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Abstract— Today, event logs contain vast amounts of data 

that can easily overwhelm a human. Therefore, mining patterns 
from event logs is an important system management task. This 
paper presents a novel clustering algorithm for log file data sets 
which helps one to detect frequent patterns from log files, to 
build log file profiles, and to identify anomalous log file lines. 
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I. INTRODUCTION  
Event logging and log files are playing an increasingly 

important role in system and network management. Over the 
past two decades, the BSD syslog protocol [1] has become a 
widely accepted standard that is supported on many operating 
systems and is implemented in a wide range of system 
devices. Well-written system applications either use the syslog 
protocol or produce log files in custom format, while many 
devices like routers, switches, laser printers, etc. are able to 
log their events to remote host using the syslog protocol. 
Normally, events are logged as single-line textual messages. 
Since log files are an excellent source for determining the 
health status of the system, many sites have built a centralized 
logging and log file monitoring infrastructure. Because of the 
importance of log files as the source of system health 
information, a number of tools have been developed for 
monitoring log files, e.g., Swatch [2], Logsurfer [3], and 
SEC [4]. 

Log file monitoring techniques can be categorized into 
fault detection and anomaly detection. In the case of fault 
detection, the domain expert creates a database of fault 
message patterns. If a line is appended to a log file that 
matches a pattern, the log file monitor takes a certain action. 
This commonly used approach has one serious flaw - only 
those faults that are already known to the domain expert can 
be detected. If a previously unknown fault condition occurs, 
the log file monitor simply ignores the corresponding message 
in the log file, since there is no match for it in the pattern 
database. Also, it is often difficult to find a person with 
sufficient knowledge about the system. In the case of anomaly 
detection, a system profile is created which reflects normal 
system activity. If messages are logged that do not fit the 
profile, an alarm is raised. With this approach, previously 
unknown fault conditions are detected, but on the other hand, 
creating the system profile by hand is time-consuming and 
error-prone. 

In order to solve the knowledge acquisition problems, 
various methods have been employed, with data mining 
methods being one of the most popular choices [5, 6, 7, 8, 9]. 
In most research papers, the focus has been on mining 
frequent patterns from event logs. This helps one to find 
patterns that characterize the normal behavior of the system, 
and facilitates the creation of the system profile. However, as 
pointed out in [8], the mining of infrequent patterns is equally 
important, since this might reveal anomalous events that 
represent unexpected behavior of the system, e.g., previously 
unknown fault conditions. Recent research papers have mainly 
proposed the mining of temporal patterns from event logs with 
various association rule algorithms [5, 6, 7, 8, 9]. These 
algorithms assume that the event log has been normalized, i.e., 
all events in the event log have a common format. Typically, 
each event is assumed to have at least the following attributes: 
timestamp of event occurrence, the event type, and the name of 
the node which issued the event (though the node name is 
often encoded in the event type). Association rule algorithms 
have been often used for detecting temporal associations 
between event types [5, 6, 7, 8, 9], e.g., if events of type A and 
B occur within 5 seconds, they will be followed by an event of 
type C within 60 seconds (each detected temporal association 
has a certain frequency and confidence).  

Although association rule algorithms are powerful, they 
often can’t be directly applied to log files, because log file 
lines do not have a common format. Furthermore, log file lines 
seldom have all the attributes that are needed by the 
association rule algorithms. For example, the widely used 
syslog protocol does not impose strict requirements on the log 
message format [1]. A typical syslog message has just the 
timestamp, hostname, and program name attributes that are 
followed by a free-form message string, but only the message 
string part is mandatory [1]. A detailed discussion of the 
shortcomings of the syslog protocol can be found in [1, 10].  

One important attribute that log file lines often lack is the 
event type. Fortunately, it is possible to derive event types 
from log file lines, since very often the events of the same 
type correspond to a certain line pattern. For example, the 
lines 

Router myrouter1 interface 192.168.13.1 down 
Router myrouter2 interface 10.10.10.12 down 
Router myrouter5 interface 192.168.22.5 down 
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represent the event type “interface down”, and correspond 
to the line pattern Router * interface * down. Line 
patterns could be identified by manually reviewing log files, 
but this is feasible for small log files only. 

One appealing choice for solving this problem is the 
employment of data clustering algorithms. Clustering 
algorithms [11, 12] aim at dividing the set of objects into 
groups (clusters), where objects in each cluster are similar to 
each other (and as dissimilar as possible to objects from other 
clusters). Objects that do not fit well to any of the clusters 
detected by the algorithm are considered to form a special 
cluster of outliers. When log file lines are viewed as objects, 
clustering algorithms are a natural choice, because line 
patterns form natural clusters - lines that match a certain 
pattern are all similar to each other, and generally dissimilar to 
lines that match other patterns. After the clusters (event types) 
have been identified, association rule algorithms can be 
applied for detecting temporal associations between event 
types.  

However, note that log file data clustering is not merely a 
preprocessing step. A clustering algorithm could identify 
many line patterns that reflect normal system activity and that 
can be immediately included in the system profile, since the 
user does not wish to analyze them further with the association 
rule algorithms. Furthermore, the cluster of outliers that is 
formed by the clustering algorithm contains infrequent lines 
that could represent previously unknown fault conditions, or 
other unexpected behavior of the system that deserves closer 
investigation. 

Although data clustering algorithms provide the user a 
valuable insight into event logs, they have received little 
attention in the context of system and network management. 
In this paper, we discuss existing data clustering algorithms, 
and propose a new clustering algorithm for mining line 
patterns from log files. We also present an experimental 
clustering tool called SLCT (Simple Logfile Clustering Tool). 
The rest of this paper is organized as follows: section 2 
discusses related work on data clustering, section 3 presents a 
new clustering algorithm for log file data sets, section 4 
describes SLCT, and section 5 concludes the paper. 

II. RELATED WORK 
Clustering methods have been researched extensively over 

the past decades, and many algorithms have been developed 
[11, 12]. The clustering problem is often defined as follows: 
given a set of points with n attributes in the data space Rn, find 
a partition of points into clusters so that points within each 
cluster are close (similar) to each other. In order to determine, 
how close (similar) two points x and y are to each other, a 
distance function d(x, y) is employed. Many algorithms use a 
certain variant of Lp norm (p = 1, 2, ...) for the distance 
function: 

 
Today, there are two major challenges for traditional 

clustering methods that were originally designed for clustering 

numerical data in low-dimensional spaces (where usually n is 
well below 10). 

Firstly, quite many data sets consist of points with 
categorical attributes, where the domain of an attribute is a 
finite and unordered set of values [13, 14]. As an example, 
consider a categorical data set with attributes 
car-manufacturer, model, type, and color, and data points 
('Honda', 'Civic', 'hatchback', 'green') and ('Ford', 'Focus', 
'sedan', 'red'). Also, it is quite common for categorical data 
that different points can have different number of attributes. 
Therefore, it is not obvious how to measure the distance 
between data points. Though several popular distance 
functions for categorical data exist (such as the Jaccard 
coefficient [12, 13]), the choice of the right function is often 
not an easy task. Note that log file lines can be viewed as 
points from a categorical data set, since each line can be 
divided into words, with the n-th word serving as a value for 
the n-th attribute. For example, the log file line Connection 
from 192.168.1.1 could be represented by the data point 
('Connection', 'from', '192.168.1.1'). We will use this 
representation of log file data in the remainder of this paper. 

Secondly, quite many data sets today are high-
dimensional, where data points can easily have tens of 
attributes. Unfortunately, traditional clustering methods have 
been found not to work well when they are applied to high-
dimensional data. As the number of dimensions n increases, it 
is often the case that for every pair of points there exist 
dimensions where these points are far apart from each other, 
which makes the detection of any clusters almost impossible 
(according to some sources, this problem starts to be severe 
when n ≥ 15) [12, 15, 16]. Furthermore, traditional clustering 
methods are often unable to detect natural clusters that exist in 
subspaces of the original high-dimensional space [15, 16]. For 
instance, data points (1333, 1, 1, 99, 25, 2033, 1044), (12, 1, 1, 
724, 667, 36, 2307), and (501, 1, 1, 1822, 1749, 808, 9838) are 
not seen as a cluster by many traditional methods, since in the 
original data space they are not very close to each other. On 
the other hand, they form a very dense cluster in the second 
and third dimension of the space. 

The dimensionality problems described above are also 
relevant to the clustering of log file data, since log file data is 
typically high-dimensional (i.e., there are usually more than 
just 3-4 words on every line), and most of the line patterns 
correspond to clusters in subspaces. For example, the lines 

log: connection from 192.168.1.1 
log: RSA key generation complete 
log: Password authentication for john accepted. 
form a natural cluster in the first dimension of the data 

space, and correspond to the line pattern log: *. 
During past few years, several algorithms have been 

developed for clustering high-dimensional data, like CLIQUE, 
MAFIA, CACTUS, and PROCLUS. The CLIQUE [15] and 
MAFIA [17] algorithms closely remind the Apriori algorithm 
for mining frequent itemsets [18]: they start with identifying 
all clusters in 1-dimensional subspaces, and after they have 
identified clusters C1,...,Cm in (k-1)-dimensional subspaces, 
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they form cluster candidates for k-dimensional subspaces from 
C1,...,Cm, and then check which of those candidates are actual 
clusters. Those algorithms are effective in discovering clusters 
in subspaces, because they do not attempt to measure distance 
between individual points, which is often meaningless in a 
high-dimensional data space. Instead, their approach is density 
based, where a clustering algorithm tries to identify dense 
regions in the data space, and forms clusters from those 
regions. Unfortunately, the CLIQUE and MAFIA algorithms 
suffer from the fact that Apriori-like candidate generation and 
testing involves exponential complexity and high runtime 
overhead [19, 20] – in order to produce a frequent m-itemset, 
the algorithm must first produce 2m – 2 subsets of that m-
itemset. The CACTUS algorithm [14] first makes a pass over 
the data and builds a data summary, then generates cluster 
candidates during the second pass using the data summary, 
and finally determines the set of actual clusters. Although 
CACTUS makes only two passes over the data and is 
therefore fast, it is susceptible to the phenomenon of chaining 
(long strings of points are assigned to the same cluster) [11], 
which is undesirable if one wants to discover patterns from log 
files. The PROCLUS algorithm [16] uses the K-medoid 
method for detecting K clusters in subspaces of the original 
space. However, in the case of log file data the number of 
clusters can rarely be predicted accurately, and therefore it is 
not obvious what is the right value for K. 

Though several clustering algorithms exist for high-
dimensional data spaces, they are not very suitable for 
clustering log file lines, largely because they don't take into 
account the nature of log file data. In the next section, we will 
first discuss the properties of log file data, and then we will 
present a fast clustering algorithm that relies on these 
properties. 

III. CLUSTERING LOG FILE DATA  

A. The Nature of Log File Data 
The nature of the data to be clustered plays a key role when 

choosing the right algorithm for clustering. Most of the 
clustering algorithms have been designed for generic data sets 
such as market basket data, where no specific assumptions 
about the nature of data are made. However, when we inspect 
the content of typical log files at the word level, there are two 
important properties that distinguish log file data from a 
generic data set. During our experiments that revealed these 
properties, we used six logfile data sets from various domains: 
HP OpenView event log file, mail server log file (the server 
was running sendmail, ipopd, and imapd daemons), Squid 
cache server log file, Internet banking server log file, file and 
print server log file, and Win2000 domain controller log file. 
Although it is impossible to verify that the properties we have 
discovered characterize every logfile ever created on earth, we 
still believe that they are common to a wide range of logfile 
data sets. 

Firstly, majority of the words occur only a few times in the 
data set. Table 1 presents the results of an experiment for 
estimating the occurrence times of words in log file data. The 
results show that a majority of words were very infrequent, 
and a significant fraction of words appeared just once in the 
data set (one might argue that most of the words occurring 
once are timestamps, but when timestamps were removed 
from data sets, we observed no significant differences in the 
experiment results). Also, only a small fraction of words were 
relatively frequent, i.e., they occurred at least once per every 
10,000 or 1,000 lines. Similar phenomena have been observed 
for World Wide Web data, where during an experiment nearly 
50% of the words were found to occur once only [21]. 
 

TABLE I. OCCURRENCE TIMES OF WORDS IN LOG FILE DATA 

Data set Mail server log file 
(Linux) 

Cache server log 
file (Linux) 

HP OpenView 
event log file 
(Solaris) 

Internet banking 
server log file 
(Solaris) 

File and print server 
log file (Win2000) 

Domain controller 
log file (Win2000) 

Data set size 1025.3 MB, 
7,657,148 lines 

1088.9 MB, 
8,189,780 lines 

696.9 MB, 
1,835,679 lines 

2872.4 MB, 
14,733,696 lines 

2451.6 MB, 
7,935,958 lines 

1043.9 MB, 
4,891,883 lines 

Total number of 
different words 

1,700,840 1,887,780 1,739,185 2,008,418 11,893,846 4,016,009 

The number of 
words occurring 

once 

848,033 1,023,029 1,330,257 434,337 11,635,297 3,948,414 

The number of 
words occurring 5 

times or less 

1,443,159 1,456,489 1,509,973 1,082,687 11,709,484 3,951,492 

The number of 
words occurring 
10 times or less 

1,472,296 1,568,165 1,582,970 1,419,138 11,716,395 3,953,698 

The number of 
words occurring 
20 times or less 

1,493,160 1,695,336 1,668,060 1,669,784 11,722,699 3,956,850 

The number of 
words occurring at 

least once per 
10,000 lines 

3,091 3,122 6,933 4,263 2,452 2,617 

The number of 
words occurring at 

least once per 
1,000 lines 

627 476 1,242 304 817 293 



 
Secondly, we discovered that there were many strong 

correlations between words that occurred frequently. As we 
found, this effect is caused by the fact that a message is 
generally formatted according to a certain format string before 
it is logged, e.g., 

sprintf(message, "Connection from %s port %d", ipaddress, 
portnumber); 

When events of the same type are logged many times, 
constant parts of the format string will become frequent words 
which occur together many times in the data set. In the next 
subsection we will present a clustering algorithm that relies on 
the special properties of log file data. 

B. The clustering algorithm 
Our aim was to design an algorithm which would be fast 

and make only a few passes over the data, and which would 
detect clusters that are present in subspaces of the original data 
space. The algorithm relies on the special properties of log file 
data discussed in the previous subsection, and uses the density 
based approach for clustering. 

The data space is assumed to contain data points with 
categorical attributes, where each point represents a line from 
a log file data set. The attributes of each data point are the 
words from the corresponding log file line. The data space has 
n dimensions, where n is the maximum number of words per 
line in the data set. A region S is a subset of the data space, 
where certain attributes i1,...,ik (1≤k≤n) of all points that 
belong to S have identical values v1,...,vk: ∀x ∈ S, xi1 = v1, ..., 
xik = vk. We call the set {(i1,v1),...,(ik,vk)} the set of fixed 
attributes of region S. If k=1 (i.e., there is just one fixed 
attribute), the region is called 1-region. A dense region is a 
region that contains at least N points, where N is the support 
threshold value given by the user. 

The algorithm consists of three steps like the CACTUS 
algorithm [14] – it first makes a pass over the data and builds 
a data summary, and then makes another pass to build cluster 
candidates, using the summary information collected before. 
As a final step, clusters are selected from the set of candidates. 

During the first step of the algorithm (data summarization), 
the algorithm identifies all dense 1-regions. Note that this task 
is equivalent to the mining of frequent words from the data set 
(the word position in the line is taken into account during the 
mining). A word is considered frequent if it occurs at least N 
times in the data set, where N is the user-specified support 
threshold value. 

After dense 1-regions (frequent words) have been identified, 
the algorithm builds all cluster candidates during one pass. 
The cluster candidates are kept in the candidate table, which is 
initially empty. The data set is processed line by line, and 
when a line is found to belong to one or more dense 1-regions 
(i.e., one or more frequent words have been discovered on the 
line), a cluster candidate is formed. If the cluster candidate is 
not present in the candidate table, it will be inserted into the 
table with the support value 1, otherwise its support value will 
be incremented. In both cases, the line is assigned to the 
cluster candidate. The cluster candidate is formed in the 
following way: if the line belongs to m dense 1-regions that 
have fixed attributes (i1,v1),...,(im,vm), then the cluster 

candidate is a region with the set of fixed attributes 
{(i1,v1),...,(im,vm)}. For example, if the line is Connection from 
192.168.1.1, and there exist a dense 1-region with the fixed 
attribute (1, 'Connection') and another dense 1-region with the 
fixed attribute (2, 'from'), then a region with the set of fixed 
attributes {(1, 'Connection'), (2, 'from')} becomes the cluster 
candidate. 

During the final step of the algorithm, the candidate table is 
inspected, and all regions with support values equal or greater 
than the support threshold value (i.e., regions that are 
guaranteed to be dense) are reported by the algorithm as 
clusters. Because of the definition of a region, each cluster 
corresponds to a certain line pattern, e.g., the cluster with the 
set of fixed attributes {(1, 'Password'), (2, 'authentication'), 
(3, 'for'), (5, 'accepted')} corresponds to the line pattern 
Password  authentication for * accepted. 
Thus, the algorithm can report clusters in a concise way by 
just printing out line patterns, without reporting individual 
lines that belong to each cluster. The CLIQUE algorithm 
reports clusters in a similar manner [15]. 

The first step of the algorithm reminds very closely the 
popular Apriori algorithm for mining frequent itemsets [18], 
since frequent words can be viewed as frequent 1-itemsets. 
Then, however, our algorithm takes a rather different 
approach, generating all cluster candidates at once. There are 
several reasons for that. Firstly, Apriori algorithm is expensive 
in terms of runtime [19, 20], since the candidate generation 
and testing involves exponential complexity. Secondly, since 
one of the properties of log file data is that there are many 
strong correlations between frequent words, it makes little 
sense to test a potentially huge number of frequent word 
combinations that are generated by Apriori, while only a 
relatively small number of combinations are present in the 
data set. It is much more reasonable to identify the existing 
combinations during a single pass over the data, and verify 
after the pass which of them correspond to clusters.  

It should be noted that since Apriori uses level-wise 
candidate generation, it is able to detect patterns that our 
algorithm does not report. E.g., if words A, B, C, and D are 
frequent, and the only combinations of them in the data set are 
A B C and A B D, then our algorithm will not inspect the 
pattern A B, although it could have the required support. On 
the other hand, by restricting the search our algorithm avoids 
reporting all subsets of a frequent itemset that can easily 
overwhelm the user, but rather aims at detecting maximal 
frequent itemsets only (several pattern-mining algorithms like 
Max-Miner [19] use the similar approach). 

In order to compare the runtimes of our algorithm and 
Apriori-based algorithm, we implemented both algorithms in 
Perl and tested them against three small log file data sets. 
Table 2 presents the results of our tests that were conducted on 
1,5GHz Pentium4 workstation with 256MB of memory and 
Redhat 8.0 Linux as operating system (the sizes of log files A, 
B, and C were 180KB, 1814KB, and 4005KB, respectively).  

The results obtained show that our clustering algorithm is 
superior to the Apriori-based clustering scheme in terms of 
runtime cost. The results also indicate that Apriori-based 
clustering schemes are appropriate only for small log file data 
sets and high support thresholds.  



TABLE II. THE RUNTIME COMPARISON OF OUR ALGORITHM AND APRIORI-BASED ALGORITHM 

 Support threshold 
50% 

Support threshold 
25% 

Support threshold 
10% 

Support threshold 5% Support threshold 1% 

Our algorithm for A 1 second 1 second 1 second 2 seconds 2 seconds 

Apriori for A 2 seconds 16 seconds 96 seconds 145 seconds 5650 seconds 

Our algorithm for B 5 seconds 5 seconds 5 seconds 6 seconds 6 seconds 

Apriori for B 9 seconds 28 seconds 115 seconds 206 seconds 2770 seconds 

Our algorithm for C 10 seconds 10 seconds 12 seconds 12 seconds 13 seconds 

Apriori for C 182 seconds 182 seconds 18950 seconds 29062 seconds 427791 seconds 

 
Although our algorithm makes just two passes over the data 

and is therefore fast, it could consume a lot of memory when 
applied to a larger data set. In the next subsection we will 
discuss the memory cost issues in more detail. 

C. The Memory Cost of The Algorithm 
In terms of memory cost, the most expensive part of the 

algorithm is the first step when the data summary is built. 
During the data summarization, the algorithm seeks for 
frequent words in the data set, by splitting each line into 
words. For each word, the algorithm checks whether the word 
is present in the word table (or vocabulary), and if it isn't, it 
will be inserted into the vocabulary with its occurrence 
counter set to 1. If the word is present in the vocabulary, its 
occurrence counter will be incremented. 

If the vocabulary is built for a large data set, it is likely to 
consume a lot of memory. When vocabularies were built for 
data sets from Table 1, we discovered that they consumed 
hundreds of megabytes of memory, with the largest 
vocabulary occupying 653 MB (the tests were made on Sun 
Fire V480 server with 4 GB of memory, and each vocabulary 
was implemented as a move-to-front hash table which is an 
efficient data structure for accumulating words [21]). As the 
size of the data set grows to tens or hundreds of gigabytes, the 
situation is very likely to deteriorate further, and the 
vocabulary could not fit into the main memory anymore. 

On the other hand, one of the properties of log file data is 
that a majority of the words are very infrequent. Therefore, 
storing those very infrequent words to memory is a waste of 
space. Unfortunately, it is impossible to predict during the 
vocabulary construction which words will finally be 
infrequent. 

In order to cope with this problem, we use the following 
technique - we first estimate which words need not to be 
stored in memory, and then create the vocabulary without 
irrelevant words in it. Before the data pass is made for 
building the vocabulary, the algorithm makes an extra pass 
over the data and builds a word summary vector. The word 
summary vector is made up of m counters (numbered from 0 
to m-1) with each counter initialized to zero. During the pass 
over the data, a fast string hashing function is applied to each 
word. The function returns integer values from 0 to m-1, and 
each time the value i is calculated for a word, the i-th counter 
in the vector will be incremented. Since efficient string 
hashing functions are uniform [22], i.e., the probability of an 
arbitrary string hashing to a given value i is 1/m, then each 
counter in the vector will correspond roughly to W / m words, 

where W is the number of different words in the data set. If 
words w1,...,wk are all words that hash to the value i, and the 
words w1,...,wk occur t1,...,tk times, respectively, then the value 
of the i-th counter in the vector equals to the sum t1+...+tk. 

After the summary vector has been constructed, the 
algorithm starts building the vocabulary, but only those words 
will be inserted into the vocabulary for which their counter 
values are equal or greater than the support threshold value 
given by the user. Words that do not fulfill this criterion can't 
be frequent, because their occurrence times are guaranteed to 
be below the support threshold. 

Given that a majority of the words are very infrequent, this 
simple technique is quite powerful. If the vector is large 
enough, a majority of the counters in the vector will have very 
infrequent words associated with them, and therefore many 
counter values will never cross the support threshold.  

In order to measure the effectiveness of the word summary 
vector technique, we made a number of experiments with data 
sets from Table 1. We used the support thresholds of 1%, 
0.1%, and 0.01% together with the vectors of 5,000, 20,000, 
and 100,000 counters, respectively (each counter consumed 4 
bytes of memory). The experiments suggest that the 
employment of the word summary vector dramatically reduces 
vocabulary sizes, and large amounts of memory will be saved. 
During the experiments, vocabulary sizes decreased 
9.93-99.36 times, and 32.74 times as an average. On the other 
hand, the memory requirements for storing the vectors were 
relatively small - the largest vector we used during the 
experiments occupied less than 400 KB of memory. 

If the user has specified a very low support threshold, there 
could be a large number of cluster candidates with very small 
support values, and the candidate table could consume a 
significant amount of memory. In order to avoid this, the 
summary vector technique can also be applied to cluster 
candidates – before the candidate table is built, the algorithm 
makes an extra pass over the data and builds a summary 
vector for candidates, which is later used to reduce the number 
of candidates inserted into the candidate table. 

IV. SIMPLE LOGFILE CLUSTERING TOOL 
In order to implement the log file clustering algorithm 

described in the previous section, an experimental tool called 
SLCT (Simple Logfile Clustering Tool) has been developed. 
SLCT has been written in C and has been primarily used on 
Redhat 8.0 Linux and Solaris8, but it should compile and work 
on most modern UNIX platforms. 



SLCT uses move-to-front hash tables for implementing the 
vocabulary and the candidate table. Experiments with large 
vocabularies have demonstrated that move-to-front hash table 
is an efficient data structure with very low data access times, 
even when the hash table is full and many words are 
connected to each hash table slot [21]. Since the speed of the 
hashing function has a critical importance for the efficiency of 
the hash table, SLCT employs the fast and efficient Shift-Add-
Xor string hashing algorithm [22]. This algorithm is not only 
used for hash table operations, but also for building summary 
vectors. 

SLCT is given a list of log files and a support threshold as 
input, and after it has detected a clustering on input data, it 
reports clusters in a concise way by printing out line patterns 
that correspond to clusters, e.g., 

Dec 18 * myhost.mydomain * connect from 
Dec 18 * myhost.mydomain * log: Connection from * port 
Dec 18 * myhost.mydomain * log: 
The user can specify a command line flag that forces SLCT 

to inspect each cluster candidate more closely, before it starts 
the search for clusters in the candidate table. For each 
candidate C, SLCT checks whether there are other candidates 
in the table that represent more specific line patterns. In the 
above example, the second pattern is more specific than the 
third, since all lines that match the second pattern also match 
the third. If candidates C1,...,Ck representing more specific 
patterns are found for the candidate C, the support values of 
the candidates C1,...,Ck are added to the support value of C, 
and all lines that belong to candidates C1,...,Ck are also 
considered to belong to the candidate C. In that way, a line can 
belong to more than one cluster simultaneously, and more 
general line patterns are always reported, even when their 
original support values were below the threshold. Although 
traditional clustering algorithms require that every point must 
be part of one cluster only, there are several algorithms like 
CLIQUE which do not strictly follow this requirement, in 
order to achieve clustering results that are more 
comprehensible to the end user [15].  

By default, SLCT does not report the lines that do not 
belong to any of the detected clusters. As SLCT processes the 
data set, each detected outlier line could be stored to memory, 
but this is way too expensive in terms of memory cost. If the 
end user has specified a certain command line flag, SLCT 
makes another pass over the data after clusters have been 
detected, and writes all outlier lines to a file. Also, variable 
parts of cluster descriptions are refined during the pass, by 
inspecting them for constant heads and tails. Fig. 1 depicts the 
sample output from SLCT. 

If the log file is larger, running SLCT on the data set just 
once might not be sufficient, because interesting cluster 
candidates might have very different support values. If the 
support threshold value is too large, many interesting clusters 
will not be detected. If the value is too small, interesting 
cluster candidates could be split unnecessarily into many 
subcandidates that represent rather specific line patterns and 
have quite small support values (in the worst case, there will 
be no cluster candidates that cross the support threshold). 

 
 
$ slct-0.01/slct -o outliers -r -s 8% myhost.mydomain-log 
 
Dec 18 * myhost.mydomain sshd[*]: connect from 172.26.242.178  
Support: 262 
 
Dec 18 * myhost.mydomain sshd[*]: log: Connection from 
172.26.242.178 port *  
Support: 262 
 
Dec 18 * myhost.mydomain sshd[*]: fatal: Did not receive ident 
string.  
Support: 289 
 
Dec 18 * myhost.mydomain * log: * * * *  
Support: 176 
 
Dec 18 * myhost.mydomain sshd[*]: connect from 1*  
Support: 308 
 
Dec 18 * myhost.mydomain sshd[*]: log: Connection from 1* port * 
Support: 308 
 
Dec 18 * myhost.mydomain sshd[*]: log: * authentication for * 
accepted.  
Support: 171 
 
Dec 18 * myhost.mydomain sshd[*]: log: Closing connection to 1*  
Support: 201 
 
$ wc -l outliers 
    168 outliers 
 
 

Figure 1. Sample output from SLCT. 

  
 
 
[mail.alert] sendmail[***]: NOQUEUE: SYSERR(***): Arguments too 
long 
 
[mail.crit] sendmail[***]: NOQUEUE: SYSERR(***): can not 
chdir(/var/spool/mqueue/): Permission denied 
 
[mail.crit] sendmail[***]: ***: SYSERR(root): collect: I/O error 
on connection from ***, from=<***> 
 
[mail.crit] sendmail[***]: ***: SYSERR(root): putbody: write 
error: Input/output error 
 
[mail.warning] sendmail[***]: STARTTLS=server, error: accept 
failed=-1, SSL_error=5, timedout=0 
 
[mail.warning] sendmail[***]: STARTTLS: read error=read R BLOCK 
(-1) 
 
[mail.warning] sendmail[***]: STARTTLS: read error=syscall error 
(-1) 
 
[mail.warning] sendmail[***]: STARTTLS: write error=generic SSL 
error (-1) 
 
[syslog.notice] syslog-ng[***]: Error accepting AF_UNIX 
connection, opened connections: 300, max: 300 
 
[syslog.notice] syslog-ng[***]: Error connecting to remote host 
(***), reattempting in 60 seconds 
 
[auth.crit] su[***]: pam_krb5: authenticate error: Decrypt 
integrity check failed (-1765328353) 
 
[auth.crit] login[***]: pam_krb5: authenticate error: 
Input/output error (5) 
 
[auth.notice] login[***]: FAILED LOGIN 1 FROM (null) FOR root, 
Authentication failure 
 
[authpriv.info] sshd[***]: Failed password for root from *** port 
*** ssh2 
 
[mail.alert] imapd[***]: Unable to load certificate from ***, 
host=*** [***] 
 
[mail.alert] imapd[***]: Fatal disk error user=*** host=*** [***] 
mbx=***: Disk quota exceeded 
 
 

Figure 2. Sample anomalous log file lines.  
 
 



In order to solve this problem, an iterative approach 
suggested in [8] could be applied. SLCT is first invoked with a 
relatively high threshold (e.g., 5% or 10%), in order to 
discover very frequent patterns. If there are many outliers after 
the first run, SLCT will be applied to the file of outliers, and 
this process will be repeated until the cluster of outliers is 
small and contains very infrequent lines (which are possibly 
anomalous and deserve closer investigation). Also, if one 
wishes to analyze one particular cluster in the data set more 
closely, SLCT allows the user to specify a regular expression 
filter that will pass relevant lines only. 

Fig. 2 depicts sample anomalous log file lines that we 
discovered when the iterative clustering approach was applied 
to one of our test data sets (the mail server log file from Table 
1). Altogether, four iterations were used, and the cluster of 
outliers contained 318,166, 98,811, 22,807, and 5,390 lines 
after the first, second, third, and fourth (the final) step, 
respectively. At each step, the support threshold value was set 
to 5%. The final cluster of outliers was then reviewed 
manually, and the lines representing previously unknown fault 
conditions were selected. The lines in Fig. 2 represent various 
system faults, such as internal errors of the sendmail, imapd, 
and syslogd daemon, but also unsuccessful attempts to gain 
system administrator privileges (for the reasons of privacy and 
security, real IP numbers, host names, user names, and other 
such data have been replaced with wildcards in Fig. 2). The 
lines that are not present in Fig. 2 represented various rare 
normal system activities or minor faults, such as scheduled 
tasks of the crond and named daemon, nightly restarts of the 
syslogd daemon during log rotations, unsuccessful login 
attempts for regular users, etc.  

We have made many experiments with SLCT, and it has 
proven to be a useful tool for building log file profiles and 

detecting interesting patterns from log files. Table 3 presents 
the results of some our experiments for measuring the runtime 
and memory consumption of SLCT. The experiments were 
conducted on 1,5GHz Pentium4 workstation with 256MB of 
memory and Redhat 8.0 Linux as operating system. For all 
data clustering tasks, a word summary vector of size 5,000 
counters was used. Since SLCT was also instructed to identify 
outlier points, four passes over the data were made altogether 
during the experiments. The results show that our algorithm 
has modest memory requirements, and finds many clusters 
from large log files in a relatively short amount of time. 

V. FUTURE WORK AND AVAILABILITY INFORMATION 
For a future work, we plan to investigate various 

association rule algorithms, in order to create a set of tools for 
building log file profiles. We will be focusing on algorithms 
for detecting temporal patterns, but also on algorithms for 
detecting associations between event attributes within a single 
event cluster.  

SLCT is distributed under the terms of GNU GPL, and is 
available at http://kodu.neti.ee/~risto/slct/. 
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TABLE III. RUNTIME AND MEMORY CONSUMPTION OF SLCT 

Data set Support 
threshold 

The number of 
detected clusters 

The number of outlier 
points 

Memory consumption Runtime 

Mail server log file 10% 17 318,166 1252 KB 7 min 17 sec 

Mail server log file 5% 20 318,166 1372 KB 7 min 17 sec 

Mail server log file 0.5% 181 41,365 4260 KB 7 min 54 sec 

Cache server log file 10% 16 0 1352 KB 10 min 35 sec 

Cache server log file 5% 32 0 1668 KB 10 min 35 sec 

Cache server log file 0.5% 133 8 3512 KB 10 min 56 sec 

HP OpenView event log file 10% 86 6,626 2640 KB 13 min 53 sec 

HP OpenView event log file 5% 97 6,523 3308 KB 13 min 59 sec 

HP OpenView event log file 0.5% 352 10,559 8256 KB 13 min 51 sec 

Internet banking server log file 10% 56 2,769 1888 KB 35 min 25 sec 

Internet banking server log file 5% 126 2,335 3508 KB 38 min 26 sec 

Internet banking server log file 0.5% 663 214 25072 KB 45 min 8 sec 

File and print server log file 10% 18 145 4540 KB 27 min 30 sec 

File and print server log file 5% 35 145 6164 KB 28 min 42 sec 

File and print server log file 0.5% 211 133 19096 KB 31 min 10 sec 

Domain controller log file 10% 22 1,256 3596 KB 11 min 11 sec 

Domain controller log file 5% 34 1,256 5112 KB 11 min 38 sec 

Domain controller log file 0.5% 65 3,388 9132 KB 11 min 56 sec 
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