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Introduction

e Proactive fault handling requires prediction of failures

¢ Online failure prediction is short-term failure predictions
based on the current runtime system's state
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Figure 1. Time relations in online failure pre-
diction: ¢ — present time; At¢; — lead time;
At,, — warning time; At, — prediction period;
Aty — data window size
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Classification of Failure prediction Techniques

Online failure prediction methods

Evaluation of detected faults (errors) Evaluation of symptoms Evaluation of previous failures
Based on time only Based on time + type Based on type only
DFT HSMM, SEP Eventset MSET, UBF

Reliability model-based

¢ Failure prediction based from previous failures is closely related
to reliability prediction

e Majority of existing techniques are symptom based
— Symptoms are side-effects of faults
— Memory consumption, no of running processes etc.
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HSMM-based Failure Prediction
¢ Basic assumption:

— Failure-prone system behavior can be identified by
characteristics patterns of errors.

e Approach

— Error event timestamps and message IDs form an error
sequence

— After some data preprocessing, failure and non-failure error
sequences are extracted

— Two HSMMs are trained: Failure and Non-Failure sequences
with parameters Ap and A .
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HSMM-based Failure Prediction

failure sequence 1 non-failure sequence 1 failure sequence 2 non-failure sequence 2.
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Non-Failure Sequence HSMM ‘

Figure 3. Two HSMMs are trained: One for failure sequences and one for non-failure sequences.
Sequences consist of errors A, B, or C that have occurred in previously recorded training data.
Failure sequences consist of errors that occurred within a time window of length A¢; preceding a
failure (A) by lead time At,. Non-failure sequences consist of errors that occurred at times when no
failure was imminent.
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HSMM-based Failure Prediction

time
* The goal is to assess, whether
a given an error sequence

‘ Non-Failure Sequence HSMM

0=[00...0L]is failure
prone or not

sequence likelihood M M sequence likelihood

Classification

* Sequence likelihood P(ol)\)

— Probability that a given model 4
can generate observation
sequence 0

— Sequence likelihood is
computed for both models

Failure Prediction

Figure 4. Online failure prediction. At the oc-
currence of error A (present time), the se-
quence under investigation consists of all er-
rors that have occurred within the preceding
time window of length At,. Failure prediction
is performed by computing sequence likeli-
hood of the sequence using both the failure
and non-failure model. Both likelihoods are
evaluated using Bayes decision theory for
classification as failure-prone or failure-free
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HSMM-based Failure Prediction

e (riteria for classification:
— Classify sequence o as failure-prone, iff

log [P[O|)\p]] — log [P(o|)\;ﬂJ] p

CFF — CFF P(ﬁ)}
log | ——— | +log
§ Lpﬁ —CFF} ] {P(F) J

s

~
€(—ooj00) const.

- ¢,, denotes the associated cost for assigning a sequence of type
tto class a,

* e.g., ¢ denotes the cost for falsely classifying a failure-prone sequence
as failure free.

— P(F) and P(F") denote class probabilities of failure and non-
failure sequences, respectively
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Reliability-based prediction

* A simple reliability model is represented by an
exponential distribution and is used for comparison

F(t)y=1—¢e 7

— F(t) denotes the probability of a failure until time ¢ and R(t)
denotes reliability

¢ Failure rate is set to the inverse of mean-time-to-failure
(MTTF)

A failure is predicted according to the median of the
distribution.

e After each failure that occurs in the test data set, the
timer is reset and prediction starts again.
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Dispersion Frame Technique (DFT)

¢ A Dispersion Frame (DF) is the interval time between
successive error events

* The Error Dispersion Index (EDI) is defined to be the
number of error occurrences in the later half of a DF

* A failure is predicted if one of five heuristic rules fires
— one rule puts a threshold on error-occurrence frequencies

— another on window-averaged occurrence frequency
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Figure 3. Dispersion Technique
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Eventset-based Method

e This method is based on a set of events (errors) preceding
a target event (failure).

* The goal is to set up a rule-based failure prediction
system containing a database of indicative eventsets

* For each error, current set of events Z is formed from all
errors that have occurred within Az, before present time.

* Database DB of indicative eventsets 1s then checked
whether Z is a subset of any D ¢ DB. If so, a failure
warning is raised at time A¢, in the future.
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Eventset-based Method

failure window 1 non-failure window| failure window 2
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Initial eventset
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keeping only frequent, accurate,
validated, and specific eventsets

final eventset
database

Figure 6. Eventset-based method. An
eventset is the set of error types that have
occurred within a time window of length Az,
preceding a failure (A) by lead time At
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Experiment Description

¢ The prediction techniques are applied to a commercial
telecommunication system
¢ Failure definition:

— An event such that for a non-overlapping five minute intervals,
the fraction of calls having response time longer than 250ms
exceeds 0.01%

e Metrics

— Precision: fraction of correctly predicted failures in comparison
to all failure warnings

— Recall: fraction of correctly predicted failures in comparison to
the total number of failures.

— F-Measure: harmonic mean of precision and recall

— False positive rate: fraction of false alarms in comparison to all
non-failures.
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Contingency Table and Metrics formulas

Truth
Failure Non-failure
] . True positive | False positive
3 Failure (TP) (FP)
@ Non- | False negative | True negative
& Failure (FN) (TN)
(a)
Metric Formula
precision p= ﬁ

~all= i =t = TP
recall=true positive rate | r =1Ipr = rp1pxw

false positive rate for = %
F-measure F =2y

ptr

(b)

Figure 8. Contingency table (a) and definition
of metrics (b)
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Figure 12. Prediction performance of the HSMM approach. precision-recall plot (left) and ROC curve
(right). The various symbols denote different classification threshold values

Prediction technique | Precision | Recall ‘ F-Measure ‘ FPR |

reliability-based 0.214 0.154 0.1791 na

DFT 0.314 0458 0.3729 0.0027
Eventset 0.242 0917 0.3826 0.1068
HSMM (max. F-measure) 0.852 0.657 0.7419 0.0145

Figure 13. Summary of prediction results
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Conclusion

* A new approach to online failure prediction that forecasts
failures by recognition of failure-prone patterns of error
events

* The approach allows to employ a customizable threshold
by which the tradeoff between, e.g., precision and recall
can be controlled.

 HSMM gives better prediction performance in
comparison to reliability based prediction, DFT and
eventset based method
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