on the basis of saliency map instead of raw input,

which makes the problem of anomaly annotation to be much eas-

ier. In practice, we collect production time-series with synthetic

anomalies as training data. The advantage is that the detector can

be adaptive to the change of time-series distribution, while no man-

ually labeled data is required. In our experiments, we use totally 65

million points for training. The architecture of SR-CNN is visualized

in Figure 5. The network is composed of two 1-D convolutional

layers (with filter size equals to the sliding window size ω) and two
fully connected layers. The channel size of the first convolutional

layer is equal to ω; while the channel size is doubled in the second

convolutional layer. Two full connected layers are stacked before

Sigmoid output. Cross entropy is adopted as the loss function; and

SGD optimizer is utilized in the training process.



Table 1: Statistics of datasets

DataSet Total Curves Total Points Anomaly Points
KPI 58 5922913 134114/2.26%

Yahoo 367 572966 3896/0.68%

Microsoft 372 66132 1871/2.83%

5 EXPERIMENTS
5.1 Datasets
We use three datasets to evaluate our model. KPI and Yahoo are

public datasets
6
that are commonly used for evaluating the per-

formance of time-series anomaly detection; while Microsoft is an

internal dataset collected in the production. These datasets cover

time-series of different time intervals and cover a broad spectrum of

time-series patterns. In these datasets, anomaly points are labeled

as positive samples and normal points are labeled as negative. The

statistics of these datasets are shown in Table 1.

KPI is released by AIOPS data competition [2, 3]. The dataset

consists of multiple KPI curves with anomaly labels collected from

various Internet Companies, including Sogou, Tecent, eBay, etc.

Most KPI curves have an interval of 1 minute between two adjacent

data points, while some of them have an interval of 5 minutes.

Yahoo is an open data set for anomaly detection released by Ya-

hoo lab
7
. Part of the time-series curves is synthetic (i.e., simulated);

while the other part comes from the real traffic of Yahoo services.

The anomaly points in the simulated curves are algorithmically

generated and those in the real-traffic curves are labeled by editors

manually. The interval of all time-series is one hour.

Microsoft is a dataset obtained from our internal anomaly de-

tection service at Microsoft. We select a collection of time-series

randomly for evaluation. The selected time-series reflect different

KPIs, including revenues, active users, number of pageviews, etc.

The anomaly points are labeled by customers or editors manually;

and the interval of these time-series is one day.

5.2 Metrics
We evaluate our model from three aspects, accuracy, efficiency
and generality. We use precision, recall and F1-score to indicate the
accuracy of our model. In real applications, the human operators

do not care about the point-wise metrics. It is acceptable for an

algorithm to trigger an alert for any point in a contiguous anomaly

segment if the delay is not too long. Thus, we adopt the evaluation

strategy
8
following [23]. Wemark the whole segment of continuous

anomalies as a positive sample which means no matter how many

anomalies have been detected in this segment, only one effective

detection will be counted. If any point in an anomaly segment can

be detected by the algorithm, and the delay of this point is no more

than k from the start point of the anomaly segment, we say this

segment is detected correctly. Thus, all points in this segment are

6
These two datasets are used only for research purpose and do not leveraged in

production.

7
https://yahooresearch.tumblr.com/post/114590420346/

a-benchmark-dataset-for-time-series-anomaly

8
The evaluation script is available at https://github.com/iopsai/iops/tree/master/evaluation

Figure 6: Illustration of the evaluation strategy. There are
10 contiguous points in the time-series, where the first row
indicates ground truth; the second row shows the point-wise
anomaly detection results; and the third row shows adjusted
results according to the evaluation strategy.

treated as correct, and the points outside the anomaly segments are

treated as normal.

The evaluation strategy is illustrated in Figure 6. As shown in the

first row of Figure 6, there are 10 contiguous points and two anomaly

segments in the example time-series. The prediction results are

shown in the second row. In this case, if we allow the delay as

one point, i.e., k = 1, the first segment is treated as correct and

the second is treated as incorrect (because the delay is more than

one point). Thus, the adjusted results are illustrated in the third

row. Based on the adjusted results, the value of precision, recall

and F1-score can be calculated accordingly. In our experiments, we

set k = 7 for minutely time-series, k = 3 for hourly time-series

and k = 1 for daily time-series following the requirement of real

application.

Efficiency is another key indicator of anomaly detection models,

especially for those be applied in online services. In the system, we

must complete hundreds of thousands of calculations per second.

The latency of the model needs to be small enough so that it won’t

block the whole computation pipeline. In our experiments, we

evaluate total execution time on the three datasets to compare the

efficiency of different anomaly detection approaches.

Besides accuracy and efficiency, we also emphasize generality
in our evaluation. As illustrated previously, an industrial anomaly

detection model should have the ability to handle different types

of time-series. To evaluate generality, we group the time-series in

Yahoo dataset into 3 major classes (for example, seasonal, stable and

unstable as shown in Figure 1) manually and compare the F1-score
on different classes separately.

5.3 SR/SR-CNN Experiment
We compare SR and SR-CNN with state-of-the-art unsupervised

time-series anomaly detection methods. The baseline models in-

clude FFT (Fast Fourier Transform) [16], Twitter-AD (Twitter Anom-

aly Detection) [20], Luminol (LinkedIn Anomaly Detection) [1],

DONUT [23], SPOT and DSPOT [19]. Among these methods, FFT,

Twitter-AD and Luminol do not need additional data to start, so

we compare these models in a cold-start setting by treating all

the time-series as test data. On the other hand, SPOT, DSPOT and

DONUT need additional data to train their models. Therefore, we

split the points of each time-series as two halves according to the

time order. The first half is utilized for training those unsupervised

https://yahooresearch.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly
https://yahooresearch.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly


Table 2: Result comparison of cold-start

KPI Yahoo Microsoft
Model F1-score Precision Recall Time(s) F1-score Precision Recall Time(s) F1-score Precision Recall Time(s)
FFT 0.538 0.478 0.615 3756.63 0.291 0.202 0.517 356.56 0.349 0.812 0.218 8.38

Twitter-AD 0.330 0.411 0.276 523232.0 0.245 0.166 0.462 301601.50 0.347 0.716 0.229 6698.80

Luminol 0.417 0.306 0.650 14244.92 0.388 0.254 0.818 1071.25 0.443 0.776 0.310 16.26

SR 0.666 0.637 0.697 1427.08 0.529 0.404 0.765 43.59 0.484 0.878 0.334 2.45

SR-CNN 0.732 0.811 0.667 6805.13 0.655 0.786 0.561 279.97 0.537 0.468 0.630 25.26

Table 3: Result comparison on test data

KPI Yahoo Microsoft
Model F1-score Precision Recall Time(s) F1-score Precision Recall Time(s) F1-score Precision Recall Time(s)
SPOT 0.217 0.786 0.126 9097.85 0.338 0.269 0.454 2893.08 0.244 0.702 0.147 9.43

DSPOT 0.521 0.623 0.447 1634.41 0.316 0.241 0.458 339.62 0.190 0.394 0.125 1.37

DONUT 0.347 0.371 0.326 24248.13 0.026 0.013 0.825 2572.76 0.323 0.241 0.490 288.36

SR 0.622 0.647 0.598 724.02 0.563 0.451 0.747 22.71 0.440 0.814 0.301 1.55

SR-CNN 0.771 0.797 0.747 2724.33 0.652 0.816 0.542 125.37 0.507 0.441 0.595 16.13

Table 4: Generality Comparison on Yahoo dataset

Seasonal Stable Unstable Overall Var

FFT 0.446 0.370 0.301 0.364 0.060
Twitter-AD 0.397 0.924 0.438 0.466 0.268

Luminol 0.374 0.763 0.428 0.430 0.195

SPOT 0.199 0.879 0.356 0.338 0.322

DSPOT 0.211 0.485 0.379 0.316 0.120

DONUT 0.023 0.032 0.029 0.026 0.004

SR 0.558 0.601 0.556 0.563 0.023
SR-CNN 0.716 0.752 0.464 0.652 0.128

Var indicates the standard deviation of the overall F1-scores for the three classes

models while the second half is leveraged for evaluation. Note that

DONUT can leverage additional labeled data to benefit the anomaly

detection performance. However, as we are aiming to get a fair com-

parison in the fully unsupervised setting, we do not use additional

labeled data in the implementation
9
.

The experiments are conducted in a streaming pipeline. The

points of a time-series are ingested to the evaluation pipeline se-

quentially. In each turn, we only detect if the recent point is anomaly

or not while the succeeding points are invisible. In the setting of

cold-start, recommended configurations are applied to the baseline

models which come from papers or codes published by the authors.

For SR and SR-CNN, we set the hyper-parameters empirically. In SR,

shape of hq (f ) q is set as 3, number of local average of preceding

points z is set as 21, threshold τ is set as 3, number of estimated

points κ is set as 5, and the sliding window size ω is set as 1440 on

9
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KPI, 64 on Yahoo and 30 on Microsoft. For SR-CNN, q, z, κ and ω
are set to the same value.

We report (1) F1-score; (2) Precision; (3) Recall ; and (4) CPU exe-

cution times separately for each dataset. We can see that SR signifi-

cantly outperforms current state-of-the-art unsupervised models.

Furthermore, SR-CNN achieves further improvement on all three

datasets, which shows the advantage of replacing the single thresh-

old by a CNN discriminator. Table 2 shows comparison results of

FFT, Twitter-AD and Luminol in the cold-start scenario.We improve

the F1-score by 36.1% on KPI dataset, 68.8% on Yahoo dataset and

21.2% on Microsoft dataset compared to the best results achieved

by baseline solutions. Table 3 demonstrates the comparison results

of those unsupervised models which need to be trained on the

first half of the dataset (labels are excluded). As shown in Table 3,

the F1-score is improved by 48.0% on KPI dataset, 92.9% on Yahoo

dataset and 57.0% onMicrosoft dataset than the best state-of-the-art

results.

Moreover, SR is the most efficient method as indicated by the

total CPU execution time in Table 2 and 3. SR-CNN achieves better

accuracy with a reasonable latency increase. For generality com-

parison, we conduct the experiments on the second half of Yahoo

dataset, which is classified into three classes manually. F1-score on
different classes of Yahoo dataset is reported separately in Table 4.

SR and SR-CNN achieve outstanding results on various patterns

of time-series. SR is the most stable one across the three classes.

SR-CNN also demonstrates good capability of generalization.

5.4 SR+DNN
In the previous experiments, we can see that the SR model shows

convincing results in the unsupervised anomaly detection scenario.

However, when labels of anomalies are available, we can obtain

more satisfactory results as illustrated in previous works [13]. Thus,

we would like to know whether our methodology contributes to the



Table 5: Features used in the supervised DNN model

Feature Description

Transformations Transformations to the value of each data point. We use logarithm as our transformation function and leverage the

result value as a feature.

Statistics We applied sliding windows to the time-series and treat the statistics calculated in each sliding window as features.

The statistics we used include mean, exponential weighted mean, min, max, standard deviation, and the quantity

of the data point values within a sliding window. We use multiple sizes of the sliding window to generate different

features. The sizes are [10, 50, 100, 200, 500, 1440]

Ratios The ratios of current point value against other statistics or transformations

Differences The differences of current point value against other statistics or transformations

Table 6: Train and test split of KPI dataset

DataSet Total points Anomaly points
Train 3004066 79554/2.65%

Test 2918847 54560/1.87%

Table 7: Supervised results on KPI dataset

Model F1-score Precision Recall
DNN 0.798 0.849 0.753

SR+DNN 0.811 0.915 0.728

supervised scenario as well. Concretely, we treat the intermediate

results of SR as an additional feature in the supervised anomaly

detection model. We conduct the experiment on KPI dataset as it

has been extensively studied in the AIOPS data competition [3].

We adopt the DNN-based supervised model [4] which is the

champion in the AIOPS data competition. The DNN architecture

is composed by an input layer, an output layer and two hidden

layers (shown in Figure 7). We add a dropout layer after the second

hidden layer and set dropout ratio as 0.5. In addition, we apply

L1 = L2 = 0.0001 regularization to the weights of all layers. Since

the output of the model indicates the likelihood of a data point being

an anomaly, we search for the optimal threshold on the training

set.

Each data point is associated with a feature vector, which consists

of different types of features including transformations, statistics,

ratios, and differences (Table 5). We follow the official train/test

split of the dataset, where the statistics is shown in Table 6. We

can see that the proportion of positive and negative samples is

extremely imbalanced. Thus, we train our model by over-sampling

anomalies to keep the positive/negative proportion to 1:2.

Experimental results are shown in Table 7. We can see that the

SR feature brings 1.6% improvement in F1-score to the vanilla DNN
model. Especially, the SR-powered DNN model establishes a new

state-of-the-art on the KPI dataset. To the best of our knowledge, it

is the best-ever result reported on the KPI dataset up to the date of

paper submission. Moreover, we draw the P-R curve of the SR+DNN

and DNNmethods. As illustrated in Figure 8, SR+DNN outperforms

the vanilla DNN consistently on various threshold.

Figure 7: DNN architecture

Figure 8: P-R curves of SR+DNN and DNN methods

6 RELATEDWORKS
6.1 Anomaly detectors
Previous works can be categorized into statistical, supervised and

unsupervised approaches. In the past years, several models were

subsequently proposed in the statistics literature, including hypoth-

esis testing [17], wavelet analysis [14], SVD [15] and auto-regressive

integrated moving average (ARIMA) [24]. Fast Fourier Transform

(FFT) [21] is another traditional method for time-series processing.

For example, [16] highlighted the areas with high frequency change

by FFT and reconfirmed it with Z-value test. In 2015, Twitter [20]

proposed a model to detect anomalies in time-series of both appli-

cation metrics (e.g., Tweets Per Sec) and system metrics (e.g., CPU

utilization). In 2017, SPOT and DSPOT [19] were proposed on the

basis of Extreme Value Theory [6], the threshold of which can be

selected automatically.



The performances of traditional statistical models are not sat-

isfactory in real applications. Thus, researchers have investigated

supervised models to improve the anomaly detection accuracy. Op-

prentice [13] outperformed other traditional detectors by using

statistical detectors as feature extractors and leveraged a Random

Forest classifier [12] to detect anomalies. Yahoo EGADS [11] uti-

lized a collection of anomaly detection and forecasting models with

an anomaly filtering layer for scalable anomaly detection on time-

series data. In 2017, Google leveraged deep learningmodels to detect

anomalies on their own dataset [18] and achieved promising results.

However, continuous labels can not be obtained in industrial envi-

ronment, which makes these supervised approaches insufficient in

online applications.

As a result, advanced unsupervised approaches have been stud-

ied to tackle the problem in industrial application. In 2018, [23]

proposed DONUT, an unsupervised anomaly detection method

based on Variational Auto-Encoder (VAE) [7]. VAE was leveraged

to model the reconstruction probabilities of normal time-series,

while the abnormal points were reported if the reconstruction error

was larger than a threshold. Besides, LinkedIn developed Luminol

[1] based on [22], which segmented time-series into chunks and

used the frequency of similar chunks to calculate anomaly scores.

6.2 Saliency detection approaches
Our work has been inspired by visual saliency detection models.

Hou et al. [10] invented the Spectral Residual (SR)model for saliency

detection and demonstrated impressive performance in their exper-

iments. They assumed that an image can be divided into redundant

part and innovation part, while people’s vision is more sensitive

to the innovation part. Meanwhile, the log amplitude spectrum of

an image subtracting the average log amplitude spectrum captures

the saliency part of the image. Guo et al. [8] argued that only phase

spectrum was enough to detect the saliency part of an image and

simplified the algorithm in [10]. Hou et al. [9] also proposed an

image signature approach for highlighting sparse salient regions

with theoretical proof. Although the latter two solutions showed

improvement in their publications, we found that Spectral Resid-

ual (SR) was more effective in our time-series anomaly detection

scenario. Moreover, supervised models based on neural networks

are also used in saliency detection. For instance, Zhao et al. [25]

tackled the problem of salient object detection by a multi-context

deep learning framework based on CNN architecture.

7 CONCLUSION & FUTUREWORK
Time-series anomaly detection is a critical module to ensure the

quality of online services. An efficient, general and accurate anom-

aly detection system is indispensable in real applications. In this

paper, we have introduced a time-series anomaly detection service

at Microsoft. The service has been used by more than 200 teams

within Microsoft, including Bing, Office and Azure. Anomalies are

detected from 4million time-series per minute maximally in the pro-

duction. Moreover, we for the first time apply the Spectral Residual

(SR) model in the time-series anomaly detection task and innova-

tively combine the SR and CNN model to achieve an outstanding

performance. In the future, we plan to ensemble the state-of-the-

art methods together to provide a more robust anomaly detection

service to our customers. Besides internal serving, our time-series

anomaly detection service will be published on Microsoft Azure as

part of Cognitive Service
10

shortly to external customers.
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