
Copyright ©2003 IEEE.
Reprinted from Proceedings of the 2003 IEEE Workshop on IP Operations and Management.
(ISBN: 0-7803-8199-8)

This material is posted here with permission from IEEE. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution must be obtained from IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

A Data Clustering Algorithm for Mining Patterns
From Event Logs

Risto Vaarandi
Department of Computer Engineering

Tallinn Technical University
Tallinn, Estonia

risto.vaarandi@eyp.ee

Abstract— Today, event logs contain vast amounts of data

that can easily overwhelm a human. Therefore, mining patterns
from event logs is an important system management task. This
paper presents a novel clustering algorithm for log file data sets
which helps one to detect frequent patterns from log files, to
build log file profiles, and to identify anomalous log file lines.

Keywords—system monitoring, data mining, data clustering

I. INTRODUCTION
Event logging and log files are playing an increasingly

important role in system and network management. Over the
past two decades, the BSD syslog protocol [1] has become a
widely accepted standard that is supported on many operating
systems and is implemented in a wide range of system
devices. Well-written system applications either use the syslog
protocol or produce log files in custom format, while many
devices like routers, switches, laser printers, etc. are able to
log their events to remote host using the syslog protocol.
Normally, events are logged as single-line textual messages.
Since log files are an excellent source for determining the
health status of the system, many sites have built a centralized
logging and log file monitoring infrastructure. Because of the
importance of log files as the source of system health
information, a number of tools have been developed for
monitoring log files, e.g., Swatch [2], Logsurfer [3], and
SEC [4].

Log file monitoring techniques can be categorized into
fault detection and anomaly detection. In the case of fault
detection, the domain expert creates a database of fault
message patterns. If a line is appended to a log file that
matches a pattern, the log file monitor takes a certain action.
This commonly used approach has one serious flaw - only
those faults that are already known to the domain expert can
be detected. If a previously unknown fault condition occurs,
the log file monitor simply ignores the corresponding message
in the log file, since there is no match for it in the pattern
database. Also, it is often difficult to find a person with
sufficient knowledge about the system. In the case of anomaly
detection, a system profile is created which reflects normal
system activity. If messages are logged that do not fit the
profile, an alarm is raised. With this approach, previously
unknown fault conditions are detected, but on the other hand,
creating the system profile by hand is time-consuming and
error-prone.

In order to solve the knowledge acquisition problems,
various methods have been employed, with data mining
methods being one of the most popular choices [5, 6, 7, 8, 9].
In most research papers, the focus has been on mining
frequent patterns from event logs. This helps one to find
patterns that characterize the normal behavior of the system,
and facilitates the creation of the system profile. However, as
pointed out in [8], the mining of infrequent patterns is equally
important, since this might reveal anomalous events that
represent unexpected behavior of the system, e.g., previously
unknown fault conditions. Recent research papers have mainly
proposed the mining of temporal patterns from event logs with
various association rule algorithms [5, 6, 7, 8, 9]. These
algorithms assume that the event log has been normalized, i.e.,
all events in the event log have a common format. Typically,
each event is assumed to have at least the following attributes:
timestamp of event occurrence, the event type, and the name of
the node which issued the event (though the node name is
often encoded in the event type). Association rule algorithms
have been often used for detecting temporal associations
between event types [5, 6, 7, 8, 9], e.g., if events of type A and
B occur within 5 seconds, they will be followed by an event of
type C within 60 seconds (each detected temporal association
has a certain frequency and confidence).

Although association rule algorithms are powerful, they
often can’t be directly applied to log files, because log file
lines do not have a common format. Furthermore, log file lines
seldom have all the attributes that are needed by the
association rule algorithms. For example, the widely used
syslog protocol does not impose strict requirements on the log
message format [1]. A typical syslog message has just the
timestamp, hostname, and program name attributes that are
followed by a free-form message string, but only the message
string part is mandatory [1]. A detailed discussion of the
shortcomings of the syslog protocol can be found in [1, 10].

One important attribute that log file lines often lack is the
event type. Fortunately, it is possible to derive event types
from log file lines, since very often the events of the same
type correspond to a certain line pattern. For example, the
lines

Router myrouter1 interface 192.168.13.1 down
Router myrouter2 interface 10.10.10.12 down
Router myrouter5 interface 192.168.22.5 down

This work is supported by the Union Bank of Estonia.

represent the event type “interface down”, and correspond
to the line pattern Router * interface * down. Line
patterns could be identified by manually reviewing log files,
but this is feasible for small log files only.

One appealing choice for solving this problem is the
employment of data clustering algorithms. Clustering
algorithms [11, 12] aim at dividing the set of objects into
groups (clusters), where objects in each cluster are similar to
each other (and as dissimilar as possible to objects from other
clusters). Objects that do not fit well to any of the clusters
detected by the algorithm are considered to form a special
cluster of outliers. When log file lines are viewed as objects,
clustering algorithms are a natural choice, because line
patterns form natural clusters - lines that match a certain
pattern are all similar to each other, and generally dissimilar to
lines that match other patterns. After the clusters (event types)
have been identified, association rule algorithms can be
applied for detecting temporal associations between event
types.

However, note that log file data clustering is not merely a
preprocessing step. A clustering algorithm could identify
many line patterns that reflect normal system activity and that
can be immediately included in the system profile, since the
user does not wish to analyze them further with the association
rule algorithms. Furthermore, the cluster of outliers that is
formed by the clustering algorithm contains infrequent lines
that could represent previously unknown fault conditions, or
other unexpected behavior of the system that deserves closer
investigation.

Although data clustering algorithms provide the user a
valuable insight into event logs, they have received little
attention in the context of system and network management.
In this paper, we discuss existing data clustering algorithms,
and propose a new clustering algorithm for mining line
patterns from log files. We also present an experimental
clustering tool called SLCT (Simple Logfile Clustering Tool).
The rest of this paper is organized as follows: section 2
discusses related work on data clustering, section 3 presents a
new clustering algorithm for log file data sets, section 4
describes SLCT, and section 5 concludes the paper.

II. RELATED WORK
Clustering methods have been researched extensively over

the past decades, and many algorithms have been developed
[11, 12]. The clustering problem is often defined as follows:
given a set of points with n attributes in the data space Rn, find
a partition of points into clusters so that points within each
cluster are close (similar) to each other. In order to determine,
how close (similar) two points x and y are to each other, a
distance function d(x, y) is employed. Many algorithms use a
certain variant of Lp norm (p = 1, 2, ...) for the distance
function:

Today, there are two major challenges for traditional

clustering methods that were originally designed for clustering

numerical data in low-dimensional spaces (where usually n is
well below 10).

Firstly, quite many data sets consist of points with
categorical attributes, where the domain of an attribute is a
finite and unordered set of values [13, 14]. As an example,
consider a categorical data set with attributes
car-manufacturer, model, type, and color, and data points
('Honda', 'Civic', 'hatchback', 'green') and ('Ford', 'Focus',
'sedan', 'red'). Also, it is quite common for categorical data
that different points can have different number of attributes.
Therefore, it is not obvious how to measure the distance
between data points. Though several popular distance
functions for categorical data exist (such as the Jaccard
coefficient [12, 13]), the choice of the right function is often
not an easy task. Note that log file lines can be viewed as
points from a categorical data set, since each line can be
divided into words, with the n-th word serving as a value for
the n-th attribute. For example, the log file line Connection
from 192.168.1.1 could be represented by the data point
('Connection', 'from', '192.168.1.1'). We will use this
representation of log file data in the remainder of this paper.

Secondly, quite many data sets today are high-
dimensional, where data points can easily have tens of
attributes. Unfortunately, traditional clustering methods have
been found not to work well when they are applied to high-
dimensional data. As the number of dimensions n increases, it
is often the case that for every pair of points there exist
dimensions where these points are far apart from each other,
which makes the detection of any clusters almost impossible
(according to some sources, this problem starts to be severe
when n ≥ 15) [12, 15, 16]. Furthermore, traditional clustering
methods are often unable to detect natural clusters that exist in
subspaces of the original high-dimensional space [15, 16]. For
instance, data points (1333, 1, 1, 99, 25, 2033, 1044), (12, 1, 1,
724, 667, 36, 2307), and (501, 1, 1, 1822, 1749, 808, 9838) are
not seen as a cluster by many traditional methods, since in the
original data space they are not very close to each other. On
the other hand, they form a very dense cluster in the second
and third dimension of the space.

The dimensionality problems described above are also
relevant to the clustering of log file data, since log file data is
typically high-dimensional (i.e., there are usually more than
just 3-4 words on every line), and most of the line patterns
correspond to clusters in subspaces. For example, the lines

log: connection from 192.168.1.1
log: RSA key generation complete
log: Password authentication for john accepted.
form a natural cluster in the first dimension of the data

space, and correspond to the line pattern log: *.
During past few years, several algorithms have been

developed for clustering high-dimensional data, like CLIQUE,
MAFIA, CACTUS, and PROCLUS. The CLIQUE [15] and
MAFIA [17] algorithms closely remind the Apriori algorithm
for mining frequent itemsets [18]: they start with identifying
all clusters in 1-dimensional subspaces, and after they have
identified clusters C1,...,Cm in (k-1)-dimensional subspaces,

p n
i

p
iip yxyxd ∑ = −= 1),(

they form cluster candidates for k-dimensional subspaces from
C1,...,Cm, and then check which of those candidates are actual
clusters. Those algorithms are effective in discovering clusters
in subspaces, because they do not attempt to measure distance
between individual points, which is often meaningless in a
high-dimensional data space. Instead, their approach is density
based, where a clustering algorithm tries to identify dense
regions in the data space, and forms clusters from those
regions. Unfortunately, the CLIQUE and MAFIA algorithms
suffer from the fact that Apriori-like candidate generation and
testing involves exponential complexity and high runtime
overhead [19, 20] – in order to produce a frequent m-itemset,
the algorithm must first produce 2m – 2 subsets of that m-
itemset. The CACTUS algorithm [14] first makes a pass over
the data and builds a data summary, then generates cluster
candidates during the second pass using the data summary,
and finally determines the set of actual clusters. Although
CACTUS makes only two passes over the data and is
therefore fast, it is susceptible to the phenomenon of chaining
(long strings of points are assigned to the same cluster) [11],
which is undesirable if one wants to discover patterns from log
files. The PROCLUS algorithm [16] uses the K-medoid
method for detecting K clusters in subspaces of the original
space. However, in the case of log file data the number of
clusters can rarely be predicted accurately, and therefore it is
not obvious what is the right value for K.

Though several clustering algorithms exist for high-
dimensional data spaces, they are not very suitable for
clustering log file lines, largely because they don't take into
account the nature of log file data. In the next section, we will
first discuss the properties of log file data, and then we will
present a fast clustering algorithm that relies on these
properties.

III. CLUSTERING LOG FILE DATA

A. The Nature of Log File Data
The nature of the data to be clustered plays a key role when

choosing the right algorithm for clustering. Most of the
clustering algorithms have been designed for generic data sets
such as market basket data, where no specific assumptions
about the nature of data are made. However, when we inspect
the content of typical log files at the word level, there are two
important properties that distinguish log file data from a
generic data set. During our experiments that revealed these
properties, we used six logfile data sets from various domains:
HP OpenView event log file, mail server log file (the server
was running sendmail, ipopd, and imapd daemons), Squid
cache server log file, Internet banking server log file, file and
print server log file, and Win2000 domain controller log file.
Although it is impossible to verify that the properties we have
discovered characterize every logfile ever created on earth, we
still believe that they are common to a wide range of logfile
data sets.

Firstly, majority of the words occur only a few times in the
data set. Table 1 presents the results of an experiment for
estimating the occurrence times of words in log file data. The
results show that a majority of words were very infrequent,
and a significant fraction of words appeared just once in the
data set (one might argue that most of the words occurring
once are timestamps, but when timestamps were removed
from data sets, we observed no significant differences in the
experiment results). Also, only a small fraction of words were
relatively frequent, i.e., they occurred at least once per every
10,000 or 1,000 lines. Similar phenomena have been observed
for World Wide Web data, where during an experiment nearly
50% of the words were found to occur once only [21].

TABLE I. OCCURRENCE TIMES OF WORDS IN LOG FILE DATA

Data set Mail server log file
(Linux)

Cache server log
file (Linux)

HP OpenView
event log file
(Solaris)

Internet banking
server log file
(Solaris)

File and print server
log file (Win2000)

Domain controller
log file (Win2000)

Data set size 1025.3 MB,
7,657,148 lines

1088.9 MB,
8,189,780 lines

696.9 MB,
1,835,679 lines

2872.4 MB,
14,733,696 lines

2451.6 MB,
7,935,958 lines

1043.9 MB,
4,891,883 lines

Total number of
different words

1,700,840 1,887,780 1,739,185 2,008,418 11,893,846 4,016,009

The number of
words occurring

once

848,033 1,023,029 1,330,257 434,337 11,635,297 3,948,414

The number of
words occurring 5

times or less

1,443,159 1,456,489 1,509,973 1,082,687 11,709,484 3,951,492

The number of
words occurring
10 times or less

1,472,296 1,568,165 1,582,970 1,419,138 11,716,395 3,953,698

The number of
words occurring
20 times or less

1,493,160 1,695,336 1,668,060 1,669,784 11,722,699 3,956,850

The number of
words occurring at

least once per
10,000 lines

3,091 3,122 6,933 4,263 2,452 2,617

The number of
words occurring at

least once per
1,000 lines

627 476 1,242 304 817 293

Secondly, we discovered that there were many strong

correlations between words that occurred frequently. As we
found, this effect is caused by the fact that a message is
generally formatted according to a certain format string before
it is logged, e.g.,

sprintf(message, "Connection from %s port %d", ipaddress,
portnumber);

When events of the same type are logged many times,
constant parts of the format string will become frequent words
which occur together many times in the data set. In the next
subsection we will present a clustering algorithm that relies on
the special properties of log file data.

B. The clustering algorithm
Our aim was to design an algorithm which would be fast

and make only a few passes over the data, and which would
detect clusters that are present in subspaces of the original data
space. The algorithm relies on the special properties of log file
data discussed in the previous subsection, and uses the density
based approach for clustering.

The data space is assumed to contain data points with
categorical attributes, where each point represents a line from
a log file data set. The attributes of each data point are the
words from the corresponding log file line. The data space has
n dimensions, where n is the maximum number of words per
line in the data set. A region S is a subset of the data space,
where certain attributes i1,...,ik (1≤k≤n) of all points that
belong to S have identical values v1,...,vk: ∀x ∈ S, xi1 = v1, ...,
xik = vk. We call the set {(i1,v1),...,(ik,vk)} the set of fixed
attributes of region S. If k=1 (i.e., there is just one fixed
attribute), the region is called 1-region. A dense region is a
region that contains at least N points, where N is the support
threshold value given by the user.

The algorithm consists of three steps like the CACTUS
algorithm [14] – it first makes a pass over the data and builds
a data summary, and then makes another pass to build cluster
candidates, using the summary information collected before.
As a final step, clusters are selected from the set of candidates.

During the first step of the algorithm (data summarization),
the algorithm identifies all dense 1-regions. Note that this task
is equivalent to the mining of frequent words from the data set
(the word position in the line is taken into account during the
mining). A word is considered frequent if it occurs at least N
times in the data set, where N is the user-specified support
threshold value.

After dense 1-regions (frequent words) have been identified,
the algorithm builds all cluster candidates during one pass.
The cluster candidates are kept in the candidate table, which is
initially empty. The data set is processed line by line, and
when a line is found to belong to one or more dense 1-regions
(i.e., one or more frequent words have been discovered on the
line), a cluster candidate is formed. If the cluster candidate is
not present in the candidate table, it will be inserted into the
table with the support value 1, otherwise its support value will
be incremented. In both cases, the line is assigned to the
cluster candidate. The cluster candidate is formed in the
following way: if the line belongs to m dense 1-regions that
have fixed attributes (i1,v1),...,(im,vm), then the cluster

candidate is a region with the set of fixed attributes
{(i1,v1),...,(im,vm)}. For example, if the line is Connection from
192.168.1.1, and there exist a dense 1-region with the fixed
attribute (1, 'Connection') and another dense 1-region with the
fixed attribute (2, 'from'), then a region with the set of fixed
attributes {(1, 'Connection'), (2, 'from')} becomes the cluster
candidate.

During the final step of the algorithm, the candidate table is
inspected, and all regions with support values equal or greater
than the support threshold value (i.e., regions that are
guaranteed to be dense) are reported by the algorithm as
clusters. Because of the definition of a region, each cluster
corresponds to a certain line pattern, e.g., the cluster with the
set of fixed attributes {(1, 'Password'), (2, 'authentication'),
(3, 'for'), (5, 'accepted')} corresponds to the line pattern
Password authentication for * accepted.
Thus, the algorithm can report clusters in a concise way by
just printing out line patterns, without reporting individual
lines that belong to each cluster. The CLIQUE algorithm
reports clusters in a similar manner [15].

The first step of the algorithm reminds very closely the
popular Apriori algorithm for mining frequent itemsets [18],
since frequent words can be viewed as frequent 1-itemsets.
Then, however, our algorithm takes a rather different
approach, generating all cluster candidates at once. There are
several reasons for that. Firstly, Apriori algorithm is expensive
in terms of runtime [19, 20], since the candidate generation
and testing involves exponential complexity. Secondly, since
one of the properties of log file data is that there are many
strong correlations between frequent words, it makes little
sense to test a potentially huge number of frequent word
combinations that are generated by Apriori, while only a
relatively small number of combinations are present in the
data set. It is much more reasonable to identify the existing
combinations during a single pass over the data, and verify
after the pass which of them correspond to clusters.

It should be noted that since Apriori uses level-wise
candidate generation, it is able to detect patterns that our
algorithm does not report. E.g., if words A, B, C, and D are
frequent, and the only combinations of them in the data set are
A B C and A B D, then our algorithm will not inspect the
pattern A B, although it could have the required support. On
the other hand, by restricting the search our algorithm avoids
reporting all subsets of a frequent itemset that can easily
overwhelm the user, but rather aims at detecting maximal
frequent itemsets only (several pattern-mining algorithms like
Max-Miner [19] use the similar approach).

In order to compare the runtimes of our algorithm and
Apriori-based algorithm, we implemented both algorithms in
Perl and tested them against three small log file data sets.
Table 2 presents the results of our tests that were conducted on
1,5GHz Pentium4 workstation with 256MB of memory and
Redhat 8.0 Linux as operating system (the sizes of log files A,
B, and C were 180KB, 1814KB, and 4005KB, respectively).

The results obtained show that our clustering algorithm is
superior to the Apriori-based clustering scheme in terms of
runtime cost. The results also indicate that Apriori-based
clustering schemes are appropriate only for small log file data
sets and high support thresholds.

TABLE II. THE RUNTIME COMPARISON OF OUR ALGORITHM AND APRIORI-BASED ALGORITHM

 Support threshold
50%

Support threshold
25%

Support threshold
10%

Support threshold 5% Support threshold 1%

Our algorithm for A 1 second 1 second 1 second 2 seconds 2 seconds

Apriori for A 2 seconds 16 seconds 96 seconds 145 seconds 5650 seconds

Our algorithm for B 5 seconds 5 seconds 5 seconds 6 seconds 6 seconds

Apriori for B 9 seconds 28 seconds 115 seconds 206 seconds 2770 seconds

Our algorithm for C 10 seconds 10 seconds 12 seconds 12 seconds 13 seconds

Apriori for C 182 seconds 182 seconds 18950 seconds 29062 seconds 427791 seconds

Although our algorithm makes just two passes over the data

and is therefore fast, it could consume a lot of memory when
applied to a larger data set. In the next subsection we will
discuss the memory cost issues in more detail.

C. The Memory Cost of The Algorithm
In terms of memory cost, the most expensive part of the

algorithm is the first step when the data summary is built.
During the data summarization, the algorithm seeks for
frequent words in the data set, by splitting each line into
words. For each word, the algorithm checks whether the word
is present in the word table (or vocabulary), and if it isn't, it
will be inserted into the vocabulary with its occurrence
counter set to 1. If the word is present in the vocabulary, its
occurrence counter will be incremented.

If the vocabulary is built for a large data set, it is likely to
consume a lot of memory. When vocabularies were built for
data sets from Table 1, we discovered that they consumed
hundreds of megabytes of memory, with the largest
vocabulary occupying 653 MB (the tests were made on Sun
Fire V480 server with 4 GB of memory, and each vocabulary
was implemented as a move-to-front hash table which is an
efficient data structure for accumulating words [21]). As the
size of the data set grows to tens or hundreds of gigabytes, the
situation is very likely to deteriorate further, and the
vocabulary could not fit into the main memory anymore.

On the other hand, one of the properties of log file data is
that a majority of the words are very infrequent. Therefore,
storing those very infrequent words to memory is a waste of
space. Unfortunately, it is impossible to predict during the
vocabulary construction which words will finally be
infrequent.

In order to cope with this problem, we use the following
technique - we first estimate which words need not to be
stored in memory, and then create the vocabulary without
irrelevant words in it. Before the data pass is made for
building the vocabulary, the algorithm makes an extra pass
over the data and builds a word summary vector. The word
summary vector is made up of m counters (numbered from 0
to m-1) with each counter initialized to zero. During the pass
over the data, a fast string hashing function is applied to each
word. The function returns integer values from 0 to m-1, and
each time the value i is calculated for a word, the i-th counter
in the vector will be incremented. Since efficient string
hashing functions are uniform [22], i.e., the probability of an
arbitrary string hashing to a given value i is 1/m, then each
counter in the vector will correspond roughly to W / m words,

where W is the number of different words in the data set. If
words w1,...,wk are all words that hash to the value i, and the
words w1,...,wk occur t1,...,tk times, respectively, then the value
of the i-th counter in the vector equals to the sum t1+...+tk.

After the summary vector has been constructed, the
algorithm starts building the vocabulary, but only those words
will be inserted into the vocabulary for which their counter
values are equal or greater than the support threshold value
given by the user. Words that do not fulfill this criterion can't
be frequent, because their occurrence times are guaranteed to
be below the support threshold.

Given that a majority of the words are very infrequent, this
simple technique is quite powerful. If the vector is large
enough, a majority of the counters in the vector will have very
infrequent words associated with them, and therefore many
counter values will never cross the support threshold.

In order to measure the effectiveness of the word summary
vector technique, we made a number of experiments with data
sets from Table 1. We used the support thresholds of 1%,
0.1%, and 0.01% together with the vectors of 5,000, 20,000,
and 100,000 counters, respectively (each counter consumed 4
bytes of memory). The experiments suggest that the
employment of the word summary vector dramatically reduces
vocabulary sizes, and large amounts of memory will be saved.
During the experiments, vocabulary sizes decreased
9.93-99.36 times, and 32.74 times as an average. On the other
hand, the memory requirements for storing the vectors were
relatively small - the largest vector we used during the
experiments occupied less than 400 KB of memory.

If the user has specified a very low support threshold, there
could be a large number of cluster candidates with very small
support values, and the candidate table could consume a
significant amount of memory. In order to avoid this, the
summary vector technique can also be applied to cluster
candidates – before the candidate table is built, the algorithm
makes an extra pass over the data and builds a summary
vector for candidates, which is later used to reduce the number
of candidates inserted into the candidate table.

IV. SIMPLE LOGFILE CLUSTERING TOOL
In order to implement the log file clustering algorithm

described in the previous section, an experimental tool called
SLCT (Simple Logfile Clustering Tool) has been developed.
SLCT has been written in C and has been primarily used on
Redhat 8.0 Linux and Solaris8, but it should compile and work
on most modern UNIX platforms.

SLCT uses move-to-front hash tables for implementing the
vocabulary and the candidate table. Experiments with large
vocabularies have demonstrated that move-to-front hash table
is an efficient data structure with very low data access times,
even when the hash table is full and many words are
connected to each hash table slot [21]. Since the speed of the
hashing function has a critical importance for the efficiency of
the hash table, SLCT employs the fast and efficient Shift-Add-
Xor string hashing algorithm [22]. This algorithm is not only
used for hash table operations, but also for building summary
vectors.

SLCT is given a list of log files and a support threshold as
input, and after it has detected a clustering on input data, it
reports clusters in a concise way by printing out line patterns
that correspond to clusters, e.g.,

Dec 18 * myhost.mydomain * connect from
Dec 18 * myhost.mydomain * log: Connection from * port
Dec 18 * myhost.mydomain * log:
The user can specify a command line flag that forces SLCT

to inspect each cluster candidate more closely, before it starts
the search for clusters in the candidate table. For each
candidate C, SLCT checks whether there are other candidates
in the table that represent more specific line patterns. In the
above example, the second pattern is more specific than the
third, since all lines that match the second pattern also match
the third. If candidates C1,...,Ck representing more specific
patterns are found for the candidate C, the support values of
the candidates C1,...,Ck are added to the support value of C,
and all lines that belong to candidates C1,...,Ck are also
considered to belong to the candidate C. In that way, a line can
belong to more than one cluster simultaneously, and more
general line patterns are always reported, even when their
original support values were below the threshold. Although
traditional clustering algorithms require that every point must
be part of one cluster only, there are several algorithms like
CLIQUE which do not strictly follow this requirement, in
order to achieve clustering results that are more
comprehensible to the end user [15].

By default, SLCT does not report the lines that do not
belong to any of the detected clusters. As SLCT processes the
data set, each detected outlier line could be stored to memory,
but this is way too expensive in terms of memory cost. If the
end user has specified a certain command line flag, SLCT
makes another pass over the data after clusters have been
detected, and writes all outlier lines to a file. Also, variable
parts of cluster descriptions are refined during the pass, by
inspecting them for constant heads and tails. Fig. 1 depicts the
sample output from SLCT.

If the log file is larger, running SLCT on the data set just
once might not be sufficient, because interesting cluster
candidates might have very different support values. If the
support threshold value is too large, many interesting clusters
will not be detected. If the value is too small, interesting
cluster candidates could be split unnecessarily into many
subcandidates that represent rather specific line patterns and
have quite small support values (in the worst case, there will
be no cluster candidates that cross the support threshold).

$ slct-0.01/slct -o outliers -r -s 8% myhost.mydomain-log

Dec 18 * myhost.mydomain sshd[*]: connect from 172.26.242.178
Support: 262

Dec 18 * myhost.mydomain sshd[*]: log: Connection from
172.26.242.178 port *
Support: 262

Dec 18 * myhost.mydomain sshd[*]: fatal: Did not receive ident
string.
Support: 289

Dec 18 * myhost.mydomain * log: * * * *
Support: 176

Dec 18 * myhost.mydomain sshd[*]: connect from 1*
Support: 308

Dec 18 * myhost.mydomain sshd[*]: log: Connection from 1* port *
Support: 308

Dec 18 * myhost.mydomain sshd[*]: log: * authentication for *
accepted.
Support: 171

Dec 18 * myhost.mydomain sshd[*]: log: Closing connection to 1*
Support: 201

$ wc -l outliers
 168 outliers

Figure 1. Sample output from SLCT.

[mail.alert] sendmail[***]: NOQUEUE: SYSERR(***): Arguments too
long

[mail.crit] sendmail[***]: NOQUEUE: SYSERR(***): can not
chdir(/var/spool/mqueue/): Permission denied

[mail.crit] sendmail[***]: ***: SYSERR(root): collect: I/O error
on connection from ***, from=<***>

[mail.crit] sendmail[***]: ***: SYSERR(root): putbody: write
error: Input/output error

[mail.warning] sendmail[***]: STARTTLS=server, error: accept
failed=-1, SSL_error=5, timedout=0

[mail.warning] sendmail[***]: STARTTLS: read error=read R BLOCK
(-1)

[mail.warning] sendmail[***]: STARTTLS: read error=syscall error
(-1)

[mail.warning] sendmail[***]: STARTTLS: write error=generic SSL
error (-1)

[syslog.notice] syslog-ng[***]: Error accepting AF_UNIX
connection, opened connections: 300, max: 300

[syslog.notice] syslog-ng[***]: Error connecting to remote host
(***), reattempting in 60 seconds

[auth.crit] su[***]: pam_krb5: authenticate error: Decrypt
integrity check failed (-1765328353)

[auth.crit] login[***]: pam_krb5: authenticate error:
Input/output error (5)

[auth.notice] login[***]: FAILED LOGIN 1 FROM (null) FOR root,
Authentication failure

[authpriv.info] sshd[***]: Failed password for root from *** port
*** ssh2

[mail.alert] imapd[***]: Unable to load certificate from ***,
host=*** [***]

[mail.alert] imapd[***]: Fatal disk error user=*** host=*** [***]
mbx=***: Disk quota exceeded

Figure 2. Sample anomalous log file lines.

In order to solve this problem, an iterative approach
suggested in [8] could be applied. SLCT is first invoked with a
relatively high threshold (e.g., 5% or 10%), in order to
discover very frequent patterns. If there are many outliers after
the first run, SLCT will be applied to the file of outliers, and
this process will be repeated until the cluster of outliers is
small and contains very infrequent lines (which are possibly
anomalous and deserve closer investigation). Also, if one
wishes to analyze one particular cluster in the data set more
closely, SLCT allows the user to specify a regular expression
filter that will pass relevant lines only.

Fig. 2 depicts sample anomalous log file lines that we
discovered when the iterative clustering approach was applied
to one of our test data sets (the mail server log file from Table
1). Altogether, four iterations were used, and the cluster of
outliers contained 318,166, 98,811, 22,807, and 5,390 lines
after the first, second, third, and fourth (the final) step,
respectively. At each step, the support threshold value was set
to 5%. The final cluster of outliers was then reviewed
manually, and the lines representing previously unknown fault
conditions were selected. The lines in Fig. 2 represent various
system faults, such as internal errors of the sendmail, imapd,
and syslogd daemon, but also unsuccessful attempts to gain
system administrator privileges (for the reasons of privacy and
security, real IP numbers, host names, user names, and other
such data have been replaced with wildcards in Fig. 2). The
lines that are not present in Fig. 2 represented various rare
normal system activities or minor faults, such as scheduled
tasks of the crond and named daemon, nightly restarts of the
syslogd daemon during log rotations, unsuccessful login
attempts for regular users, etc.

We have made many experiments with SLCT, and it has
proven to be a useful tool for building log file profiles and

detecting interesting patterns from log files. Table 3 presents
the results of some our experiments for measuring the runtime
and memory consumption of SLCT. The experiments were
conducted on 1,5GHz Pentium4 workstation with 256MB of
memory and Redhat 8.0 Linux as operating system. For all
data clustering tasks, a word summary vector of size 5,000
counters was used. Since SLCT was also instructed to identify
outlier points, four passes over the data were made altogether
during the experiments. The results show that our algorithm
has modest memory requirements, and finds many clusters
from large log files in a relatively short amount of time.

V. FUTURE WORK AND AVAILABILITY INFORMATION
For a future work, we plan to investigate various

association rule algorithms, in order to create a set of tools for
building log file profiles. We will be focusing on algorithms
for detecting temporal patterns, but also on algorithms for
detecting associations between event attributes within a single
event cluster.

SLCT is distributed under the terms of GNU GPL, and is
available at http://kodu.neti.ee/~risto/slct/.

ACKNOWLEDGMENTS
The author wishes to express his gratitude to Mr. Tõnu

Liik, Mr. Ain Rasva, Dr. Paul Leis, Mr. Ants Leitmäe, and
Mr. Kaido Raiend from the Union Bank of Estonia for their
kind support. Also, the author thanks Mr. Bennett Todd and
Mr. Jon Stearley for providing feedback about SLCT.

TABLE III. RUNTIME AND MEMORY CONSUMPTION OF SLCT

Data set Support
threshold

The number of
detected clusters

The number of outlier
points

Memory consumption Runtime

Mail server log file 10% 17 318,166 1252 KB 7 min 17 sec

Mail server log file 5% 20 318,166 1372 KB 7 min 17 sec

Mail server log file 0.5% 181 41,365 4260 KB 7 min 54 sec

Cache server log file 10% 16 0 1352 KB 10 min 35 sec

Cache server log file 5% 32 0 1668 KB 10 min 35 sec

Cache server log file 0.5% 133 8 3512 KB 10 min 56 sec

HP OpenView event log file 10% 86 6,626 2640 KB 13 min 53 sec

HP OpenView event log file 5% 97 6,523 3308 KB 13 min 59 sec

HP OpenView event log file 0.5% 352 10,559 8256 KB 13 min 51 sec

Internet banking server log file 10% 56 2,769 1888 KB 35 min 25 sec

Internet banking server log file 5% 126 2,335 3508 KB 38 min 26 sec

Internet banking server log file 0.5% 663 214 25072 KB 45 min 8 sec

File and print server log file 10% 18 145 4540 KB 27 min 30 sec

File and print server log file 5% 35 145 6164 KB 28 min 42 sec

File and print server log file 0.5% 211 133 19096 KB 31 min 10 sec

Domain controller log file 10% 22 1,256 3596 KB 11 min 11 sec

Domain controller log file 5% 34 1,256 5112 KB 11 min 38 sec

Domain controller log file 0.5% 65 3,388 9132 KB 11 min 56 sec

REFERENCES
[1] C. Lonvick, “The BSD syslog Protocol”, RFC3164, 2001.
[2] Stephen E. Hansen and E. Todd Atkins, “Automated System Monitoring

and Notification With Swatch”, Proceedings of the USENIX 7th System
Administration Conference, 1993.

[3] Wolfgang Ley and Uwe Ellerman, logsurfer(1) manual page, unpublished
(see http://www.cert.dfn.de/eng/logsurf/), 1995.

[4] Risto Vaarandi, “SEC - a Lightweight Event Correlation Tool”,
Proceedings of the 2nd IEEE Workshop on IP Operations and
Management, 2002.

[5] H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery of frequent
episodes in event sequences”, Data Mining and Knowledge Discovery,
Vol. 1(3), 1997.

[6] M. Klemettinen, H. Mannila, and H. Toivonen, “Rule Discovery in
Telecommunication Alarm Data”, Journal of Network and Systems
Management, Vol. 7(4), 1999.

[7] Qingguo Zheng, Ke Xu, Weifeng Lv, and Shilong Ma, “Intelligent Search
of Correlated Alarms from Database Containing Noise Data”,
Proceedings of the 8th IEEE/IFIP Network Operations and Management
Symposium, 2002.

[8] L. Burns, J. L. Hellerstein, S. Ma, C. S. Perng, D. A. Rabenhorst, and D.
Taylor, “A Systematic Approach to Discovering Correlation Rules For
Event Management”, Proceedings of the 7th IFIP/IEEE International
Symposium on Integrated Network Management, 2001.

[9] Sheng Ma and Joseph L. Hellerstein, “Mining Partially Periodic Event
Patterns with Unknown Periods”, Proceedings of the 16th International
Conference on Data Engineering, 2000.

[10] Matt Bing and Carl Erickson, “Extending UNIX System Logging with
SHARP”, Proceedings of the USENIX 14th System Administration
Conference, 2000.

[11] David Hand, Heikki Mannila, and Padhraic Smyth, Principles of Data
Mining, The MIT Press, 2001.

[12] Pavel Berkhin, “Survey of Clustering Data Mining Techniques”,
unpublished (see http://citeseer.nj.nec.com/berkhin02survey.html),
2002.

[13] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim, “ROCK: A Robust
Clustering Algorithm for Categorical Attributes”, Information Systems,
Vol. 25(5), 2000.

[14] Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan,
“CACTUS – Clustering Categorical Data Using Summaries”,
Proceedings of the 5th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 1999.

[15] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and
Prabhakar Raghavan, “Automatic Subspace Clustering of High
Dimensional Data for Data Mining Applications”, Proceedings of the
ACM SIGMOD International Conference on Management of Data,
1998.

[16] Charu C. Aggarwal, Cecilia Procopiuc, Joel L. Wolf, Philip S. Yu, and
Jong Soo Park, “Fast Algorithms for Projected Clustering”, Proceedings
of the ACM SIGMOD International Conference on Management of
Data, 1999.

[17] Sanjay Goil, Harsha Nagesh, and Alok Choudhary, “MAFIA: Efficient
and Scalable Subspace Clustering for Very Large Data Sets”, Technical
Report No. CPDC-TR-9906-010, Northwestern University, 1999.

[18] Rakesh Agrawal and Ramakrishnan Srikant, “Fast Algorithms for
Mining Association Rules”, Proceedings of the 20th International
Conference on Very Large Data Bases, 1994.

[19] Roberto J. Bayardo Jr., “Efficiently Mining Long Patterns from
Databases”, Proceedings of the ACM SIGMOD International
Conference on Management of Data, 1998.

[20] Jiawei Han, Jian Pei, and Yiwen Yin, “Mining Frequent Patterns without
Candidate Generation”, Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2000.

[21] Justin Zobel, Steffen Heinz, and Hugh E. Williams, “In-memory Hash
Tables for Accumulating Text Vocabularies”, Information Processing
Letters, Vol. 80(6), 2001.

[22] M. V. Ramakrishna and Justin Zobel, “Performance in Practice of String
Hashing Functions”, Proceedings of the 5th International Conference on
Database Systems for Advanced Applications, 1997.

