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ABSTRACT

Router syslogs are messages that a router logs to describe a wide
range of events observed by it. They are considered one of the most
valuable data sources for monitoring network health and for trou-
bleshooting network faults and performance anomalies. However,
router syslog messages are essentially free-form text with only a
minimal structure, and their formats vary among different vendors
and router OSes. Furthermore, since router syslogs are aimed for
tracking and debugging router software/hardware problems, they
are often too low-level from network service management perspec-
tives. Due to their sheer volume (e.g., millions per day in a large
ISP network), detailed router syslog messages are typically exam-
ined only when required by an on-going troubleshooting investiga-
tion or when given a narrow time range and a specific router under
suspicion. Automated systems based on router syslogs on the other
hand tend to focus on a subset of the mission critical messages (e.g.,
relating to network fault) to avoid dealing with the full diversity and
complexity of syslog messages. In this project, we design a Sys-
logDigest system that can automatically transform and compress
such low-level minimally-structured syslog messages into mean-
ingful and prioritized high-level network events, using powerful
data mining techniques tailored to our problem domain. These
events are three orders of magnitude fewer in number and have
much better usability than raw syslog messages. We demonstrate
that they provide critical input to network troubleshooting, and net-
work health monitoring and visualization.

Categories and Subject Descriptors

C.2.3 [Computer System Organization]: Computer-
Communication Networks—Network Operations
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1. INTRODUCTION
Router syslogs are messages that a router logs to describe a wide

range of events observed by it. Although router syslogs are pri-
marily designed and intended for router vendors to track and de-
bug router software/hardware problems, they are also widely used
by the network service providers as one of the most valuable data
sources in monitoring network health and in troubleshooting net-
work faults and performance anomalies. However, working with
raw syslog messages is not easy from network service manage-
ment prospectives. First, router syslog messages are essentially
free-form text with only a minimal structure. The type of infor-
mation that is logged and its formats vary among different vendors
and router operating systems. Second, router syslog messages are
often too low-level. They do not directly translate into what actu-
ally happened in the network (i.e., network events) without mean-
ingful abstraction and aggregation. Third, not every router syslog
message is an indication of an occurrence of an incident that could
potentially impact network services. For example, some router sys-
log messages are generated purely for debugging purposes and have
no implications on network services.

Although large ISP (Internet Service Provider) network, con-
sisting of thousands of routers, is expected to observe millions of
information-rich syslog message per day, the lack of sentence struc-
tures in log messages and relational structures across messages pre-
vents router syslogs from being utilized to its fullest extent in var-
ious network management applications. Network monitoring sys-
tems typically rely on the input of domain knowledge to be able
to focus on a rather small (yetdeemed important) subset of syslog
messages. For example, commercial network management tools
such as Lonix [1] and NetCool [2] focus on a small set of mes-
sages concerning network faults. The syntax and the relations of
these syslog messages are explicitly captured to allow for auto-
mated parsing and understanding. When certain patterns of sys-
log messages are observed in the network, alarms are triggered and
operation tickets are issued. The parsers and the message relation-
ship models therein need to be constantly updated to keep up with
network changes. For example, routers upgraded to a new operat-
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ing system may introduce new syslog message formats and hence
require a new parser. Network issues can also fly under the radar
if they do not match syslog patterns already programmed. Mean-
while, when troubleshooting a network event, network operators
have to focus on a narrow time-window and a specific router in
examining the raw syslog messages in detail, in order to avoid be-
ing overwhelmed by the number of syslog messages. It is a very
time-consuming and inefficient process when a complicated net-
work incident involves a large number of messages. Moreover, by
limiting to a small scope, operators lose the sight of “big picture”,
such as the information regarding the frequency or the scope of
the kind of network events under investigation. Finally, network
auditing and trend analysis systems have to rely on rather simple
frequency statistics when it comes to router syslogs. For example,
MERCURY [15] detects network behavior changes due to network
upgrades by tracking the level-shift of message frequencies of in-
dividual syslogs. Knowing the relationship across syslog messages
would make the result much more meaningful.

In this work, we focus on proactively mining network events
from router syslogs. In particular, we design an automated system
(called SyslogDigest) that transforms and compresses massive low-
level minimally-structured syslog messages into a small number of
meaningful and prioritized high-level network events. SyslogDi-
gest is vendor/network independent and does not require domain
knowledge on expected network behaviors. It automatically iden-
tifies signatures of different types of syslog messages in terms of
both their syntax and temporal patterns (e.g., interarrival time of
each type of syslog messages). In addition, SyslogDigest learns as-
sociation rules between different types of syslog messages both on
the same router and across routers. The combination of the signa-
tures and association rules of syslog messages enables us to group
them into meaningful network events. Furthermore, SyslogDigest
prioritizes network events using a number of severity/importance
measures. This allows network operators to quickly identify and
focus on important network events. More importantly, this enables
complex network troubleshooting, in which thousands to tens of
thousands of syslog messages on multiple routers may be related
to a single network event and may need to be identified out of mil-
lions of syslog messages for examination. SyslogDigest system-
atically classifies and groups these syslog messages into a single
meaningful event, making obsolete the long and error-prone man-
ual grouping process in the current practice. This automated group-
ing capability not only enables monitoring overall network health
and tracking the appearance and evolvement of network events, but
also allows for much better network visualization, since visualizing
such network events provides a much clearer and more accurate big
picture of what happened in the network than visualizing raw sys-
log messages.

It is also worth noting that, SyslogDigest greatly alleviates our
reliance on the domain knowledge of (human) network operators
in interpreting syslog messages. Instead, SyslogDigest is able to
learn signatures and rules that capture how the network behaves
over time. That is, SyslogDigest automatically learns network do-
main knowledge directly from the data. Such domain knowledge
not only tells us what happens in the network, but also provides di-
rect insights on “how the network behaves” vs. “how the network
should behave”. In addition, external domain knowledge, if avail-
able, can be easily input into SyslogDigest to further enhance or
customize the system.

We apply SyslogDigest to router syslog messages collected from
two large operational IP networks: one tier-1 ISP backbone net-
work and one large IPTV backbone network. We show that Sys-
logDigest outputs prioritized network events that are over three or-

ders of magnitude fewer in number and have much better usabil-
ity than raw syslog messages. Using real applications, we further
demonstrate that they provide critical input to not only network
troubleshooting but also network health monitoring and visualiza-
tion.

To summarize, we make four major contributions in this paper.

1. We designed an automated tool SyslogDigest that trans-
forms massive volume of router syslog messages into a much
smaller number of meaningful network events.

2. We developed effective techniques tailored to our problem
domain to systematically identify signatures of syslog mes-
sages, learn association rules that capture network behaviors
over time, group relevant raw syslog messages across multi-
ple routers into network events, and label and prioritize net-
work events based on their nature and severities.

3. We conducted large-scale experiments on real router syslog
data collected from two large operational IP networks and
demonstrated that SyslogDigest is able to transform millions
of syslog messages into network events that are over three
orders of magnitude fewer in number and smaller in size.

The remainder of this paper is organized as follows. Section 2
describes the syntax and semantics of router syslogs. Section 3
presents an overview of SyslogDigest system and Section 4 de-
scribes the detailed methodologies it uses. Section 5 presents the
evaluation results based on router syslog data collected from two
large operational IP networks. We present some applications of
SyslogDigest in Section 6 and related work in Section 7. Finally,
Section 8 concludes the paper.

2. ROUTER SYSLOG
In this section, we provide an overview of the syntax and se-

mantics of router syslog messages. Similar to syslogs on com-
puter servers, router syslogs are the messages that routers gener-
ate to record the hardware and software conditions observed by
them, such as link and protocol-related state changes (e.g., down
or up), alarming environmental measurements (e.g., high voltage
or temperature), and warning messages (e.g., triggered when BGP
neighbors send more routes than the router is configured to allow).
Although syslog messages are intended primarily for tracking and
debugging router software and hardware problems, they can be ex-
tremely valuable to network operators in managing networked ser-
vices and troubleshooting network incidents. For this reason sys-
logs are usually collected on all routers inside a network, especially
an ISP network, and a syslog (transmission) protocol [6] is stan-
dardized and widely supported by router vendors to transmit syslog
messages from routers to one or more syslog collector(s).

While the syslog protocol – for transmitting syslog messages –
is standardized, the syslog messages themselves are not. They are
essentially free-form texts, the syntax and semantics of which vary
among router vendors and router operating systems. Table 1 shows
a few examples of syslog messages from two router vendors. We
can observe only a minimal structure in a syslog message: (1) a
timestamp indicating when the message is generated, (2) the iden-
tifier of the router that generates the message (called originating

router), (3) message type, also known as the error code, indicating
the nature of the problem, and (4) detailed message information
generated by the router OS. In order to correlate syslog messages
across routers, the clocks (for generating the timestamps) on these
routers need to be synchronized often through the Network Time
Protocol (NTP), which is the case in our studies.
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Table 1: Syslog messages example
Vendor Message timestamp Router Message-type/error-code Detailed message

V1 2010-01-10 00:00:15 r1 LINEPROTO-5-UPDOWN Line protocol on Interface Serial13/0.10/ 20:0, changed state to down
V1 2010-01-10 00:00:15 r5 LINK-3-UPDOWN Interface Serial2/0.10/2:0, changed state to down
V1 2010-01-10 00:00:15 r8 SYS-1-CPURISINGTHRESHOLD Threshold: Total CPU Utilization(Total/Intr): 95%/1%, Top 3 processes

(Pid/Util): 2/71%, 8/6%, 7/3%
V1 2010-01-10 00:00:26 r8 SYS-1-CPUFALLINGTHRESHOLD Threshold: Total CPU Utilization(Total/Intr) 30%/1%.

V2 2010-01-10 00:00:23 ra SNMP-WARNING-linkDown Interface 0/0/1 is not operational
V2 2010-01-10 00:00:24 rb SVCMGR-MAJOR-sapPortStateChangeProcessed The status of all affected SAPs on port 1/1/1 has been updated.
V2 2010-01-10 00:00:26 ra SNMP-WARNING-linkup Interface 0/1/0 is operational

The detailed message information (aforementioned field (4))
in router syslogs is quite ad hoc in nature. They are simply
free-form texts “printf"-ed by router operating systems with de-
tailed information such as the location, state/status, or measure-
ment readings of a alarming condition embedded in them. For ex-
ample, in Table 1 line 1, (Line protocol on Interface

Serial13/0.10/20:0, changed state to down), the
Serial13/0.10/20:0 part indicates the network interface
at which the layer-2 line protocol (PPP) has been impacted
and the down part indicates the status/state of the line proto-
col. The rest of it, Line protocol on Interface ...,

changed state to ..., can be viewed as the sub type for
this type of syslog message. It is worth noting that there are of-
ten multiple sub types associated with the same syslog type (error
code). The combination of syslog type and this sub type can be
used as a template to uniquely identify the class of network condi-
tions that the syslog message describes.

In some syslog versions, the error code field contains severity in-
formation. For example, in the first four lines (vendor V1 syslogs)
of Table 1, the number between two “-” symbols is the severity level
of the messages – the smaller the number is, the more important the
message is perceived by the originating router. It is important to
note, however, that the severity level of a syslog message is as-
signed by the equipment vendor based on the perceived impact of
the observed event on the performance and proper functioning of
the local network elements. It does not in general translate into the
severity of the impact that this event will have on the performance
and proper functioning of the overall network and therefore cannot
be directly used for to rank-order the importance of events for net-
work service management purposes. For example, syslog messages
concerning router CPU utilization rising above or falling below a
given threshold (lines 3 and 4 in Table 1) have been considered
more important (smaller in severity number) than those concerning
an adjacent link changing its state to “down" (line 2 in Table 1) in
some router OS. Network operators would certainly disagree in this
case.

Router configuration tools usually allow network operators to
specify a threshold such that potential syslog messages with sever-
ity levels above or equal to it will be recorded. In this study, we col-
lect syslogs at such “informational” level (usually the default set-
ting). Depending on the network conditions, the amount of router
syslog messages in an operational network varies. In the large-
scale ISP network (hundreds to thousands routers) that we study in
the paper, there are typically hundreds of thousands to millions of
messages per day.

3. SYSTEM DESIGN OVERVIEW
The goal of the SyslogDigest system is to automatically trans-

form and compress low-level minimally-structured syslog mes-
sages into meaningful and prioritized high-level network events.
Our key observation is that one single (sometimes intermittent)

condition on a network element, such as an network interface,
router hardware, and router software, can often trigger a large num-
ber of different messages across time, protocol layers, and routers.
For example, messages m1 to m16 in Table 2 are all triggered by
the same network condition: the link between routers r1 and r2
flapped a couple of times. Based on this observation, our basic idea
is to automatically construct a network event by grouping together
related messages, i.e., those triggered by the same network condi-
tion, and then prioritize network events using a number of sever-
ity/importance measures. Our goal is to be able to automatically
determine such connections or the lack of them among syslog mes-
sages without relying on domain knowledge being manually input
and updated (by network operators). SyslogDigest accomplishes
this goal through a two-step process. In this first step, an offline

domain knowledge learning component automatically extracts rel-
evant domain knowledge from raw syslog data. In the second step,
an online processing component will rely on such acquired domain
knowledge and other available information (e.g., temporal close-
ness of messages) to finally group related messages into high-level
events and present the prioritized results. In the rest of this section,
we will provide a high-level overview of SyslogDigest’s architec-
ture, shown in Figure 1, and the functionalities of its components,
by working out a running example shown in Table 2, where 16
syslog messages are eventually grouped into 1 high-level network
event.

3.1 Offline Domain Knowledge Learning
The offline domain knowledge learning component automati-

cally acquires domain knowledge such as the syntax/semantics of
syslog messages, the relationships among various message tem-
plates, and the detailed location information pertained from raw
syslog data. The offline domain knowledge learning proceeds as
follows.

First, it automatically learns message templates from the
historical syslog messages. To deal with the challenge posed
by minimally-structured messages from different vendors
and/or different OS versions that adopt different template
syntax/semantics systems, we develop an effective signature
identification technique in which messages are decomposed into
whitespace-separated words and a frequent word (excluding those
words denoting specific locations) sequence is considered as a
template. For example, without going into the details of the
signature identification technique, it is intuitive to see the fol-
lowing template can be extracted: t1: LINK-3-UPDOWN

Interface ..., changed state to down,
t2: LINEPROTO-5-UPDOWN Line protocol on

Interface ..., changed state to down, t3:

LINK-3-UPDOWN Interface ..., changed state

to up, and t4: LINEPROTO-5-UPDOWN Line

protocol on Interface ..., changed state

to up.
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Table 2: Toy Example. Router r1’s interface Serial1/0.10/10:0 is connected to r2’s inteface Serial1/0.20/20:0.
index timestamp router message-type/error-code detailed message

m1 2010-01-10 00:00:00 r1 LINK-3-UPDOWN Interface Serial1/0.10/10:0, changed state to down
m2 2010-01-10 00:00:00 r2 LINK-3-UPDOWN Interface Serial1/0.20/20:0, changed state to down
m3 2010-01-10 00:00:01 r1 LINEPROTO-5-UPDOWN Line protocol on Interface Serial1/0.10/10:0, changed state to down
m4 2010-01-10 00:00:01 r2 LINEPROTO-5-UPDOWN Line protocol on Interface Serial2/0.20/20:0, changed state to down
m5 2010-01-10 00:00:10 r1 LINK-3-UPDOWN Interface Serial1/0.10/10:0, changed state to up
m6 2010-01-10 00:00:10 r2 LINK-3-UPDOWN Interface Serial1/0.20/20:0, changed state to up
m7 2010-01-10 00:00:11 r1 LINEPROTO-5-UPDOWN Line protocol on Interface Serial1/0.10/10:0, changed state to up
m8 2010-01-10 00:00:11 r2 LINEPROTO-5-UPDOWN Line protocol on Interface Serial2/0.20/20:0, changed state to up
m9 2010-01-10 00:00:20 r1 LINK-3-UPDOWN Interface Serial1/0.10/10:0, changed state to down
m10 2010-01-10 00:00:20 r2 LINK-3-UPDOWN Interface Serial1/0.20/20:0, changed state to down
m11 2010-01-10 00:00:21 r1 LINEPROTO-5-UPDOWN Line protocol on Interface Serial1/0.10/10:0, changed state to down
m12 2010-01-10 00:00:21 r2 LINEPROTO-5-UPDOWN Line protocol on Interface Serial2/0.20/20:0, changed state to down
m13 2010-01-10 00:00:30 r1 LINK-3-UPDOWN Interface Serial1/0.10/10:0, changed state to up
m14 2010-01-10 00:00:30 r2 LINK-3-UPDOWN Interface Serial1/0.20/20:0, changed state to up
m15 2010-01-10 00:00:31 r1 LINEPROTO-5-UPDOWN Line protocol on Interface Serial1/0.10/10:0, changed state to up
m16 2010-01-10 00:00:31 r2 LINEPROTO-5-UPDOWN Line protocol on Interface Serial2/0.20/20:0, changed state to up
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Figure 1: SyslogDigest Architecture. Bold arrows denotes the data flow. Dotted components run offline.

Second, to be able to parse the location information embedded
and hidden in syslog messages, SyslogDigest learns and builds
a “dictionary" for the locations in each router’s syslog messages
based on its configuration files (i.e., router configs). One might
be tempted to parse the location information purely based on the
vendor manual description for each message. This can however
be overly expensive due to the high diversity of message formats
and large number of messages. Our solution is based on one
key observation: a router almost always writes to syslog mes-
sages only the location information it knows, i.e, those config-
ured in the router. Our solution is therefore to parse router con-
figs (much better formatted and documented than syslog messages)
to build a dictionary of its locations offline. With router con-
figs, we also build the mapping between different locations, e.g.,
from an interface name to its IP address, and the hierarchical lo-
cation relationship between interfaces, ports and linecards, and
network topology such as the interfaces connecting two routers.
These mappings enable us to group syslog messages with related
locations. In the example shown in Table 2, the location dic-
tionary will contain interfaces r1,Serial1/0.10/10:0 and
r2,Serial1/0.20/20:0 and also the information that these
two interfaces are connected to each other.

Third, to learn the relationship among different templates,
we first augment each historical syslog message with addi-
tional information, including message template and its loca-
tion information, by matching it with the templates and loca-
tions previously learned. In our example, m1 is augmented as

m1|t1|r1,Serial1/0.10/10:0 (with template t1 and lo-
cation r1,Serial1/0.10/10:0 appended), and m4 is aug-
mented as m4|t2|r2,Serial1/0.20/20:0, and so on. The
resulting messages are called Syslog+ messages in our system. We
then apply association rule mining techniques to Syslog+ messages
to learn the relationships (i.e., associations) among different mes-
sages with different templates. A rule of thumb is that if two mes-
sages frequently occur close enough in time and at related locations
(postpone the details to Section 4), they are considered associated

and should be grouped together. For example, if syslog messages
in templates t1 and t2 often happen close together, the association
t1, t2 will be declared. Domain experts can be asked to comment
on and/or adjust such associations (some of which can be “puz-
zling" or even “bizarre") but this is entirely optional.

Finally, SyslogDigest learns the temporal patterns of each tem-
plate from Syslog+ message. The intuition is that messages with
same template can appear periodically (e.g., due to various network
timers), and if so, these events can be grouped together. Such kind
of periodicity can be learned offline through measurements of cor-
responding interarrival times and predictions based on their linear
regression.

The above domain knowledge learning process will be periodi-
cally run (offline) to incorporate the latest changes to router hard-
ware and software configurations, and the acquired domain knowl-
edge will be used as input to the online SyslogDigest System.
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3.2 Online SyslogDigest System
The online system takes the real-time syslog message stream as

well as the previously learned domain knowledge as input, and out-
put meaningful prioritized network events, in a two-step process.
The first step is to augment the real-time syslog messages with
template and location information just like in the aforementioned
offline process, and output the (augmented) Syslog+ messages in
an online fashion.

The second step is to group related Syslog+ messages together to
construct meaningful network events. We propose three grouping
methods: temporal grouping, rule-based grouping and cross-

router grouping. Temporal grouping targets at messages with
the same template on the same router. It groups together messages
that have the same template and happen periodically, where such
periodicity (temporal patterns) is already detected during the offline
temporal mining. In our example, it is intuitive to see that after the
temporal grouping, m1, m5, m9, m13 (with common template t1
and common location r1,Serial1/0.10/10:0) are grouped
together. So are (m2, m6, m10, m14), (m3, m7, m11, m15),
and (m4, m8, m12, m16). Rule-based grouping targets
the messages with different templates on the same router.
Based on the association rules learned by the offline learn-
ing component and saved in a domain knowledge base, this
method groups messages that have different templates, but
happen close together in time. In our example, after the rule-
based grouping, messages m1, m3, m5, m9, m11, m13, m15
are grouped together due to association rule {t1, t2} with
common location r1,Serial1/0.10/10:0. Messages
m2, m4, m6, m8, m10, m12, m14, m16 are grouped to-
gether due to association rule {t3, t4} and common location
r2,Serial1/0.20/20:0. Finally, the cross-router grouping

method will group together messages with locations that are on
different routers yet closely connected (e.g. two ends of one
link, two ends of one BGP session), determined by the location
dictionary in the domain knowledge base. They will be applied to
the Syslog+ messages in this order (justifications explained later).
After these three grouping methods are applied in the order that
they are described above to the online syslog message stream, we
obtain groups of messages, each of which is considered a single
network event, which are much smaller in number compared to the
raw syslog messages. In our example, m1 to m16 are eventually
grouped together into a single network event.

The final step is to prioritize and present the network events
based on their perceived importance to network operators. Vari-
ous factors are considered together to determine the (relative) im-
portance of an event, including the number of messages the event
(group) contains, the frequency of this event type in the history and
the perceived impact of this event on network health. Each event
is presented as a well-formatted text line, with multiple fields sum-
marizing the information contained in the raw syslog messages that
are grouped into this event, including the start/end timestamps of
this event, an location field that records where the event happens,
an event type field that is more informative than its counterpart in
individual raw syslog messages, and an index field that allows us to
retrieve these raw syslog messages if necessary.

The presentation of Table 2 could be 2010-01-10

00:00:00|2010-01-10 00:00:31|r1

Interface Serial1/0.10/10:0 r2 Interface

Serial1/0.20/20:0|link flap, line protocol

flap.

Table 3: The messages belong to the same message type (BGP-

5-ADJCHANGE)

m1 neighbor 192.168.32.42 vpn vrf 1000:1001 Up
m2 neighbor 192.168.100.194 vpn vrf 1000:1002 Up
m3 neighbor 192.168.15.78 vpn vrf 1000:1003 Up
m4 neighbor 192.168.108.38 vpn vrf 1000:1004 Up
m5 neighbor 192.168.0.26 vpn vrf 1000:1004 Down Interface flap
m6 neighbor 192.168.7.6 vpn vrf 1000:1001 Down Interface flap
m7 neighbor 192.168.0.238 vpn vrf 1000:1003 Down Interface flap
m8 neighbor 192.168.2.114 vpn vrf 1000:1002 Down Interface flap
m9 neighbor 192.168.183.250 vpn vrf 1000:1002 Down BGP Notification sent
m10 neighbor 192.168.114.178 vpn vrf 1000:1003 Down BGP Notification sent
m11 neighbor 192.168.131.218 vpn vrf 1000:1001 Down BGP Notification sent
m12 neighbor 192.168.55.138 vpn vrf 1000:1000 Down BGP Notification sent
m13 neighbor 192.168.1.13 vpn vrf 1000:1000 Down BGP Notification received
m14 neighbor 192.168.12.241 vpn vrf 1000:1002 Down BGP Notification received
m15 neighbor 192.168.155.66 vpn vrf 1000:1003 Down BGP Notification received
m16 neighbor 192.168.254.29 vpn vrf 1000:1004 Down BGP Notification received
m17 neighbor 192.168.35.230 vpn vrf 1000:1004 Down Peer closed the session
m19 neighbor 192.168.171.166 vpn vrf 1000:1001 Down Peer closed the session
m19 neighbor 192.168.2.237 vpn vrf 1000:1002 Down Peer closed the session
m20 neighbor 192.168.0.154 vpn vrf 1000:1003 Down Peer closed the session

Table 4: Sub message types of BGP-5-ADJCHANGE
M1 neighbor * vpn vrf * Up
M2 neighbor * vpn vrf * Down Interface flap
M3 neighbor * vpn vrf * Down BGP Notification sent
M4 neighbor * vpn vrf * Down BGP Notification received
M5 neighbor * vpn vrf * Down Peer closed the session

4. SYSLOG-MINING METHODOLOGIES
In this section, we present the detailed methodologies used in

both the offline learning and the online digesting systems.

4.1 Offline Learning Methodologies
There are several basic aspects that we need to learn from sys-

log messages: message templates, location information, temporal
patterns of message templates and template relationship.

4.1.1 Message Template Learning

As mentioned earlier, raw syslog messages have little structure.
Although there is a message type field to describe the characteris-
tics of messages, for each message type there can be multiple sub
types. For example in Table 3, while all messages belong to the
same type "BGP-5-ADJCHANGE" and correspond to BGP adja-
cency change in MPLS VPN, the details of these messages (and
hence their sub types) can be different. At issue is how to au-
tomatically construct such sub types and combine them with the
message type to form the template without intervention from do-

main experts. In our example, the neighboring IP addresses and the
VRF1 IDs (e.g. VRF 1000:1001 in m1) differ from one message to
another, but when these two fields are masked (i.e., replaced by the
same symbol, say asterisk, as shown in Table 4), there are only five
distinct “structure" types, or sub types as we call them. In practice,
however, it is not easy to manually find all masked parts without
domain knowledge, because all needed-masked parts do not have
obvious pattern like IP address or VRF ID.

Our template learning approach is inspired by the signature
abstraction used in spam detection [18]. The high level idea

1VRF stands for Virtual Routing and Forwarding. It is a technology
that allows multiple instances of a routing table to co-exist within
the same router at the same time. VRF is a common technique
used in VPN environment. The VRF ID XXX:XXXX is a simple
conceptional name.
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Figure 2: Sub type tree construction example.

is that a signature, which corresponds to an aforementioned sub
type node, is a combination of words with high frequency. We
decompose messages into words separated by whitespace. For
each type of message, we construct a tree structure to express
the template (sub type) hierarchy based on the input messages
(e.g. m1, m2, . . . , m20), shown in Figure 2. We say that a
word associates with a message when the word appears in the
message. The detailed construction algorithm follows breath-first
search tree traversal. We first use the message type (e.g. BGP-5-
ADJCHANGE) as the root of the tree. All messages are associated
with this message type. Then given the parent node, we look for
the most frequent combination of words which can associate with
most messages that the parent node can associate with, and make
this combination as a child node. We repeat this process to create
child nodes based on remaining messages, until all messages have
been associated. We then recursively proceed to the child nodes
and repeat the process. Finally we prune the tree until it has the
desired degree properties as follows. If a parent node has more
than k children, we will discard all children to make the parent a
leaf itself. Now each path from root to the each leaf become one
template (type + sub type). The intuition of this pruning is that on
the one hand, there are only a few sub types for each message type,
on the other hand, usually there would be many more messages as-
sociated with each sub type. For example, there should be many
IPs and VRF addresses associated with each sub type given enough
data. In practice, We choose k = 10 based on our experience that
no message type has more than 10 sub types.

Our template inference approach is quite generic because it is
based on the words frequency as opposed to text semantic. How-
ever, we use an implicit assumption that the variable part of the sys-
log messages would appear as many distinct values given enough
historical data. This assumption is surely not always true. For ex-
ample, if certain protocol are enabled only on one type of network
interface, say GigabitEthernet, then the “GigabitEthernet” part of
the message may be falsely included in the syslog template of the
protocol messages. However, this would have negligible impact on
the final outcome of the grouping result, since the “GigabitEther-
net” in this case contains as much information as the syslog sub
type and hence there is no need to extract it out.

4.1.2 Location Information Learning

In a typical syslog message, we only have a router id field as the
basic location information, but this is clearly not enough. For ex-
ample, some events occur on a particular physical port while some
other events occur on multiple logical links (e.g., IP links). Such
detailed location information is essential for understanding what is
going on in the network.

Path

Router

Slot/Line card

Multilink/Bundlelink

Logical L3 Interface

Port

Interface

Physical L3 Interface

Physical hierarchy

One to many

Logical configuration

Figure 3: Location hierarchy

Figure 3 shows the generic location hierarchical structure. We
classify the basic components here into physical ones and logical
ones. The physical ones have a clear hierarchical structure from
top to bottom. The arrow here illustrates a “one-to-many” relation-
ship. For example, one router have multiple slots, each slot can
have multiple ports and etc. Besides physical hierarchy, there are
some logical configurations, but they will eventually map to some
physical component. For example, one multilink/bundlelink can be
mapped to multiple physical interfaces. Based on router configura-
tion data, we can extract offline the hierarchy in Figure 3 specific
to each router, cross-router location relationships such as neighbor
links, etc.

The key question here is how to automatically exploit such
kind of location information from each message. First, we know
the particular format of these location information embedded
into the messages. For example, the IP address has the format
XXX.XXX.XXX.XXX, the port has the format X/X/X , etc. Com-
pared with various parts of message we need to mask during tem-
plate learning, the number of location format patterns are lim-
ited, which is manageable for extraction using predefined patterns.
However, the naive pattern matching is not sufficient to extract
needed location addresses, mainly because more than one location
pattern (no matter whether they are all needed) can be found in each
message. For example, multiple IP addresses can be found in one
message. One could belong to the router itself, one could belong
the neighbor router, and it is also possible there are some remote
(e.g. remote session connection) or invalid IPs (e.g. scanning at-
tacks). To understand the exact meaning of multiple location pat-
terns, especially the belongings, we correlate these locations with
router configuration data. For example we can verify if this IP be-
longs to the router or its neighbors. Note that the acquired location
information and location hierarchy will be used during the offline
rule mining and online grouping.

4.1.3 Learning Temporal Patterns of Templates

Once we identified the message templates, we learn the temporal
patterns of the message templates, i.e, the interarrival patterns. This
learned knowledge will be used in the online temporal grouping
component.

We observe that if a particular template of message occurs pe-
riodically, the corresponding messages naturally form a number
of clusters in the time series. For example, Figure 4 shows that
one controller goes up down many times within a short interval be-
cause controller is unstable during the interval. Another example
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Figure 4: Controller up/down example.
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Figure 5: TCP bad authentication example

in Figure 5 shows that TCP bad authentication message has peri-
odic occurrences, likely due to the underling timer configuration,
or outside impact, e.g. scanning patterns.

In order to learn such temporal patterns, i.e. , the interarrival time
within each cluster, we make a basic assumption, that is the im-
pact of current message on the further message with the same tem-
plate will exponentially decay. Such assumption is widely used for
time series analysis and system measurement purpose [5, 21]. Our
learning method is based on the interarrival sequence S1, S2, . . .
for each message template. We compute the (predicted) exponen-
tial weighted moving average (EWMA) of interarrival time t, Ŝt.

Ŝt = α · St−1 + (1 − α) · Ŝt−1

where α ∈ (0, 1) is the weighting factor. A higher α discounts
older observations faster. Intuitively, if the messages belong to the
same cluster, in other words, there is a periodic pattern within the
group, then the predicted value Ŝt should not be far away from the
real one St. Consequently, we assume that if St ≤ β · Ŝt where
(β >= 1), which means the real interarrival time is no much larger
than predicted one, we view that the message belongs to the same
group. Otherwise, there is another new group. Here parameter β
defines a threshold for grouping. Larger β means tolerating larger
intervals in the group.

The offline learning component uses long-term historical data
to infer the proper value of parameters α and β and can be up-
dated periodically. The actually values of these parameters will be
discussed in Section 5. These parameters are used in the online
temporal grouping component.

4.1.4 Template Relationship (Rule) Learning

In order to group different messages together to extract net-
work events, one natural thinking is to discover some implicit
rules among different templates. Some rules are very intuitive.
For example, layer-1 link failures (LINK-3-UPDOWN) often trig-
ger layer-2 failures (LINEPROTO-5-UPDOWN). Some others are
much more subtle. As we explained before, we cannot rely on
domain experts to compile and update a complete rule set given
the large number of templates. We need a systematic way to
identify such rules. This turns out to be a typical association
rule mining problem. Association rules describe items that oc-

cur frequently together in a dataset and are widely-used for mar-
ket basket analysis. Following the original definition by Agrawal
et al. [3] the problem of association rule mining is defined as: Let
I = {i1, i2, . . . , in} be a set of n binary attributes called items. Let
D = {t1, t2, . . . , tm} be a set of transactions called the database.
Each transaction in D has a unique transaction ID and contains a
subset of the items in I . A rule is defined as an implication of the
form X ⇒ Y where X, Y ∈ I and X ∩ Y = ∅. To select in-
teresting rules from the set of all possible rules, constraints on var-
ious measures of significance and interest can be used. The best-
known constraints are minimum thresholds on support and confi-
dence. Support supp(X) of an itemset X is defined as the propor-
tion of transactions in the data set which contain the itemset. The
confidence of a rule is defined as

conf(X ⇒ Y ) =
supp(X ∩ Y )

supp(X)

In our problem setting, each message template is one item. In
order to construct the transactions, we use a sliding window W . It
starts with the first message, and slides message by message (sorted
messages on the time series). Each time there is one transaction. In
one such transaction, the message templates in the window W are
considered as the items showing up.

Note that we only consider pair wise association, or |X| =
|Y | = 1. In other words, each rule only contains two templates.
The reason is, first, the computation complexity is low, and second,
it is relatively easy to verify the generated rule sets. Domain ex-
perts only need to verify the relationship of two templates per rule.
The disadvantage of pair wise is that based on these rules we can-
not group more than two templates each time, but since we assume
the transition property during rule-based grouping discuss later in
Section 4.2.2), the final digest will combine multiple templates to-
gether.

Until now, we assume that the rules are generated based on static
dataset. But ideally we want to learn the rules continuously. In
order to adaptively adjust the rules, we use the following conserva-
tive way. First, we training the a period of data to generate the ba-
sic rule sets. Then we keep change the rules periodically (e.g. each
week). The new rules X ⇒ Y should be added when supp(X) and
conf(X ⇒ Y ) are above the threshold. Old rules X ⇒ Y should
be deleted when updated conf(X ⇒ Y ) is below the threshold, no
matter what supp(X) is. Such conservative deletion approach en-
sures that we do not delete the rules because X are not common in
this updating period (it is quite possible X become common again
soon).

4.2 Online System Methodologies
The online system takes the real-time Syslog+ data (with mes-

sage template and location information) and the offline-learned do-
main knowledge as input, groups related messages together and
construct prioritized event. Roughly speaking, if two messages oc-
cur close in time and locations, they are related with high prob-
ability. While the temporal closeness between two messages can
simply the characterized by the closeness of their timestamps, the
characterization of spatial closeness is more subtle. We model var-
ious location types in the location hierarchy shown in Figure 3.
We say the two locations are spatially matched when they can
be mapped to same location in the hierarchy. For example, sup-
pose one message happens on slot 2 and another one message
on the same router happens on interface series 2/0/0:1. They are
considered spatially matched because the later message’s location
(2/0/0:1) can be mapped upwards in Figure 3 to slot 2 (the first digit
before the backslash interface series of 2/0/0:1).
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4.2.1 Temporal Grouping

Online temporal grouping uses the same methodology as offline
temporal patterns learning, presented in Section 4.1.3. Similar to
Section 4.1.3 , if the real inter-arrival time St ≤ β·Ŝt, then the mes-
sages belong to the same group, otherwise there is separate group.

We also introduce two thresholds Smin and Smax. Smin is the
minimal interarrival time, and Smax is the maximum. The rea-
son of introducing Smax is that the our algorithm cannot guarantee
convergence. Each time we only guarantee that the St is not too
large. But when Ŝt increase, St can grow exponentially. If the real
interarrival time is smaller than Smin, then we consider the mes-
sages belong to the same group. If the real interarrival time is larger
than the Smax, then we believe there is a separate group. We set
Smin to be 1 second (this is the finest time granularity available in
the syslog data we used) and Smax to be 3 hours (this is based on
domain knowledge).

4.2.2 Rule based Grouping

In the temporal grouping part, we only consider grouping mes-
sages with the same template together. Now we try to discover
the connections among messages with different message templates.
The offline-learned rules using association mining contain pair-
wise message templates that occur frequently together. The rule
based grouping component groups the messages which happen on
the spatially matched locations and happen close enough in time
(within the window W discussed in rule-learning part). Note that
our rule based grouping does not consider the direction of rule since
our system is not a troubleshooting system thus does not rely on
causality inference. It is possible that we have A → B and A → C
in the rule set, but we ignore the direction and can group A, B, C
together, assuming temporal and spatial constraints are satisfied.
This is because it is very likely they are triggered by the same net-
work condition thus should be considered as one event, even though
we ignore the detailed causal relationship among the messages.

4.2.3 Cross Router Grouping

The first two grouping methods all focus on a single router. A
network event, however, can affect multiple routers. For instance,
a link down event should involve two adjacent routers’ links. To
group such messages, our solution is a conservative one. Our of-
fline location learning component already provides a dictionary for
cross-router location relationship such as links, sessions, tunnels
(a path) between different routers. Assuming that the propagation
along the connects are fast enough, we group messages with the
same template which happened on the same link, session, or path
at almost the same time (e.g no larger than 1 second difference).

We perform three grouping methods in the order they are de-
scribed. If any two messages in two different groups have been
grouped together, then these two groups will be merged. Thus the
changes of orders of these three parts have no impact on the final
grouping results. We use this order because it is more natural to
describe: from one signature to multiple ones, from single router to
multiples ones.

4.2.4 Prioritization and Presentation

We now have a number of messages in each group. We first pri-
oritize the messages so that the most important events will appear at
the top of the digest. Recall from Section 2 that the severity level of
a message provided by syslog shall not be trusted/used. Instead, we
use a combination of the following three metrics. The first metric is
the occurrence frequency of message signature on each router, say
fm for message m. The intuition is that we care more about rare
events. We also consider the impact of the events. The event hap-

pened on the higher level of the hierarchy is more important. For
example, an event happened on the router is more important than
the one happened on the interface. Let lm denote the location met-
ric of message m, and we can assume that the value of lm higher
level is several (e.g. 10) times of lower level. Finally, we con-
sider the number of messages in the grouped event, which in some
sense reflects severity of the event. The group with more messages
should be relatively important. Based on these three metrics, there
is a score we assign for each event:

Score =

M
X

m=1

lm/log(fm)

where the event contains M messages. The reason for taking loga-
rithm here is to prevent rare events with tiny fm values from dom-
inating the top of the ranked list. Note that our scoring method
provides a baseline for ranking. The network operators can adjust
the weights for each type of messages, based on their experience.

We rank all events based on the score in a decreasing order. After
ranking, we (actually the SyslogDigest system) are ready to present
the final result. There are many ways to display the event, and we
choose the most concise way. First, we present the beginning and
ending time of the event, which map to the time range of all mes-
sages in the group. Second, we present the location information
of the event. For each router, we present the most common high-
est level location on hierarchy. For example, if the event contains
two messages, one on the router level while the other on the inter-
face level, we only show the router. Third, we present the type of
event. One direct way is to present the combinations of message
signatures within the group. Domain experts can certainly assign a
name for each type of event. For example, we can assign a name
"link flap" to a event which contains "LINK-DOWN" and "LINK-
UP" messages.

5. EVALUATION
We evaluate SyslogDigest using real syslog data from two large

operational networks. We first validate several design choices we
made in the offline domain knowledge learning component. Then
we report the results of the entire SyslogDigest system.

5.1 Evaluation Methodology
We use syslog data collected from two large operational IP net-

works in North America: a tier-1 ISP backbone network and a
nation-wide commercial IPTV backbone network. Each of these
two networks has around a couple of thousands of routers and
records millions of syslog messages per day. We refer to these
two syslog data as Dataset A and Dataset B, respectively. Note
that these two networks use routers from different vendors and have
different network design and protocol configurations for supporting
different network applications/services – the ISP backbone network
is for general/traditional IP/Internet service and the IPTV backbone
is for commercial TV service. Both the types of messages and their
signatures are very different in these two dataset. In our evaluation,
we use three months of data collected from September to Novem-
ber 2009 for offline domain knowledge learning and two weeks’
of data collected December 1-14, 2009 for online processing and
reporting event digests.

We evaluate the effectiveness of SyslogDigest in the following
two aspects. First, we use the metrics compression ratio to measure
the ability of SyslogDigest to reduce the amount of information
that operators need to receive and examine in order to know what
happened in the network for each incident. We define the the com-
pression ratio to be the number of events (compressed information
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Table 5: Sensitivity of minimal support SPmin value
SPmin Top % (A) Coverage (A) Top % (B) Coverage (B)

0.001 13.4% 98.72% 14.2% 89.34%

0.0005 27.5% 99.92% 32.3% 99.95%

0.0001 42.5% 99.98% 54.3% 99.99%

size) divided by the total number of raw messages (uncompressed
information size). Second, we validate the event digests output by
SyslogDigest to see whether they are good representation of real
network events. This validation process done manually by peo-
ple who have rich network experiences and domain knowledge on
these two operational networks.

5.2 Components Effectiveness
We first evaluate our design choices in message template identi-

fication, association rule mining and temporal mining components
shown in Figure 1.

5.2.1 Message Template Identification

SyslogDigest automatically abstracts the template of each type
of syslog messages. We validate our template abstraction method
presented in Section 4.1 by comparing the syslog message tem-
plates identified by SyslogDigest with the “ground truth” templates
obtained from hard-coding comprehensive domain knowledge on
syslog. The domain knowledge we used here are very specific to
certain router vendors. Hard-coding domain knowledge is clearly
not scalable, and hence we use it only for validation purpose. Note
that such kind of methods require the knowledge of all message
format in advance, which is not practical specially when there are
many messages types and facing different syslog data sources. We
observe that 94% of message templates matches. It indicates our
learning approach can extract the template fairly well.

5.2.2 Association Rule Mining

In order to generated rules, we use three months (Sep 2009 to
Nov 2009) for mining for both datasets.

There are three parameters used by SyslogDigest in mining as-
sociation rules between syslog messages: Window size W , the
threshold of minimal support SPmin, and the minimal confidence
Confmin. We evaluate the sensitivity of these parameter setting
on learning associations between syslog message. In particular, we
vary W from 5 to 300 seconds and Confmin from 0.5 to 0.9. We
also set SPmin at values 0.001, 0.0005, 0.0001. The implication
of these settings of SPmin in our context is shown in Table 5. For
example, when SPmin = 0.005, the top 27.5% types of messages
will be used in rule mining and these types of messages cover over
99.9% of all messages in dataset A.

Figure 6 shows the number of association rules learned from
dataset with fixing the value of W to be 1 minute and varying the
values of SPmin and Confmin. As we expected, the number of
rules decreases as the value of Confmin increases. In addition,
the higher the value of SPmin is, the fewer rules learned from the
dataset. Similar observations hold different values of W . In our
experiments, we set Confmin = 0.8 and SPmin = 0.0005. With
this setting, Figure 7 shows the number of generated rules by vary-
ing the value of W . We observe that the number of rules increases
as W increases. However, the increase in the number rules dimin-
ishes at W = 120 seconds for dataset A and W = 40 second for
dataset B. That is, the number of rules learned by SyslogDigest is
less sensitive to the value of W when W is large. A detailed anal-
ysis on the rules reveals that the newly added rules by increasing
W often captures implicit timing relationship between two types
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Figure 6: The impact of parameter SPmin and Confmin, in
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Figure 7: The impact of parameter W , when Confmin = 0.8
and SPmin = 0.0005.

of messages. For example, in dataset A, we observe that when W
changes from 10 to 30 seconds, there are several new rules added
to the knowledge base. These rules associate the controller flap,
link flap andline protocol flap messages, indicating that these types
of messages usually occur together between 10-30 apart. Similarly,
in dataset B we find that ftp login failure and ssh login failure mes-
sages are associated together when W is set to 30 - 40 seconds.
Next, we present results on association rule mining with using W
= 120 seconds for dataset A and W = 40 seconds for dataset B.

The association rule mining is performed weekly by SyslogDi-
gest to (i) add new rules to the knowledge base, and (ii) iden-
tify invalid rules in the knowledge base and remove them using
the method presented in Section 4.1.4. Figure 8 and Figure 9
show the total number of rules in the knowledge base as well as
added/deleted rules for each week from week 2 to week 12. The
number of rules in the knowledge base becomes stable after week
6 for dataset A and after week 8 for dataset B. This is because the
number of added and deleted rules are close to zero after few weeks
for both datasets.

We further validated the rule sets obtained at the end of week
12 with expert domain knowledge and vendor documentations. We
found that almost all the rules are consistent with either the domain
knowledge or the expected behaviors specified in vendor documen-
tations. Thus, we believe that SyslogDigest successfully captures
network behaviors using automatically learned rules. However, we
did report a few “unexpected” rules (3 rules for dataset A and 16
rules for dataset B), which means the potential false positive rate
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Figure 8: The number of rules over 12 weeks, dataset A.
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Figure 9: The number of rules over 12 weeks, dataset B.

is less than 0.05 during rule mining. These unexpected rules are
currently under investigation.

5.2.3 Temporal Pattern Mining

The goal of temporal pattern mining is essentially to find the
proper parameter α and β, such that the underlying interarrival
model can present the temporal patterns very well. In other words,
we want to find α and β such that we can group messages appropri-
ately (i.e. compression ratio would be optimal). Figure 10 shows
the compression ratio of temporal grouping with α varying from 0
to 0.6 and β = 2 (i.e., if a new message arrives at an interval that is
at least twice of the predicted interval, the message is put in a sepa-
rate group). We observe that in both datasets, the larger the value of
α is the higher the compression ratio is, except for very small value
of α (e.g., α < 0.05). The lowest (i.e., best) compression ratio is
achieved when α = 0.05 for dataset A and α = 0.075 for dataset
B. They will be used as the default value for α in the remaining
experiments.

Figure 11 shows the impact of varying value of β (from 2 to 7)
on the compression ratio with α being set at the default values. We
observe that the compression ratio first decreases as we increase
the value of β. This is consist to our intuition because a larger
β value means larger intervals are used in temporal grouping of
messages and hence fewer number of groups are output. We also
observe that the improvement of compression diminishes when β
increases. Thus, we set β = 5 for both datasets.

In summary, Table 6 shows the parameter settings in SyslogDi-
gest. The rules of thumb are of choosing parameters are (1) to
ensure the stability of rule sets and (2) to ensure the stability of the
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Table 6: Parameter setting in SyslogDigest
Dataset α β W (Dataset A/B) SPmin Confmin

A 0.05 5 120 0.0005 0.8

B 0.075 5 40 0.0005 0.8

compress ratio, as we discussed through Section 5.2. These values
in Table 6 will be used in the rest of our experiments presented in
this paper.

5.3 Performance of SyslogDigest
Using the domain knowledge base built by applying offline

learning on three months of syslog data, we run SyslogDigest in
online mode and generate event digests for 2 weeks of syslog data
to evaluate the effectiveness of the entire system. Note that it gen-
erally takes less than one hour to digest one day’s syslog. Table 7
shows compression ratios of different message grouping method-
ologies for both datasets. We found that the compression ratio
varies by grouping method by dataset. Overall, the number of event
digests is over three orders of magnitude smaller than the number
of raw syslog messages. This is fairly substantial information com-
pression/reduction.

Figure 12 shows the number of events and number of messages
per day during these two weeks for dataset A (the numbers are nor-
malized by a fixed factor due to proprietary information). Again,
we obverse the three orders of magnitude compression. In addi-
tion, the number of events per day is relatively stable across days
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Table 7: Effectiveness (compression ratio) of three digest

methodologies. T: temporal based, R: rule based, C: cross

router

Methodology Ratio (Dataset A) Ratio (Dataset B)

T 1.63× 10
−2

9.08× 10
−3

T+R 5.15× 10
−3

2.26× 10
−3

T+R+C 3.27× 10
−3

0.91× 10
−3
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Figure 13: The digest result per router of dataset A.

for both datasets. In addition to the events digest, SyslogDigest also
tracks the association rules that are used in message grouping (we
call them “active rules”). The number of active rules is also stable:
100 ∼ 200 per day. The observations on dataset B is similar and
omitted due to space limit.

Figure 13 show normalized number of raw messages and num-
ber of events on each individual router for datasets A2. We observe
that the distribution of events across routers are less skew than that
of raw syslog messages. In addition, routers that have more sys-
log messages usually have a better compression ratio. The best
compression ratio is achieved on the router which has the largest
number of raw message.

In order to verify that SyslogDigest system does not miss impor-
tant network events during extraction, we compare the event digests
output by SyslogDigest with known network events obtained from
the trouble tickets. We obtained trouble tickets for both dataset A

2Due to page limitation, very similar result for dataset B is not
shown here

and dataset B, each of which is associated with a unique case iden-
tifier, timestamp of which the ticket is created and/or updated, and
type and location of the event. While an extensive and systematic
evaluation is undergoing, we show our preliminary results in this
paper. In our preliminary evaluation, we rank the tickets based on
the number of times a ticket is investigated and the corresponding
record is updated. The intuition is that the more times that a ticket
is investigated, the more likely the corresponding event is more im-
portant (and/or complicated). Hence, we use the number of times
a ticket is investigated and updated as an approximation of the im-
portant of an event. We select the top 30 tickets regarding dataset B
and correlate them with event digests output by SyslogDigest. We
say there is match between a trouble ticket and an event digest if
(i) the duration of the event digest covers the creation time of the
trouble ticket and (ii) the event location of specified in the event
digest is consistent with that described in the trouble ticket (at the
state level, e.g. TX, GA, etc.). We found that all 30 tickets match
with event digests that are ranked as top 5% or even higher by Sys-
logDigest. This initial evaluation shows that SyslogDigest does not
miss important incidents.

6. APPLICATIONS
In this section, we demonstrate that SyslogDigest can be used an

essential building block for many critical applications in network
operations, such as troubleshooting and network health monitoring
and visualization.

6.1 Complex network troubleshooting
Router syslog is one of the most important data source for net-

work troubleshooting, and SyslogDigest provides network opera-
tors the gist of the syslogs – high-level network events. This is
very important especially for diagnosing complex events that in-
volve protocol interactions across multiple network layers and lo-
cations.

We next examine a real-world example on PIM neighbor loss
event in the IPTV network – an event that was identified by Sys-
logDigest and is intriguingly complex.

In the commercial IPTV network, live TV streams are delivered
using native IP multicast (i.e., PIM in this example). A change
or loss of PIM neighbor session (e.g., caused by link failures) can
disrupt delivery of IPTV data streams. Hence, there are several
mechanisms implemented in the layer 2 and layer 3 network to en-
hance the service reliability. Particularly, two static layer 2 paths
are configured between each pair of routers on the multicast tree –
the primary path is the single-hop one directly connecting these
two routers and the secondary path is a multi-hop path through
routers in different VHOs. When there is a physical link failure on
the primary path, the secondary path will be used to deliver IPTV
data streams through the MPLS tunnels. The fast re-route (FRR) is
done in layer 2 so that layer 3 routing (i.e., OSPF) is oblivious of
this fail-over event, avoiding lengthy route-reconvergence impact-
ing the PIM neighbor session. In this design, PIM neighbor session
should only be impacted when there are dual failures on both pri-
mary path and secondary path. Such dual failures are extremely
rare in operational networks.

In a troubleshooting task, operators investigated a PIM neighbor
session flap event between a pair of nodes in two VHOs. The event
was somewhat unexpected because the PIM neighbor session loss
appeared to be triggered by a single link failure on the primary path
between two routers. In theory, the PIM neighbor session should
not be impacted. The event signature output by SyslogDigest re-
vealed that the secondary path had not been set up successfully
and was undergoing connection retries every five minutes. Con-
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Figure 14: Visualization based on SyslogDigest output.

sequently, the PIM neighbor session was immediately interrupted
when the primary path failed. In the event signature, hundreds of
syslog messages recorded on a dozen of routers in multiple VHOs
are associated to this SyslogDigest event. These syslog messages
are of 15 distinct error codes involving 6 network protocols across
three network layers.

If without SyslogDigest, it would easily take operators hours
to manually identify these messages among tens of thousands of
syslogs recorded at these routers and close in time to the PIM
loss event. As a matter of fact, it is not clear what time duration
should the network operators focus on in searching for related sys-
logs, simply because different protocols operate (or react to net-
work changes) at different time granularities (ranging from sub-
seconds to minutes or longer). In this particular event, the syslog
messages that indicates a failure in setting up the secondary path,
i.e., the connection retries, are several minutes apart from the link
failure. Without knowing the exact protocols and timer involved,
it is difficult to find the right time window to focus on – a short
window (e.g., ±60 seconds) would risk missing the failure infor-
mation of the secondary path, while a long window (e.g., ±3600
seconds) would certainly increase the amount of syslogs to be ana-
lyzed, slowing down operators’ investigation.

By contrast, SyslogDigest was able to uncover the complete
stream of this complex event. This is because SyslogDigest
“learns” both the types and the co-occurrence time patterns of re-
lated syslog messages, and consequently associate such syslogs to-
gether when they do co-occur.

Furthermore, even with other automated troubleshooting sys-
tems (e.g., [8]) in place, working with pre-processed high-level
events can greatly improve the efficiency compared to working with
large numbers of raw syslog events.

6.2 Network health monitoring and visualiza-
tion

It is imperative for network operators to keep track of “what hap-
pened in my network?". Visualization is often an effective way to
achieve this as operators are able to “see” what happened in the
network and how things evolve over time. The digest events from
SyslogDigest can greatly improve network health visualization.

Figures 14 and 15 show the snapshots of network status map
at 2009/12/5 16:00:00 (in 10 minute updating window) using Sys-
logDigest and using raw syslog messages, respectively. Network
topology and link load status are removed from the graph to protect
proprietary information. The circles in the map indicate events (or
messages) observed at these routers with larger circles indicating

Figure 15: Visualization based on raw syslog data.

more events (or messages) observed. We observe that only a small
number of events took place in the network then, while the corre-
sponding syslog messages range from dozens to a couple of hun-
dreds on each of these routers. Making sense of the raw syslogs
visualization requires decoding plenty of supplement information
(e.g., the pie chart shown in Figure 15 reporting the mixture of sys-
log types and counts for all events on the router). It is worth noting
that high syslog message counts do not necessarily imply more net-
work events or “bigger trouble” – the big circle in Figure 15 was
one moderate level event compare to others in Figure 14. Visualiza-
tion the raw syslog messages can potentially mislead operators to
focus on routers with more messages and delay their investigation
on more sever issues.

7. RELATED WORK
Commercial softwares, like NetCool [2] Lonix [1], that are capa-

ble of parsing and making log data. These tools, however, require
intensive domain knowledge to describe the format of logs. Xu et

al. propose a general methodology to mine the console logs and to
automatically detect system running time problem [19]. But they
assume that they have the access to source code which generate the
logs. It is not a practical assumption in the environment of router
syslogs.

Troubleshooting network problems is one of the most important
management tasks. Many approaches have been proposed recent
years [12, 11, 17, 7, 14, 13, 10]. The general idea is to apply ad-
vanced statistical methodologies to multiple raw data sources. Our
system is not specifically designed for troubleshooting, but as il-
lustrated in Section 6, it can benefit complex troubleshooting task
significantly.

Rule learning has been widely applied in acquiring insight on
different network problems. Kandula et al. [9] mine the rules in
edge networks based on the network traffic data. Brauckhoff et

al. [4] use association rule mining techniques to extract anomaly
in backbone network. Their data sources, detailed mining method-
ologies and utilities of final mining results are different from our
system. Yamanishi et al. [20] provides a dynamic syslog mining
technique on server syslogs. They focus on generating predicative
alarm for system failures. Our goal is more broad – to represent the
network events. Moreover, their syslog data are essentially logs on
the end host devices, rather than router syslogs.

The idea of extracting high level information from raw data has
been used in network traffic analysis. A few tools aggregate traf-
fic volumes and visualize the resulting aggregates. For example,
FlowScan [16] analyzes and reports on Internet Protocol (IP) flow
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data exported by routers, based on the application, the IP prefix,
or the AS identifier. eXpose [9] identifies temporally correlated
clusters of flows. NICE [14] is a correlation tool focusing on the
chronic network conditions. In comparison, our system is the first
one used for extracting network events from logs.

8. CONCLUSION
In this paper, we develop a system called SyslogDigest that

groups massive volume of syslog messages into small number of
meaningful network events using data mining techniques. Sys-
logDigest systematically identifies signatures of syslog messages,
learns association rules that capture network behaviors over time,
groups related raw syslog messages across multiple routers into
network events, and labels and prioritizes network events appropri-
ately. We evaluated SyslogDigest using real syslog data collected
from two large operational networks and demonstrated how Sys-
logDigest can be applied on complex network troubleshooting and
network health monitoring and visualization. Though we focused
on syslog data in this paper, our techniques can also be applied
on other network data. We believe SyslogDigest will be an essen-
tial building block for many network management tools. Applying
SyslogDigest on other network data and integrating it into various
network management tools are among our future work.
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