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ABSTRACT

Disks are among the most frequently failing components in
today’s IT environments. Despite a set of defense mecha-
nisms such as RAID, the availability and reliability of the
system are still often impacted severely.

In this paper, we present a highly accurate SMART-based
analysis pipeline that can correctly predict the necessity of
a disk replacement even 10-15 days in advance. Our method
has been built and evaluated on more than 30000 disks from
two major manufacturers, monitored over 17 months. Our
approach employs statistical techniques to automatically de-
tect which SMART parameters correlate with disk replace-
ment and uses them to predict the replacement of a disk
with even 98% accuracy.
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1. INTRODUCTION

Data center downtime costs have increased significantly in
the past years from $5,600/minute in 2010 to $8,851/minute
in 2016 according to a study conducted on 63 data center
organizations in the U.S [1]. IT equipment failure is a sig-
nificant contributor to such downtimes.Disks are among the
most frequently failing components in today’s IT environ-
ments. It appears that field behavior of disks is fairly dif-
ferent than the one described in the datasheet specifications
[18]. Factors such as temperature, duty cycles or workloads
may significantly affect both the reliability and the perfor-
mance of hard drives. Reliability issues are by far the most
severe and manifest themselves as disk failures leading to
replacements.

Disk failures can be either predictable or unpredictable.
On the one hand, unpredictable failures, ranging from elec-
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tronic components becoming defective to sudden crashes due
to improper handling, cannot be foreseen by monitoring. On
the other hand, predictable failures mainly result from slow
processes such as wear-and-tear that typically progress over
months or years. The latter ones make it possible for pre-
dictive failure analysis.

In this paper, we introduce a novel data mining approach
able to automatically predict disk replacements based on his-
toric disk replacement data from an expert-maintained disk
environment and hence minimize the effects of component
failure as shown in Figure 1.
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Figure 1: Availability: without proactive replacement (left) vs.
with proactive replacement(right)

SMART monitoring (disk sensors’ data) can be used to de-
termine when disk failures become more likely. Some manu-
facturers even use them to deploy drives with embedded pre-
dictive models. However, these models are proprietary and
often times, simple, threshold-based normalizations, that are
designed to avoid false alarms and therefore have a very weak
predictive power [18, 17, 12] .

In this paper, we focus on the automatic forecasting of
predictable disk replacements using SMART attributes. For
this purpose, we use data collected from a large population of
disks (>30000) monitored over 17 months. A drive is labeled
as failed when it stopped working, it is non-responsive to
commands, the RAID system reports that the drive cannot
be written or read, or it shows evidence of failing soon [2].
Therefore, the model goes beyond the expert knowledge used
in proactive replacements and is able to detect failures that
this knowledge can not capture (see Section 3.6).

The goals of our analysis are two-fold: (1) to provide the
set of SMART attributes that are informative for disk re-
placements; (2) to use these attributes to build a statistical
model that automatically predicts impending replacements
with high accuracy (81-98%). Such a model not only au-
tomates the disk replacement decision, but also allows ad-



ministrators to proactively replace disks at risk, days in ad-
vance.

To achieve these goals, we employ an approach that com-
prises four steps. First, we use changepoint detection in
time series to identify the SMART attributes indicative of
impending replacements. Second, we transform the event
sequence into a set of examples [20] by encoding multiple
events as individual points such that we achieve a com-
pact, yet informative representation of the time series of
each disk. Next, we build a predictive classification model
that is able to discriminate between healthy and failure-
impending drives, by using these data points as inputs. Fi-
nally, we propose a transfer learning approach to enable re-
placement decision prediction on data from novel disk mod-
els.

There are several challenges one may encounter when per-
forming the aforementioned steps. In the following, we list
a few of them. Since SMART indicators are manufacturer-
specific, their encoding and normalization varies widely across
manufacturers. This hinders the possibility to fit one predic-
tive model for all different disk manufacturers. A separate
model needs to be trained for each individual disk manu-
facturer. Further, due to the lack of standards when imple-
menting SMART attributes, one needs to discover the ones
that are indicative of failures. Finally, the disk data are
highly unbalanced (only about 2% of disks are replaced),
which makes the task of fitting high quality models very
challenging.

Therefore, we build and evaluate our approach for disks
from two individual manufacturers. Following our efforts to
choose the right SMART indicators and tuning the predic-
tive model, results show up to 98% accuracy in identifying
both disks that are about to be replaced and those that are
healthy, when using only a small set of SMART parameters.

The remainder of this paper is organized as follows. In
Section 2, we describe the predictive pipeline, whereas in
Section 3 we present experimental results. We discuss de-
ployment in Section 4 and finally review the state-of-the-art
in Section 5 and conclude in Section 6.

2. PREDICTING DISK REPLACEMENT

Given the longitudinal measurements of the SMART at-
tributes for a large set of disks, from a specific disk model of
interest and information on their replacements, we develop
a fully automated approach for solving the disk replacement
prediction problem. Our method is summarized in Algo-
rithm 1 and consists of four consecutive steps: (1) selection
of relevant SMART attributes, (2) compact time-series rep-
resentation, (3) balancing of the healthy and unhealthy disk
classes via informed downsampling, and (4) classification
model for disk replacements. In the following, we present
the details of each step.

2.1 Selection of relevant SMART attributes

The main goal of this step is to automatically discover
the set of SMART attributes that are indicative of impend-
ing disk replacements. This will reveal the most informative
predictors with respect to the disks at risk to the domain ex-
perts. As SMART attribute data are gathered over time, we
address this feature selection problem through changepoint
detection in time series. More specifically, when a SMART
attribute is informative of disk replacement, we expect a
significant shift in its values at some time point before the

Algorithm 1 Disk replacement prediction algorithm

Input: A time series collection of SMART attributes along
with the disk replacement information for a given target disk

type.

1. Find the subset of SMART attributes indicative of disk
replacements by identifying significant changepoints in
their corresponding time series;

2. Compute a highly-informative compact representation
for the time series corresponding to each relevant at-
tribute from Step 1 via exponential smoothing;

3. Perform informative downsampling via K-means clus-
tering to address the high class imbalance in the disk
replacement datasets;

4. Use the training dataset from Step 3 to fit a classifica-
tion model that predicts disk replacements.

Output: Predictive model for disk replacement using a
small set of SMART attributes.

actual replacement, i.e., at the changepoint. Moreover, this
shift should be permanent and unrecoverable to be indica-
tive of a disk replacement. In the following we provide a
more formal description of the approach for detecting the
permanent changepoints for SMART attributes.

Let S; = (s1,82,--,8p) denote the time series for a tar-
get SMART attribute comprising p measurements ordered
by their timestamps, where s, is the most recent one when
the disk replacement has occurred. If there exists a times-
tamp ¢ < p when a significant change in the values of the
attribute S; occurs (e.g., the values start increasing), then
we consider S; a potential attribute relevant for the disk re-
placement. We determine the time point ¢ that indicates
a significant change using the approach described in [7].
Briefly, ¢t = argmaz,_ ML(7) provided that ML(t) is signif-
icantly larger than log p(si:p | é), where:

ML(7) = log(p(s1:r | 61)) +log(p(sr41:p | 62)). (1)

Next, we verify whether the change is permanent by check-
ing whether the difference between the time series of the
potential SMART attribute and the corresponding time se-
ries of the same attribute in the absence of the observed
change at time point ¢ is significant. We do this as follows.
First, let the time series I't = (s¢,- -+ , sp) denote the subse-
quent values recorded for the potential SMART indicator S;
starting from the timestamp ¢ to the time of the replacement
p. Then, we generate a synthetic time series for the same
indicator denoted ¥ = (3¢41, - , §p) that has no significant
change at time point t. More specifically, we compute the
posterior distribution of W, p(§(141):p | S1:(¢), X1:p) given the
value of the series in the pre-change period si.: along with
the values of the control time series x1., using a Bayesian
structural time-series model. The control time series is a
sample of the values of the target SMART attribute collected
for a healthy disk. Finally, the target SMART attribute is
indicative of a disk replacement if the probability distribu-
tions of the actual time series measured after the detected
change point and the synthetic one generated based on the
values of a healthy disk are significantly different. We assess
the difference via hypothesis testing. Formally, let I'y, and



U be samples generated from unknown distributions P and
Q, respectively.
The hypothesis to test is the following:

Ho: P= Q
H1 P 7é Q
Then we check whether we can reject the null hypothesis

Hpy that the two probability distributions P and @ are equal
with high confidence.

(2)

2.2 Compact time series representation

As the previous step results in the set of relevant SMART
indicators for the disk replacement problem, the goal of this
step is to provide a compact, but highly informative repre-
sentation the time series of each indicator that can readily
be employed in the predictive model.

There are several observations that hint the necessity of
a compact representation for the time series data: (i) Each
daily observation on its own is not enough - we need to con-
sider a longer time frame - this is because the single day
record is not stable due to the recovery mechanisms embed-
ded in the disk. (ii) Also, if we considered as observations
for the failed class only the entries from the last day of the
life of the disk then the model will not be able to predict re-
placement in advance as it can only recognize the instances
when drive fails not before.

Therefore, we use a window to split the raw data set into
segments. We aggregate each of the relevant time series to a
single value using exponential smoothing over a specific time
window. This way, we assign the highest weights to the most
recent observations and exponentially decreasing weights to
the remaining observations as they get older. Intuitively
we expect that the observations closer to the time point of
the disk replacement are more informative compared to the
older ones. Formally:

St:a-Yt—&-(l—a)~St_1 (3)

In the equation above, the smoothed value at time ¢, S; is
computed recursively based on the observation at time ¢ and
the smoothed value at time ¢t — 1. When fixing the width of
the window to a value k, S: becomes the weighted average
of a certain number of the past observations up to Y;_x.A
smaller value of k causes a weaker smoothing effect which
enables higher sensitivity to new changes in the data. The
parameter « controls the speed at which the older observa-
tions are dampened. A large « is used for assigning lower
weights to observations from the more distant past.

For each relevant SMART attribute, the width of the time
window used in the smoothing process is chosen as the me-
dian of the distribution of the time stamps of their corre-
sponding significant change computed as described in Sec-
tion 2.1.

2.3 Class balancing via informative downsam-
pling

The data to be used in the predictive model is highly im-
balanced, as only a small percentage of all disks are replaced
over time. Since classification algorithms are typically op-
timized to maximize the overall accuracy, when trained us-
ing imbalanced datasets they exhibit poor predictive per-
formance. To address this issue, we balance the training
dataset for our predictive model by using a representative

subset of the data for the dense class — in our case the healthy
disks. This representative subset is chosen such that it com-
prises the most informative samples with low or no redun-
dancy. We achieve this by clustering the observations per-
taining to the healthy disk set into k clusters using the K-
means clustering algorithm [15]. Next, for each cluster, we
select the data points closest to the respective cluster cen-
troid as representatives for the healthy disk class. Finally,
we generate a balanced training dataset by choosing k close
to the number of samples available for the replaced disks.

2.4 C(lassification for disk replacements

In the final step of our approach we fit a model that uti-
lizes the training dataset generated in the previous step and
provides high quality disk replacement predictions for new,
unseen data. Formally, let D = {(xi,¥:)}i=1 denote the
training dataset, where x; € X is a multivariate tempo-
ral observation aggregating information between time points
ti—r and t; for the set of relevant SMART attributes, and y
is a binary response variable (y € {0,1}). We want to learn
a function h: X — {0,1} that minimizes the loss £(h(x);y)
that quantifies the prediction quality. Intuitively the goal
is to train a model that correctly predicts whether a disk
needs replacement (y = 1) or not (y = 0).

We tackle this problem using the regularized greedy forests
(RGF) [14] approach that is a powerful, non-linear classifica-
tion method. We show that, for this task, it delivers better
quality predictions compared to other tree ensemble based
methods such as gradient boosted decision trees (GBDT)
[21] or random forests [6] and also outperforms other classi-
fication methods such as SVM [8], or logistic regression [9].

The RGF algorithm is a variation of GBDT in which the
structure search and the optimization are decoupled. More
specifically, the main differences are given as follows:

e RGF introduces an explicit regularization term that
takes advantage of individual tree structures.

h = argminnen[(h(x);y) + R(h)] (4)

e RGF employs a fully-corrective greedy algorithm which
iteratively modifies the weights of all the leaf nodes
(decision rules) currently obtained while new rules are
added into the forest by greedy search. Here, an ex-
plicit regularization is also included to avoid overfitting
and very large models.

e RGF utilizes the concept of structured sparsity to per-
form greedy search directly over the forest nodes based
on the forest structure.

The general framework of RGF is given in Algorithm 2 which
we describe in the following.

F represents a forest, and each node v of F' is associated
with the pair (by, a,), where b, denotes the basis function of
node v and a, the weight assigned to this node. The model
of F' is given by hp@) = avby(x) with a, = 0 for any
internal node v.

In this setting, the regularized loss specified in Eq. 4 is
a function of F: Q(F) = 4(hr(x),y) + R(hr). Further,
S(F') represents the set of all structure-changing operations
applicable to F' (i.e. the split of a node or the addition of a
new tree).

veEF



Algorithm 2 Regularized Greedy Forest framework

Algorithm 3 Transfer learning for different models

F{}
while stopping criterion not met do

Fix weights and adjust forest structure s:

5 «— argmingegr)Q(s(F)) (the optimum s that
minimizes Q(F) among all the structures that can be
obtained by applying one structure-changing operation
to F).

if some criterion is met then

Fix the structure and change the weights in F's.t.
the loss is minimized in Q(F') (it can be optimized using
a standard procedure (such as coordinate descent) if the
regularization penalty is standard e.g., L2-loss

end if
end while
Optimize leaf weights in F' to minimize loss in Q(F)
return hr(x)

2.5 Transfer learning

As illustrated in Figure 5 in Section 3.5, the data col-
lected from different disk models are different. We observe
the fact that different models of a single disk manufacturer
have similar SMART reporting but different distributions
of the values reported for the SMART attributes. There-
fore, utilizing an existing predictive model created on the
training data of a specific disk model will not deliver the op-
timal predictive performance when directly applied on the
data collected from a different disk model from the same
manufacturer. In data mining, this problem is referred to as
sample selection bias, covariate shift or dataset shift. There-
fore, we apply a transfer learning approach in order to be
able to use a prediction model trained on specific disk model
for a new disk model of the same manufacturer.

Note that such an approach is valuable as it transfers the
expert knowledge gathered over the years through historic
data to a new disk model from a given manufacturer of in-
terest. We tackle the described dataset shift issue we have
across disk models of a given manufacturer as follows. We
leverage the unlabeled data for the target (new) disk model
to conduct a sample selection de-biasing, as described in
Algorithm 3. The idea behind the algorithm is to train a
classifier that can rank the observations linked to a specific
disk model based on their similarity to observations pertain-
ing to the target disk model. Furthermore, this enables to
sample the observations from the original disk model (which
are already labeled) that are more representative for learning
the class labels for the target disk model, i.e. that matches
the distribution of the original disk model to the target disk
model. Learning a predictive model using a training sample
that reflects the distribution of the new disk model results
in higher quality predictions.

3. EVALUATION

In the following, we present our experimental setup and
the results obtained in each step of our approach.

3.1 Data description and experimental setup

Our analysis is based on the Backblaze dataset’. The
set contains data collected from 50984 hard disks, moni-

Thttps://www.backblaze.com/hard-drive-test-data.html

Input: Dpa, = {zi,yi}7, the labeled data collected from
disk model 1, and Dpn, = {z},9;}* the unlabeled data
from disk model 2.

1. Let Dpa, = {xi,yi}i be the labeled data collected
from disk model 1, and Dpas, = {7}, y;};* be the un-
labeled data from disk model 2.

2. Let Daug = {wi, “DM1” }7 U {a}, “DM2" }7*

3. Use Dgug to learn a function f: X — [0,1], such that
f(x) represents the probability of a disk being of type
“DM;” or “DMy".

4. Sample a subset Dsyp from Dpas, according to f .

5. Use Dgyp to learn a function g : X — [0, 1] (call the
procedure in Algorithm 2) such that g(z) represents
the probability of a disk of type D M3z needing replace-
ment.

Output: Predictive model for disk replacement for disk
model 2.

tored over 27 months (April 2013 to June 2015) with daily
granularity. The data collected contains the following: (1)
timestamp, (2) disk serial number, (3) disk model, (4) disk
capacity, (5) failure - 0’ if the drive is alive and ’1’ if the
disk has been replaced the following day, and (6) SMART
statistics. From the disk models, we extract the manufac-
turers and we restrict our analysis to Hitachi® and Seagate’
due to the fact that for the other manufacturers there are
only few samples in the dataset, or poor population of the
SMART parameters. We also exclude all monitoring data
between April 2013 and January 2014, as more than 70% of
the SMART parameters are not collected. Thus the dataset
we consider is gathered over 17 months.

First, we build and evaluate the predictive model described
in this paper for Seagate ST4000DMO000 (SgtA) and Hitachi
HDS722020ALA330 (HitA). Then, we evaluate the transfer
learning approach on Seagate ST31500541AS (SgtB) and
Hitachi HDS5C3030ALA630 (HitB), respectively. Further
details on the data are presented in Table 1.

Original
H R
SgtA | 247524 | 543 | T7769 | 457
SgtB | 30859 375 | 2188 227
HitA | 75618 150 | 4616 115
HitB | 74040 80 4662 73
Table 1: Healthy (H) vs. replaced (R) disks in the raw dataset
and after data cleaning and aggregation for Hitachi and Seagate.

Post-aggregation
H R

3.2 Selection of relevant SMART attributes

First, note that for each SMART indicator there are two
values recorded — the raw value, and the normalized value.
The raw value often represents counts or a physical unit
(e.g., degrees Celsius or milliseconds). The normalized val-
ues are a vendor specific mapping of the raw values such
that, typically, higher values indicate healthy disks with
some exceptions (e.g., the temperature attribute for Seagate
models). A detailed breakdown of the SMART parameters
is found in [4].
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Figure 2: Differences between the forecasted and the observed
values for SMART_187_raw.

As presented in Section 2, we find SMART indicators rel-
evant for disk replacements via changepoint analysis.

In Figure 2, we illustrate the evolution of the time series
for the parameter SMART_187_raw (reported uncorrectable
errors) over 80 days for SgtA disk. Note that after 50 days of
usage the disk starts to accumulate uncorrectable errors, up
to the point where a replacement is necessary. Since there
is a significant difference between the time series observed
on days 1 to 50 and the one observed on days 50 to 80, our
algorithm detects a changepoint 30 days before the disk has
been replaced.

Hitachi

[Hitachi \ [l
Seagate 4 \ | | Seagate
\ ool |
| |
oo | [ |
| ]
| [
ool [

|
|

£ J £ I
) A A

) [
s / \
. oz |
| \
/ \
[ \
— N / g
) / N
b -
oe 0000 = =
E w 5

s EJ
Temperature

mF'ower on/!:)ﬁ cycles "
Figure 3: Distribution of the temperature and of the power on off
cycles across the replaced disks for Hitachi and Seagate.

We perform the changepoint analysis for both Seagate and
Hitachi disks and present the results in Table 2. For each of
the considered SMART parameters we report the percentage
of drives for which a correlation with disk is observed.

For Seagate, 63% of the replaced drives correlate with an
increase in SMART_193_raw (the load cycle count), and be-
tween 19 and 26% of them also correlate with SMART_7_raw
(seek error count), SMART_1_normalized (read error rate),
SMART_240_raw (transfer error rate), SMART_197_raw (nr.
of pending sectors), SMART_198_raw (uncorrectable sector
count), SMART_187_raw (number of uncorrectable errors),
as well as SMART _5_raw (reallocated sector count).

For Hitachi, only some of these SMART parameters are
indicative of drive replacements. Among the top correlated
indicators for Hitachi (30-47%), we note SMART_196_raw
(reallocation event count), SMART_194 normalized (inter-
nal temperature), SMART_5_raw and SMART_197_raw.

We also note that it’s mostly the raw values of SMART
indicators that correlate with impending replacements. This
is expected, since, the normalized values are computed based
on generous thresholds, where a replacement can also occur
before the normalized value changes at all.

The changepoint analysis also shows that some SMART
indicators correlate stronger with the replacements of the

SgtA HitA
Ratio | Inp. | Ratio | Inp.
SMART_1_norm 23% v 28% v
SMART_1_raw 2% v 15% v
SMART_3_norm — X 13% v
SMART_3_raw — % 15% v
SMART_5_norm 2% v 22% v
SMART_5_raw 19% v 31% v
SMART_7_norm 14% v — X
SMART_7_raw 26% v — %
SMART_183norm | 0.5% | x — %
SMART_183_raw 0.5% | x — %
SMART_184 norm | 1% v — X
SMART_184_raw 1% v — X
SMART_187_norm | 21% v — X
SMART_187_raw 21% v — X
SMART_188_norm | 0% X — X
SMART_188_raw 10% v — X
SMART_189_norm | 1% Ve — X
SMART_189_raw 1% v — X
SMART_190_norm | 2% v — X
SMART_190_raw 2% v — X
SMART_193_norm | 10% v — X
SMART_193_raw 63% v — %
SMART_194 norm | 2% v 31% v
SMART_194_raw 2% v 2% v
SMART_196_norm | — % 20% v
SMART_196_raw — X 26% v
SMART_197_norm | 5% v 4% v
SMART_197_raw 27% v 22% v
SMART_198 norm | 6% v — %
SMART_198_raw 27% v — X
SMART_199_norm | 0% X — X
SMART_199_raw 0.5% | x — X
SMART_240_norm | 0.5% | X — X
SMART_240_raw 21% v — X
SMART_241_norm | 0% — — X
SMART_241_raw 15% v — X
SMART_242_norm | 0% X — X
SMART_242_raw 19% v — X
Table 2: SMART correlation frequencies for SgtA and HitA. A

V'indicates the predictor is included in the classification task.

Seagate model than with those of the Hitachi model, and
vice versa. We discuss these differences in the context of
SMART_194 (the disk internal temperature). Relative to
temperature, 31% of the Hitachi replaced disks correlate,
compared to only 2% for Seagate. We attribute this to the
overall higher temperatures that characterize the Hitachi
disks, as shown through the comparative plots in Fig. 3.
Although the distributions are similar, there is a clear shift
towards higher temperature for Hitachi, by 5 to 10 degrees
Celsius.

3.3 Compact time series representations

Fig. 4 shows the distribution of the number of days be-
fore replacement when the changepoint was observed for six
SMART indicators (read error rate, the number of reallo-
cated sectors, the number of pending sectors, the reported
uncorrectable errors, the seek error count and the transfer
error rate). Note how the median values are different from
one predictor to another. We use these median values to
select the length of the window of the time series when cre-
ating the compact representation.

We notice that on the one hand, for the number of real-
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Figure 4: Distribution of the number of days before replacement when the changepoint was observed.

located sectors and of pending sectors (SMART_5_raw and
SMART_197_raw), considering the last 12 and 10 days, re-
spectively, before the disk replacement in the predictive model
is sufficient. This is because an increase in either of these
two parameters indicates that a remapping operation is nec-
essary (i.e., data from the defective sector is transferred to a
spare area). As shown in [17], a drive which has had any re-
allocated or pending sectors at all is significantly more likely
to fail in the nearest future. An even stronger indicator for
replacement is the read error rate (SMART_1_raw), which
represents the rate of hardware read errors while reading
data from the disk surface. It indicates a critical problem
with the read/write heads (e.g., head resonance or contam-
ination, broken head, etc.) and in most cases an imminent
failure. From our dataset, we find that for this predictor,
looking back only 4 days in the past is sufficient for the pre-
dictive model. Similarly, a drive with uncorrectable errors
as indicated by SMART_187_raw (i.e., cannot be recovered
using hardware ECC) may need to replaced about 15 days
after the event.

On the other hand, for the seek and transfer error rates
(SMART_7_raw and SMART_240_raw), the algorithm con-
siders the past 25 days in the aggregation process. Both are
indicative of malfunctions of the magnetic heads, but hinder
performance primarily and lead to failures only in a second
phase. For instance, seek errors hint at the drive overshoot-
ing or undershooting the correct track when it moves the
heads. This implies it will need to perform another seek to
acquire the track before it can read or write data.

3.4 Classification for disk replacements

Since only 2.5 to 3% of the disks for both SgtA and HitA
models are replaced, the classifier will be biased towards the
healthy drives. Thus, we downsample the healthy class to
an amount that is close to the size of the replaced class. We
choose to downsample to 1000 for SgtA and to 500 for HitA.
These values are chosen based on the error estimate of the
Regularized Greedy Forest (RGF) classifier. Consequently,
we run K-means with 100 and 50 clusters as inputs and
subsequently for each cluster we select the top 10 data points
closest to the centroid of each cluster.

The SMART attributes used to build the predictive model
correspond to the rows that have non-null entries and values
higher than 1% in Table 2. In essence, for the Seagate model
we use 26 SMART predictors and for the Hitachi model only
12. This discrepancy in the amount of predictors we feed to
the Seagate model versus the Hitachi one will be reflected
in the difference in performance of the classifiers.

To evaluate the classifier’s performance, we measure pre-
cision, recall and F-score as defined below, for both replaced
and healthy classes. Precision is used to measure the abil-
ity of the classifier to correctly identify disks at risk. Recall
measures the classifier’s sensitivity, i.e the the ability of the
classifier to capture all replaced disks. A higher recall is
equivalent to minimizing the number of false negatives (i.e.,
the number of disks labeled as healthy when they were ac-
tually replaced). The F-score is the combined score between
precision and recall, or the weighted harmonic mean.

2PR
P+ R

tp

tp .
R= tp+ fn

P=——7o F-score =
tp+ fp

We perform a systematic comparison with different classi-
fiers. In order to assess the goodness of each classifier we run
the following experiment. We generate 100 random splits
of the dataset into training (80%) and test (20%), and for
each such split, we train the model on the training set and
evaluate it on the test set and compare the performance of
RGF with that of other classifiers such as Random Forests
(RF), Gradient Boosted Decision Trees (GBDT), Support
Vector Machines (SVM), Logistic Regression (LR) and de-
cision trees (DT).

For a fair comparison, we have performed parameter tun-
ning (grid search on parameter space to maximize accuracy)
for all the parametric classifiers. For RGF we have obtained
the best performance when using the L2 regularizer. There
were two L2 regularization parameters to be tuned: one for
weight optimization — which was set to 1 and and the other
for tree learning which was set to 0.005. The model size in
terms of the number of leaf nodes in the forest was set to
10000 leafs. The results are given in Table 3.

In case of the replaced disks, the model exhibits better
prediction quality for Seagate, where we have 4x more data



RGF GBDT RF SVM LR DT
SgtA | HitA | SgtA | HitA | SgtA | HitA | SgtA | HitA | SgtA | HitA | SgtA | HitA

P [0098 [084 [097 [082 [093 [082 [093 [072 [0.73 [072 | 0.9 [0.74
Replaced [ R [ 098 [0.79 [ 096 [078 [094 [076 095 [065 |08l [059 [ 087 [06]

F [0.98 [0.8] [0.96 [0.80 [0.94 [0.79 [0.94 | 0.68 [0.77 [0.65 | 0.88 | 0.67

Sd[0.01 [0.02 |00l [004 [005 [008 [002 [005 [007 |01 0.04 [ 0.03

P [099 [093 [098 [092 [097 [092 [097 [087 [08) [085 [094 |0.86
Healthy [R [098 [ 095 [098 [094 [ 096 [093 [096 | 090 [085 [ 090 [095 |00l

F [0.98 [0.94 [ 098 [093 [ 097 [092 [096 | 088 [087 |087 | 094 0388

Sd [ 0.0I [0.02 [0.02 [003 [ 004 [005 [002 [004 [0.08 [005 [0.02 [0.02

Table 3: Precision, Recall, F-score, Dev

and test data points

iation of different classifiers - median on 100 runs , each of which using randomly-drawn training

points and 2x more non-null SMART indicators, with 98%
accuracy and 1-2% error over 100 runs. The precision, recall
and F-score for Hitachi are lower by 14-19% and the error
is higher — 2%, due to a smaller number of drives in the set
and 60% less predictors.

For the healthy class, the model achieves similar perfor-
mance for Seagate as on the replaced class, with 99% pre-
cision and 98% recall and F-score. In the case of Hitachi,
the model achieves better performance in discriminating the
healthy drives as compared to the faulty ones, by 15% on
average. We attribute this boost in accuracy to the fact
that healthy disks are easier to identify due to the lower
variability in the values of the SMART parameters recorded
for them.

3.5 Transfer learning

Figure 5 illustrates the covariate shift for various relevant
predictors between different disk models from the same man-
ufacturer. This demonstrates that if we want to reuse the
data from one model to build a predictive model for another
one we need to employ appropriate transfer learning.

SMART_1_NORMALIZED SMART_7_NORMALIZED

SgtB HitB
Base | Tr. Learn. | Base | Ir. Learn.

Replaced | P 0.65 | 0.90 0.53 | 0.76
R 1052 | 0.82 0.84 1 0.78

F 0.58 | 0.86 0.65 | 0.77

Healthy P 0.89 | 0.96 0.92 | 0.83
R 1093 | 0.98 0.73 | 0.82

F 0.91 | 0.97 0.8T | 0.83

Table 4: Precision, recall and F-score to illustrate the importance

of transfer learning

and HitB, respectively) compared to directly evaluating the
base model (trained on SgtA and HitA, respectively) on
the new disk models is shown in Table 4. We obtain 50%
increase in the accuracy of the model with transfer learn-
ing compared to the accuracy of the base for model SgtA.
Also for Hitachi, transfer learning boosts the accuracy of the
model by 20%.

3.6 Comparison with human designed replace-
ment policies

A drive is labeled as failed when it stopped working, it is
non-responsive to commands, the RAID system reports that
the drive cannot be written or read, or it shows evidence
of failing soon [2]. Currently, datacenter administrators at
Backblaze only focus on a very small set of SMART indica-
tors (5, 187, 188, 197, 198) [2]. However, we illustrate that
if one were to do proactive replacement using only this small
subset of indicators, the number of disks one could correctly
identify drops by almost 50%.

In order to mimic a set of such replacement rules we train
a decision tree on the aforementioned subset of SMART in-
dicators. We report the results in Table 5.
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Figure 5: Covariate shift for the two Seagate models

To illustrate the usefulness of our transfer learning ap-
proach we compare the models trained and evaluated on
SgtA and HitA with the models built with transfer learning
and tested on SgtB and HitB, respectively. The results are
given in table Table 4.

The gain in predictive performance achieved from using
transfer learning when building the new disk models (SgtB

DT on the reduced subset
SgtA | HitA
Precision | 0.95 0.66
Replaced | Recall 0.53 0.44
I-score 0.68 0.51
Sd 0.06 0.15
Precision | 0.70 0.84
Healthy Recall 0.98 0.96
F-score 0.81 0.92
Sd 0.02 0.12
Table 5: Simple decision tree with (insufficient but commonly

used) subset of SMART indicators

Note the differences in recall for SgtA and HitA for our
model (98% and 81% respectively) compared to a simple
rules based model (53% and 44% respectively) — see Table 5
vs. Table 3. Our solution employs powerful learning meth-
ods, leverages a larger set of relevant SMART attributes and
hence has numerous advantages: captures a higher amount



of the failure patterns of disks (high recall), it has low false
alarm rate, early detection of disks that need to be replaced,
and enables transferring the knowledge acquired by expert
data center administrators on specific disk models to new
disk models from the same manufacturer.

3.7 Early vs. late replacement detection

While one would prefer to use as much as possible from the
lifespan of a disk, being able to detect an impending failure
early on allows administrators to plan properly for replace-
ments. Therefore, we evaluate how many of the replaced
disks our model correctly captures based on snapshots of the
SMART indicators taken 1, 3, 10 and 30 days prior to the ac-
tual replacement. We expect this amount to be higher when
using the snapshots closer to the failure event, since SMART
attributes would become more indicative of the impeding re-
placement, thus making the model more accurate. Figure 6
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Figure 6: Percentage of disks correctly predicted as replaced on
snapshots taken 1,3,10 and 30 days before the actual replacement
event.

shows the results obtained for both Seagate and Hitachi. On
the one hand, for SgtA, the model correctly identifies 97%
of the faulty disks 3 days prior, 92% of them 10 days in ad-
vance and, then, sees a more significant decrease to 73% for
up to 30 days in the past. On the other hand, for HitA, the
decrease in percentage is less dramatic, as 84% of replaced
disks are predicted 3 days before the event and 75% of them
30 days prior. The ratio late vs. early detection is similar
for the model built with transfer learning for SgtB and HitB.
Compared to the current predictive model implemented in
SMART, which mostly warns about a disk failure in the last
minute, our model has a major advantage. For both Sea-
gate and Hitachi, an administrator can identify 73 to 75%
of the disks to replace a month in advance, which provides
her/him with the possibility of planning the replacement in
advance, while still using the drives for another 25-30 days.

3.8 SMART indicator rules

Once we have the balanced training dataset comprising
the informative SMART attributes in a compact form (this
is obtained by running steps 1 through 3 in Algorithm 1)
we can use it to fit a decision tree and extract a set of rules
that can be used to predict disk replacements. We present
rules that are of the form of the underlying learner, more
specifically:

Rule(x) = [ [ Z(x[i;] < t;) [ [ Z(x[ix] > tx) (5)
J k

where {(i;,t;), (ix,tr)} represent a set of (smart attribute
index, threshold) pairs and Z(z) = 1 if z is true and 0 other-
wise. The rules provide a detailed insight into the informa-
tion on the relation among the relevant SMART attributes
and the disk replacements available in our training dataset.

Examples of such rules for both SgtA and HitA are pro-
vided in Table 6, together with the predicted outcome for
the disks adhering to these rules and the prediction confi-
dence. Each rule is composed of one or more single SMART
parameter conditions. The fewer conditions, the higher the
correlation of the corresponding SMART indicators to the
healthy or faulty state of the disks. For instance, in the case
of Seagate, the second rule states with 100% confidence that
if SMART_197_raw is at least 2, that is the disk has at least
two pending sectors, it should be replaced. On the other
hand, if its value is below 2, the outcome of the prediction
can go both ways, depending on other parameters’ values.
As an example, consider rules 1 and 3, in which the one
indicator that changes the prediction output is the normal-
ized read error rate (SMART_1_normalized). As predicted
by our decision tree model, if the number of read errors ex-
ceeds 800 thousand, than the disk status is unhealthy.

For Hitachi, the majority contain at most three conditions.
As seen in lines 5-8, an indicative combination of attributes
is (SMART_197_raw, SMART _3_raw). Line 5 shows that
if the number of pending sectors is higher than 1 and the
average time spent during a spin up operation exceeds 626
milliseconds, the model predicts an impending faulty state
of the disk with 100% confidence. However, if the spin up
time is lower, it also considers the number of reallocated
sectors in its decision and determines that even with less
than 17 such sectors, the disk should be replaced (Line 7).
A healthy state is predicted with 97% confidence when the
disk has no pending and at most 7200 reallocated sectors,
a slow spin up time (i.e., higher than 629 milliseconds) and
less than 109 read errors.

Comparing Seagate and Hitachi, we make the following
remarks. First, the primarily important SMART indicators
are sowewhat different. The pending sector count and the
read error rate seem to be model and even manufacturer
agnostic, while the command timeout (SMART_188), the
average spin up time and the reallocated sectors count are
disk model-specific. Second, we note a very large difference
in the number of read errors that determine a faulty disk
state. For Seagate, this threshold is in hundreds of millions,
while for Hitachi they are 6 orders of magnitude lower. We
attribute this gap to the fact that this indicator is vendor
specific, and therefore a comparison across manufacturers is
not feasible.

4. DEPLOYMENT

Our predictive model has been designed to reduce disk
failures and allow for more efficient, scheduled maintenance
processes in place of the inefficient, reactive repair proce-
dures. Especially for enterprise workloads, where more than
99.9% data availability needs to be guaranteed, current stor-
age systems use incorporated Predictive Failure Analysis
(PFA) components to anticipate certain forms of disk fail-
ures. Such models are often threshold-based and use only
read and write error counts to nominate disks for replace-
ment. As shown in Table 4, thresholds lead to less accurate
replacement decisions, therefore integrating our approach
enables more precise replacement strategies.

We exemplify how our component could be integrated for
rebuilding a RAID 5 array when a disk is signaled as likely
to fail, through smart rebuild [3].

An early signal enables the disk to still be available for
I/0 operations, and thus be kept in the array, rather than



Line | Model Rule Outcome | Confidence
1 Seagate If SMART _197_raw < 2 and SMART _188_raw > 0 Healthy 100%
and SMART_1_normalized € [0,117)
2 Seagate If SMART _197_raw > 2 Replace 100%
3 Seagate If SMART _197_raw < 2 and SMART _188_raw > 0 Replace 80%
and SMART_1_normalized > 117
4 Seagate If SMART _197_raw < 2 and SMART_188_raw =0 Replace 97%
and SMART_187_normalized < 100 and SMART_240_raw < 14780 billion

5 Hitachi If SMART_197_raw > 1 and SMART _3_raw > 626 Replace 100%

6 Hitachi If SMART 197 _raw > 5 and SMART _3_raw < 626 Replace 92%
and SMART _5_raw > 17

7 Hitachi If SMART _197_raw > 1 and SMART _3_raw < 626 Replace 100%
and SMART _5_raw < 17

8 Hitachi If SMART_197_raw < 1 and SMART _5_raw < 7200 Healthy 97%

and SMART _3_raw > 629 and SMART _1_raw € [0, 109]

Table 6: Examples of rules extracted from a decision tree model trained on the Seagate and Hitachi datasets obtained with Algorithm 1.

being rejected because of a standard rebuild. A spare disk
can be either used from the array or brought in if none is
available. The signaled drive and the spare are put in a tem-
porary RAID 1 (full mirroring). This allows the duplication
of the faulty drive onto the spare, rather than performing
full RAID reconstruction which slows down the entire ar-
ray’s performance. The spare becomes a regular member of
the array and the signaled-to-be-faulty disk can be safely
removed from the disk, without any risk of data loss. By us-
ing such models that can detect failures early in advance and
have low ratios of false positives, the array would never have
to go through a time consuming n — 1 disks stage where it
would be exposed to complete RAID failure if an additional
drive fails in the meantime. Therefore, the benefits — time
saving and increased availability — are substantial.

Integration of the Component
with a Raid Array

Predictive
replacement
component

Signal as
faulty (1)

> Start Raid 1 ==
L]

Replace (é}

Raid Array

Figure 7: Integration of the predictive replacement component
with storage arrays

In Figure 7, we show how our predictive component could
be used in interaction with the RAID array and the steps
necessary for the automatic rebuild: (i) the predictive com-
ponent signals a disk with impending failure, (ii) the mirror-
ing process is started on the spare, (iii) the unhealthy disk
is replaced by its healthy mirror. In this setting, the process
falls back to RAID rebuild only if necessary (e.g., mirroring
is not possible).

Our failure model can be deployed in large scale environ-
ments (e.g data centers), provided that two conditions are
fulfilled. First, the SMART parameters identified as rele-
vant (see Table 2) are continuously measured by the man-
ufacturer. Second in order to learn such model for differ-
ent manufacturers, even though failed disks represent only
a small fraction compared to the healthy ones, in absolute
terms, these need to be in the order of hundreds for the
model to achieve precision and recall higher than 80%.

S. RELATED WORK

Researchers have performed a couple of large-scale studies
on disk failures, the most notable ones pertaining to the au-
thors of [18, 17]. They observed that the field replacement
rates of drives are significantly higher than those in the tech-
nical datasheets — 2-10 times higher for disks aged less than
5 years and up to 30 times higher for disks between 5 and
8 years. They also demonstrate a significant overestimation
of MTTF by the manufacturer. The authors also observed
a continuous increase in the replacement rates, starting al-
ready in the second year of operation and a high correlation
between the first error and a later disk failure. Our analysis
also confirms these findings.

This line of research is complemented by works of [5,
11, 13, 16, 19] where the focus is on building a predictive
model for the timely discovery of impending disk failures.
In [11], the authors employ Bayesian methods to model disk
drive failures based on SMART data. First, they solve an
anomaly detection problem (i.e., by looking back in the life-
span of the drive and establishing if any of the previous
observations is an anomaly). They achieve this by apply-
ing a mixture model based on naive Bayes clusters trained
using expectation-maximization. Second, they train a naive
Bayes classifier which predicts that a drive will fail if any
of its snapshots are identified as anomalous or as failures.
They evaluate the approach on a smaller dataset, consisting
of 1936 drives, out of which only 9 were marked as failed,
with a detection rate of up to 55% only.

The authors of [13] explore the capabilities of statistical
tests such as the multivariate rank sum test to improve fail-
ure warning accuracy and lower false alarms. Their dataset
is also fairly small with only 3744 drives (out of which 36
failures), coming from two different models and with each
set containing at most 3 months of reliability design test
data. The highest accuracies achieved were modest (40%-
60%) at 5% AFR. A different model for predicting failures
is proposed in [16], comprising of an algorithm based on the
multiple-instance learning framework and the naive Bayes
classifier. The dataset used was again very small - only data
from 369 drives.

There are several key differences between the aforemen-
tioned studies and ours. First, the number of disks we con-
sider is significantly larger, with over 23000 drives. Second,
our approach focuses on selecting the SMART indicators
that correlate with disk replacements and proposes stable
representations of the time series data for each disk as input



to the predictive model. Last, but not least, some studies
are based on monitoring data from drives used in accelerated
life tests, whereas we rely only on field data collected when
the disks where in actual use. The problem with data col-
lected during testing in uniform controlled environments is
that although it can be insightful in understanding the role
of certain environmental factors, it has been shown to be
not informative enough with respect to actual failure rates
observed in the field [10].

Finally, we note that some manufacturers deploy the disks
with embedded failure predictive models. However, these
models are based on simple methods, such as threshold-
based normalizations which according to field observations
these models are built such that they avoid false alarms at
the expense of a weak predictive power [18, 17, 12].

6. CONCLUSIONS

In this paper, we present a machine learning-based pipeline
for predicting disk replacements, built and evaluated on real
data from a large disk population from two different man-
ufacturers. We demonstrate the ability of our model built
using SMART data to predict disk replacements with high
accuracy. A changepoint based feature selection and a com-
pact representation of the time series data for the SMART
indicators plugged into a RGF classifier achieves up to 98%
accuracy in predicting replacements, 10-15 days in advance.
As expected, such models are sensitive to the number of
SMART attributes they learn from and the size of the train-
ing data. Given that in our original dataset there were con-
siderably less indicators with non-null values for Seagate,
we were able to build a model with 24 attributes for Sea-
gate contrary to 12 only for Hitachi. This together with
the dataset size explains the 17% difference in accuracy for
the two disk models — 98% and 81%, respectively. We also
demonstrate how transfer learning can be used to reuse the
information available in the labeled dataset for a disk model
from a specific manufacturer to build a high quality predic-
tive model for a new disk model from the same manufacturer
with no available labeled data.

We believe that such high quality models have many prac-
tical benefits. First of all, they can be easily applied to any
disk model or manufacturer as long as SMART data is col-
lected. Second, they provide an automatic tool for the disk
replacement problem that can be a valuable asset enabling
the administrators to identify faulty disks in due time. Last
but not least, the predictive models mitigate the reliability
issues of storage service providers by allowing administra-
tors to backup the data and plan the actual replacement in
advance. Also, note that all these benefits are achievable
based only on data that is automatically collected from the
disk and no extra effort is necessary.

1Seagate is a trademark of Seagate Technology LLC.
2Hitachi is a registered trademark of Hitachi, Ltd., and/or
its affiliates in the United States and other countries.
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